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SIMPLE PROOFS OF NOWHERE-DIFFERENTIABILITY FOR WEIERSTRASS’

FUNCTION AND CASES OF SLOW GROWTH

JON JOHNSEN

ABSTRACT. Using a few basics from integration theory, a short proof of nowhere-differentiability

of Weierstrass functions is given. Restated in terms of the Fourier transformation, the method

consists of a second microlocalisation, which is used to derive two general results on existence of

nowhere differentiable functions. Examples are given in which the frequencies are of polynomial

growth and of almost quadratic growth as a limiting case.

1. INTRODUCTION

In 1872, K. Weierstrass presented his famous example of a nowhere differentiable functionW

on the real line. With two real parameters b≥ a> 1, this may be written as

W (t) =
∞

∑
j=0

a− j cos(b jt), t ∈ R. (1.1)

Weierstrass proved that W is continuous at every t0 ∈ R, but not differentiable at any t0 ∈ R, at

least if
b

a
> 1+

3π

2
, b is an odd integer. (1.2)

Subsequently several mathematicians attempted to relax condition (1.2), but with limited luck.

Much later G. H. Hardy [Har16] was able to remove it:

Theorem 1.1 (Hardy 1916). For every real number b≥ a> 1 the functions

W (t) =
∞

∑
j=0

a− j cos(b jt), S(t) =
∞

∑
j=0

a− j sin(b jt), (1.3)

are bounded and continuous on R, but have no points of differentiability.

The assumption b≥ a here is optimal for every a> 1, forW is in C1(R) whenever b
a

< 1, due

to uniform convergence of the derivatives. (Strangely this was not observed in [Har16].) Hardy

also proved that S′(0) = +∞ for

1< a≤ b< 2a−1, (1.4)

2000 Mathematics Subject Classification. 26A27.
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2 JON JOHNSEN

so that in such cases the graph of S(t) is not entirely rough at t = 0 (similarly W ′(π/2) = +∞

if in addition b ∈ 4N+1). However, Hardy’s treatment is not entirely elementary and yet it fills

around 15 pages.

It is perhaps partly for this reason that various attempts have been made over the years to

find other examples. These have often involved a replacement of the sine and cosine above by a

function with a zig-zag graph, albeit at the price that already the partial sums are not C1 . Indeed,

for such functions every x ∈ R is a limit x = limN rN where each rN ∈ Q is a point at which

the Nth partial sum has no derivatives; whence nowhere-differentiability of the sum function is

less startling. Nevertheless, a fine example of this sort was given in just 13 lines by J. McCarthy

[McC53].

Somewhat surprisingly, there is an equally short proof of nowhere-differentiability forW and

S, using a few basics of integration theory. This is explained here in the rest of the introduction,

with a concise proof of Theorem 1.1.

It is a major purpose of this paper to show that the simple method has an easy extension to

large classes of nowhere differentiable functions. Thus the main part of the paper contains two

general theorems, of which at least the last should be a novelty. It is also shown that the method

covers several old and new examples, including some that are rather different from W because

of a slow increase of the frequencies.

To present the ideas in a clearer way, one may consider the following function fθ which (in

this paper) serves as a typical nowhere differentiable function,

fθ (t) =
∞

∑
j=0

2− jθei2
jt , 0< θ ≤ 1. (1.5)

It is convenient to choose an auxiliary function χ : R→C thus: the Fourier transformed function

F χ(τ) =
∧
χ(τ) =

∫

R e
− i tτ χ(t)dt is chosen as a C∞-function fulfilling

∧
χ(τ) = 0 for τ /∈ ]12 ,2[ ,

∧
χ(1) = 1; (1.6)

for example by setting

∧
χ(τ) = exp

(

2−
1

(2− τ)(τ −1/2)

)

for τ ∈ ]12 ,2[. (1.7)

Using (1.6) it is easy to show that χ(t) = F−1 ∧χ(t) = 1
2π

∫

R e
i tτ ∧

χ(τ)dτ is continuous and that

tkχ(t) is bounded for all k ∈ N0 . Therefore χ is integrable, ie χ ∈ L1(R), and clearly
∫

χ dt =
∧
χ(0) = 0.
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With this preparation, the function fθ is particularly simple to treat, using only ordinary exer-

cises in integration theory: First one may introduce the convolution χ ∗ fθ , or rather

2kχ(2k·)∗ fθ (t0) =
∫

R
2kχ(2kt) fθ (t0− t)dt, (1.8)

which is in L1(R) since fθ ∈ L∞(R) and χ ∈ L1(R). Secondly this will be analysed in two

different ways in the proof of

Proposition 1.2. For 0< θ ≤ 1 the function fθ (t) = ∑∞
j=0 2

− jθei2
jt is a continuous 2π -periodic,

hence bounded function fθ : R → C without points of differentiability.

Proof. By uniform convergence fθ is for θ > 0 a continuous 2π -periodic and bounded function;

this follows from Weierstrass’ majorant criterion as ∑2− jθ < ∞.

After insertion of the series defining fθ into (1.8), Lebesgue’s theorem on majorised conver-

gence allows the sum and integral to be interchanged (eg with 2k

1−2−θ |χ(2kt)| as a majorant),

which gives

2kχ(2k·)∗ fθ (t0) = lim
N→∞

N

∑
j=0

2− jθ
∫

R
2kχ(2kt)ei2

j(t0−t) dt

=
∞

∑
j=0

2− jθei2
jt0

∫

R
e− iz2

j−k
χ(z)dz= 2−kθei2

kt0
∧
χ(1) = 2−kθei2

kt0.

(1.9)

Here it was also used that
∧
χ(2 j−k) = 1 for j = k and equals 0 for j 6= k.

Moreover, since fθ (t0)
∫

R χ dz= 0 (cf the note prior to the proposition) this gives

2−kθei2
kt0 = 2kχ(2k·)∗ fθ (t0) =

∫

R
χ(z)( fθ (t0−2

−kz)− fθ (t0))dz. (1.10)

So if fθ were differentiable at t0 , F(h) := 1
h
( fθ (t0+ h)− fθ (t0)) would define a function in

C(R)∩L∞(R) for which F(0) = f ′(t0), and Lebesgue’s theorem, applied with |zχ(z)|supR |F|

as the majorant, would imply that

−2(1−θ)kei2
kt0 =

∫

F(−2−kz)zχ(z)dz−−−→
k→∞

f ′(t0)
∫

R
zχ(z)dz= f ′(t0) i

d
∧
χ

dτ
(0) = 0; (1.11)

hence that 1−θ < 0. This would contradict the assumption that θ ≤ 1. ¤

By now this argument is of course of a classical nature. But it is seemingly not well established

in the literature. Eg, recently R. Shakarchi and E. M. Stein treated the nowhere-differentiability

of fθ in Thm. 3.1 of Chap. 1 in their treatise [SS03] with a method they described thus: “The

proof of the theorem is really the story of three methods of summing a Fourier series. . . partial

sums. . . Cesaro summability. . . delayed means.” However, they cover 0< θ < 1 in a few pages,
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while the case θ = 1 relies on refinements sketched in the page-long Problem 5.8 based on the

Poisson summation formula.

The present proofs are rather concise, covering all cases at once. They are also not confined to

periodic functions (cf the next section), for the theory of lacunary Fourier series is here simply

replaced by the Fourier transformation F and its basic properties.

Moreover, also Hardy’s theorem can be derived in this way. The main point is to keep the

factor ei2
kt0 instead of introducing cos(2kt0) and sin(2

kt0), that do not necessarily stay away

from 0 as k→ ∞ (one of the difficulties dealt with in [Har16]). Indeed, with a few modifications

one obtains a

Proof of Theorem 1.1. As a> 1, clearlyW ∈C(R)∩L∞ with |W (t)| ≤ ∑∞
j=0 a

− j = a
a−1 .

Since b> 1 it may in this proof be arranged that
∧
χ(1) = 1 and

∧
χ(τ) 6= 0 only for 1

b
< τ < b.

In the same way as for fθ this gives, by Euler’s formula,

bkχ(bk·)∗W (t0) =
∞

∑
j=0

a− j
∫

R
bkχ(bkt)12(e

ib j(t0−t) + eib
j(t−t0))dt. (1.12)

The term eib
j(t−t0) is redundant here, for z := tbk yields

∫

eib
jtχ(bkt)bk dt =

∧
χ(−b j−k) = 0, as

∧
χ vanishes on ]−∞,0]. So as in (1.9), one has bkχ(bk·)∗W (t0) = eib

kt0

2ak
.

Hence existence of W ′(t0) would imply that limk(
b
a
)keib

kt0 = 0; cf (1.10)–(1.11). This would

contradict that b≥ a, soW is nowhere differentiable. Similarly S(t) is so. ¤

It is known that Hölder regularity and differentiability of W can be analysed with the the-

ory of wavelets; cf [Hol95]. But the above proofs have the advantage of relying only on “first

principles”.

In Section 2 the proofs are reinforced using the Fourier transformation consistently, leading

to a general result on nowhere differentiable functions. Refining a dilation argument, a further

extension is found in Section 3, where functions with polynomial growth of the frequencies are

covered. Examples with much slower growth are given in Section 4.

Remark 1.3. By a well-known reasoning, nowhere-differentiability ofW is obtained because the

jth term cannot cancel the oscillations of the previous ones: it is out of phase with previous terms

since b > 1, and moreover the amplitudes decay exponentially since 1
a

< 1; as b ≥ a > 1 the

combined effect is large enough (vindicated by the optimality of b≥ a noted after Theorem 1.1).

However, it will be clear from Section 4 below that frequencies growing almost quadratically

suffice for nowhere-differentiability; cf Remark 4.4.
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Remark 1.4. Inspection of the proof of Theorem 1.1 shows that Lebesgue’s theorem on majorised

convergence is the most advanced part. As this result appeared in 1908, cf [Leb08, p. 12], it

seems that the argument could have been written down a century ago.

2. PROOF BY MICROLOCALISATION

Although the proofs above are short, it is useful to rephrase them with a few facts from the

distribution theory of L. Schwartz (cf [Sch66]). As shown here, this gives a better insight and

leads directly to a general result.

Recall that the Fourier transformation F f (τ) =
∧

f (τ) =
∫

R e
− i tτ f (t)dt has a well-known ex-

tension to the space S ′(R) of so-called tempered distributions. In particular it applies to expo-

nential functions eibt , and as a basic exercise this yields 2π times Dirac’s delta measure δb , ie

the point measure at τ = b,

F (eib·)(τ) = 2πδ (τ −b) = 2πδb(τ). (2.1)

For fθ (t) = ∑∞
j=0 2

− jθei2
jt the Fourier transformation gives, cf (2.1),

F fθ =
∞

∑
j=0

2− jθF (ei2
j·) = 2π

∞

∑
j=0

2− jθ δ2 j . (2.2)

(F applies termwisely because it is continuous on the space S ′(R), and the right-hand side

converges there for every θ ∈ R.) The formula (2.2) just expresses the intuitively obvious fact

that fθ is synthesized precisely from the frequencies 1,2, . . . ,2
j, . . . .

Each of the frequencies may be picked out in a well-known way: In the space S (R) of

rapidly decreasing C∞-functions one can choose χ such that F χ(1) = 1 whereas F χ(τ) = 0

for τ /∈ ]23 ,
3
2 [ . Clearly

∧
χ(2− j·) 6= 0 only on [232

j, 322
j], so

∧
χ(2−k·)δ2 j =

{

0 for j 6= k

δ2k for j = k.
(2.3)

The general rule F (χ ∗ f ) =
∧
χ ·

∧

f applies to χ ∈ S (R) and fθ ∈ L∞ ⊂ S ′(R), whence

F (2kχ(2k·)∗ fθ ) =
∧
χ(2−k·) ·F fθ = 2π

∞

∑
j=0

2− jθ
∧
χ(2−k·)δ2k = 2π2−kθ δ2k . (2.4)

So by use of F−1 and (2.1),

2kχ(2k·)∗ fθ (t) = 2−kθei2
kt . (2.5)

This formula coincides with (1.9), but from the above procedure it is clear that the convolution

precisely gives the part of fθ having frequency 2
k .
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Remark 2.1. The process in (2.4)–(2.5) has of course been known for ages, but with the distribu-

tion theory it is fully justified although F fθ consists of measures. In principle, it is a so-called

second microlocalisation of fθ , since
∧
χ(2−kτ)F fθ (τ) is localised to frequencies τ restricted in

both size and direction; ie |τ| ≈ 2k and τ > 0.

The second microlocalisation is more visible in a separate treatment of

Re fθ (t) =
∞

∑
j=0

2− jθ cos(2 jt), Im fθ (t) =
∞

∑
j=0

2− jθ sin(2 jt). (2.6)

They are continuous and 2π -periodic like fθ , and also both without derivatives anywhere. In-

deed, by Euler’s formula and (2.1),

F cos(2 j·) = 2π
2 (δ2 j +δ−2 j), F sin(2 j·) = 2π

2i (δ2 j −δ−2 j). (2.7)

Here multiplication by
∧
χ(2− j·) removes the contribution from δ−2 j . Therefore one can replace

fθ in (1.10) by Re fθ and Im fθ if only 2
−kθ is replaced by 122

−kθ and 12i2
−kθ , respectively. The

rest of the proof is similar.

It is not difficult to carry this observation over to the context of Theorem 1.1, which will

explain why the proof of this was saved by the redundancy of the term eib
j(t−t0) .

However, one can just as well pass to the following result on possibly non-periodic functions of

the form f (t) = ∑a j exp(ib jt), with more general sequences (a j) of amplitudes and frequencies

(b j). The latter are assumed to be monotone increasing, ie b1< b2< · · ·< b j < .. . Throughout it

is assumed that b j > 0 for all j, for a finite number of negative frequencies would only contribute

a C∞-term. For short this is written 0< b jր b, where b= lim j b j belongs to R∪{∞}.

Recall that f : R→C is said to be Lipschitz continuous at t0 if there exist two constants L> 0,

η > 0 such that | f (t)− f (t0)| ≤ L|t− t0| for every t ∈ ]t0−η , t0+η [ .

Theorem 2.2. Let f : R → C be given as

f (t) =
∞

∑
j=0

a j exp(ib jt) (2.8)

by means of a complex sequence (a j) j∈N0 and a real sequence (b j) j∈N0 fulfilling

∞

∑
j=0

|a j| < ∞, 0< b jր ∞, (2.9)

liminf
j→∞

b j+1

b j
> 1, a jb j 6→ 0 for j→ ∞. (2.10)

Then f is bounded and continuous on R, but has no points of differentiability. If in addition

supk |ak|bk = ∞, then f is moreover not Lipschitz continuous at any point. The same conclusions

are valid for Re f and Im f .
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Clearly limsup |a j|b j > 0 is equivalent to a jb j 6→ 0; cf (2.10). The latter is a natural condition

because termwise differentiation yields ∑a jb je
ib jt , which cannot converge unless a jb j→ 0.

Proof. Using (2.9) to invoke the majorant criterion, f is easily seen to be in C(R)∩ L∞(R).

Hence f ∈ S ′(R), ie f is a tempered distribution on R, and

F f (τ) =
∞

∑
j=0

a jF (eib j·) = 2π
∞

∑
j=0

a jδb j(τ). (2.11)

In view of (2.10) one can fix λ ∈ ]1, liminf
b j+1
b j

[ so that bk+1 > λbk for all k≥ K , if K is chosen

appropriately. Taking
∧
χ ∈C∞(R) such that

∧
χ(1) = 1 and

∧
χ(τ) 6= 0 only holds for λ−1 < τ < λ ,

then
∧
χ(τ/bk) 6= 0 only for τ ∈ ]bkλ ;λbk[ .

Because [bkλ ;λbk]⊂ ]bk−1;bk+1[ and the sequence (bk) is monotone increasing, clearly it holds

that
∧
χ(τ/bk)δb j(τ) = 0 for all j 6= k. Thence

F (bkχ(bk·)∗ f )(τ) =
∧
χ(τ/bk)

∧

f (τ) = 2πakδbk(τ). (2.12)

By inverse Fourier transforming this,

ake
ibkt0 = bkχ(bk·)∗ f (t0) =

∫

R
χ(z) f (t0− z/bk)dz. (2.13)

If f were differentiable at t0 , then F(t) = ( f (t0+ t)− f (t0))/t would be in L∞ (like f ), so since
∫

χ(t)dt = 0, majorised convergence would imply

−akbke
ibkt0 =

∫

R
zχ(z)

f (t0− z/bk)− f (t0)

−z/bk
dz−−−→
k→∞

f ′(t0) i
d

∧
χ

dτ
(0) = 0. (2.14)

This would entail |ak|bk→ 0 for k→ ∞, in contradiction of (2.10).

In addition, if f were Lipschitz continuous at t0 , then again F would be bounded since

f ∈ L∞ , so the integral in (2.14) would be uniformly bounded with respect to k, in which case

supk |ak|bk < ∞.

Finally, using (2.7) it is easy to see that one can replace f in (2.12) by Re f or Im f if only ak

is replaced by ak/2 and ak/(2i), respectively. Eg

∧
χ(·/bk)F Re f = 2π

∞

∑
j=0

∧
χ(·/bk)(

Rea j

2
(δb j +δ−b j)−

Ima j

2i
(δb j −δ−b j)) = 2π

ak

2
δbk . (2.15)

Proceeding as for f itself, it follows that neither Re f nor Im f can be differentiable at some

t0 ∈ R, respectively Lipschitz continuous if sup j |a j|b j = ∞. ¤

Remark 2.3. A necessary condition for Hölder continuity of order α ∈ ]0,1[ follows at once from

a modification of the above argument: replacing akbk on the left-hand side of (2.14) by akb
α
k , the
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resulting integral will be uniformly bounded with respect to k since
∫

|z|α |χ(z)|dz< ∞. Hence

sup
k

|ak|b
α
k < ∞ (2.16)

whenever f (t) in Theorem 2.2 is Hölder continuous of order α at a single point t0 .

Example 2.4. Sequences of power type like a j = a
− j and b j = b

j for parameters b≥ |a|> 1 give

f (t) = ∑∞
j=0 a

− jeib
jt , which is covered by Theorem 2.2 as |a j|b j = |b

a
| j ≥ 1 and

b j+1
b j

= b > 1.

Therefore Theorem 2.2 contains Theorem 1.1 and extends it to complex amplitudes.

For W (t) Remark 2.3 reduces to b
α

a
≤ 1, hence to α ≤ loga

logb . In case b > a > 1 it is known

from [Har16, p. 311] thatW is globally Hölder continuous of order α = loga/ logb; whereas for

b= a> 1 it was only obtained there that W (t+h)−W (t) = O(|h| log1/|h|). So Remark 2.3 at

once gives a sharp upper bound for the Hölder exponent of W (mentioned as a difficult task in

[Jaf97]). The reader may also consult Theorem 4.9 in Ch. II of Zygmund’s book [Zyg59] for the

Hölder continuity ofW .

Example 2.5. In the same way, Theorem 2.2 also covers Darboux’ function

f (t) =
∞

∑
j=0

sin(( j+1)!t)

j!
, (2.17)

for a j = 1/ j! and b j = ( j+1)! fulfil in particular
b j+1
b j

= j+2ր ∞ and a jb j = j+1ր ∞.

Example 2.6. Setting a j = a
− j for some a > 1 and defining (b j) by b2m = a2m and b2m+1 =

(1+ a−p)a2m , it is seen directly that when the power p is so large that 1+ a−p < a2 , then

the sequences (a j) and (b j) fulfil the conditions of Theorem 2.2. Eg (2.10) holds as
b j+1
b j

∈ {1+

a−p,a2(1+a−p)−1}⊂ ]1,∞[ and a jb j ∈{1,(1+a−p)/a}. Thus f (t) is nowhere differentiable in

this case. If further p is so large that 1+a−2< ap(1−a−2) it is easily verified that b2m+1−b2m<

b2m−b2m−1 so that (b j+1−b j) is not monotone increasing. Eg if a= 5, both requirements are

met by p= 1 and the values of (b j) are

1, 65 ,25,30,625,750,15625,18750, . . .

Clearly these frequencies have a distribution with lacunas of rather uneven size.

To shed light on the assumptions in Theorem 2.2, note that for every sequence (b j) of positive

reals,

liminf
b j+1

b j
> 1 ⇐⇒∃ε > 0: liminf

b j+1−b j
b j

= ε (2.18)

⇐⇒∃ε > 0 ∃J ∈ N ∀ j > J : εb j < b j+1−b j <
2+ε
1+ε b j+1. (2.19)
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Clearly (2.19) gives a control over the spectral gaps b j+1−b j ; by the equivalence the requirement

liminf
b j+1
b j

> 1 in Theorem 2.2 may therefore be seen as a spectral gap condition. Since b jր ∞,

the last line shows that b j+1−b j→ ∞ in all cases covered by Theorem 2.2; but the spectral gaps

need not be monotone increasing, cf Example 2.6.

3. DILATION BY DIFFERENCES

The spectral gaps were used in Theorem 2.2 to ensure that the cut-off function
∧
χ(τ/bk) would

only yield the single frequency bk . This rules out cases in which bk is of a much larger order of

magnitude than bk+1−bk . This may also be seen from (2.18).

This drawback is felt in case of polynomial growth such as a j = j
−p and b j = j

q , for since

lim
b j+1
b j

= lim(1+ 1
j
)q = 1, Theorem 2.2 does not apply.

But it should suffice to dilate a cut-off function just by the gap b j+1− b j , or by b j− b j−1 if

this is the smaller gap at b j , at least if lim(b j+1− b j) = ∞, which could be assumed (replacing

the spectral gap condition by one of its consequences, cf (2.19)). For a subsequence, this is done

implicitly in condition (3.3) below:

Theorem 3.1. Let f : R → C be given as

f (t) =
∞

∑
j=0

a j exp(ib jt) (3.1)

for a complex sequence (a j) for which ∑∞
j=0 |a j| < ∞ and a real sequence 0< b jր ∞. If

∆b j =min(b j−b j−1,b j+1−b j) (3.2)

has the property that

a j∆b j 6→ 0 for j→ ∞, (3.3)

then f is bounded and continuous on R, but f is nowhere differentiable. Moreover, f is not

Lipschitz continuous at any t0 ∈ R when sup j |a j|∆b j = ∞. The conclusions are also valid for

Re f and Im f .

Proof. f ∈C(R)∩L∞(R) is shown as in Theorem 2.2. Let now Fψ ∈C∞(R) fulfil Fψ(0) = 1

and Fψ(τ) 6= 0 only for |τ| < 1/2, and take the spectral cut-off function as

∧
ψk(τ) =

∧
ψ(

τ −bk
∆bk

). (3.4)

Then the definition of ∆bk as a minimum entails

∧
ψk(τ) 6= 0 =⇒ bk−

1
2(bk−bk−1) < τ < bk+

1
2(bk+1−bk). (3.5)
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Since (b j) is increasing, the τ -interval specified here only contains b j for j = k, whence

∧
ψk(τ)

∧

f (τ) = 2π
∞

∑
j=0

a j
∧
ψk(τ)δb j(τ) = 2πakδbk(τ). (3.6)

Note that by a change of variables,

F
−1 ∧

ψk(t) = 1
2π

∫

R
ei t(bk+σ∆bk)

∧
ψ(σ)∆bk dσ = (∆bk)e

i tbkψ(t∆bk). (3.7)

Since the integral of the right-hand side is 0 by (3.5), application of F−1 to (3.6) gives,

ak(∆bk)e
ibkt0 = (∆bk) f ∗ψk(t0)

=
∫

R
( f (t0− t)− f (t0))(∆bk)

2eibktψ(t∆bk)dt.

=
∫

R

f (t0− z/∆bk)− f (t0)

z/∆bk
zψ(z)e

iz
bk

∆bk dz.

(3.8)

In case f is Lipschitz continuous at t0 one has again F ∈ L∞ , so this yields that for some suitably

large L ∈ R,

sup
k

|ak|∆bk ≤ sup
k

∫

R

∣

∣

∣

∣

f (t0− z/∆bk)− f (t0)

z/∆bk

∣

∣

∣

∣

|zψ(z)|dz≤ L
∫

R
|zψ(z)|dz< ∞. (3.9)

Moreover, because bk/∆bk ≥ bk/(bk−bk−1) > 1,

∫

R
zψ(z)e

iz
bk

∆bk dz= i
d

∧
ψ

dτ
(−
bk

∆bk
) = 0. (3.10)

So were f differentiable at t0 , it would follow from (3.8) by majorised convergence that

ak(∆bk)e
i t0bk = −

∫

R

( f (t0− z/∆bk)− f (t0)

−z/∆bk
− f ′(t0)

)

zψ(z)e
iz
bk

∆bk dz−−−→
k→∞

0, (3.11)

in contradiction of (3.3). Finally the same arguments apply to Re f , Im f by dividing ak by 2

and 2i, respectively, as in the previous theorem. ¤

Remark 3.2. It is immediate from (3.8) that when f (t) in Theorem 3.1 is Hölder continuous of

order α ∈ ]0,1[ at some t0 , then

sup
j

|a j|(∆b j)
α < ∞. (3.12)

When applied to W , this condition gives the same result as Remark 2.3, for ∆b j = cb
j with

c= 1−1/b> 0 when b> 1. Consequently the gap growth condition (3.12) cannot be sharpened

in general.

Seemingly, nowhere differentiability has not been obtained under the weak assumptions of

Theorem 3.1 before. In the first application of this result it is seen, like for fθ and W , that the
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regularity of the sum function improves when the growth of the frequencies is taken smaller, here

by reducing q:

Example 3.3 (Polynomial growth). For p> 1 one has uniformly continuous functions

fp,q(t) =
∞

∑
j=1

exp(i t jq)

jp
, Re fp,q(t), Im fp,q(t), (3.13)

that moreover are C1 and bounded with bounded derivatives on R in case q < p−1. However,

for q ≥ p+1 they are nowhere differentiable according to Theorem 3.1: (3.3) follows since by

the mean value theorem the spectral gaps increase, and

limsup j−p( jq− ( j−1)q) ≥ limsupq jq−p−1(1−1/ j)q−1 =

{

q for q= p+1,

∞ for q> p+1.
(3.14)

Moreover, for q> p+1 there is not Lipschitz continuity at any point.

But the functions in (3.13) are globally Hölder continuous of order α = (p− 1)/q if only

q≥ p−1. This results from the splitting

| fp,q(t+h)− fp,q(t)| ≤ ∑
j≤N

jq−p|h|+ ∑
j>N

2 j−p ≤ Nq−p+1|h|+
2

p−1
N1−p. (3.15)

For 0< |h| ≤ 1
2 this is exploited for the unique N such that

N ≤ |h|−1/q < N+1. (3.16)

For the Hölder exponents, this is optimal among the powers |h|−θ , for clearly θ = 1/q is the

value that maximises

min(θ(p−1),1−θ(q− p+1). (3.17)

Using (3.16) in (3.15) gives a C < ∞ so that for |h| ≤ 1/2,

| fp,q(t+h)− fp,q(t)| ≤C|h|
α , α =

p−1

q
. (3.18)

As fp,q ∈ L∞ , this holds for all h, t if C is sufficiently large.

The inequality ∆b j < q j
q−1 shows that the necessary condition in Remark 3.2 is fulfilled for

α(q−1)− p≤ 0, which only gives the upper bound α ≤ p
q−1 . So in view of (3.18) there remains

a gap for these functions.

The progression of the frequencies in Example 3.3 is clearly slower than in Example 2.6, and

in this sense Theorem 3.1 improves Theorem 2.2 a good deal. The condition |a j|∆b j 6→ 0 in

(3.3) cannot be sharpened in general, for already forW it amounts to b≥ a, that is equivalent to

nowhere-differentiability.
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However, (3.3) does not give optimal results for fp,q . Eg the case with p = q = 2 has been

completely clarified and shown to have a delicate nature, as it is known from several investiga-

tions that the so-called Riemann function

R(t) =
∞

∑
j=1

sin(π j2t)

j2
(3.19)

is differentiable with R′(t) = −1/2 exactly at t = r/s for odd integers r, s. For properties of this

function the reader is referred to the paper of J. Duistermaat [Dui91].

As fp,q is in C
1(R) for every q< p−1 when p> 1, transition to nowhere-differentiability oc-

curs (perhaps gradually) as q runs through the interval [p−1, p+1[ . Nowhere-differentiability

for q ≥ p+ 1 was also mentioned for Im fp,q by W. Luther [Lut86] as an outcome of a very

general Tauberian theorem. (In addition Im fp,2 was covered with nowhere-differentiability for

p≤ 3/2 providing cases in [p+ 12 , p+1[ ; for t irrational Luther’s result relied on Hardy’s inves-

tigation [Har16], that covered Im fp,2 for p< 5/2 thus giving cases of almost nowhere differen-

tiability in ]p− 12 , p+
1
2 ] for q= 2.)

From (3.18) it is seen that R(t) is globally Hölder continuous of order α = 1/2, which is well

known; cf [Dui91]. At the points of differentiability, this is of course not optimal, but it is also

known that the local Hölder regularity of R attains every value α ∈ [12 ,
3
4 ] in a non-empty set; cf

the paper of S. Jaffard [Jaf97].

In view of this, it is envisaged that the global Hölder exponent α = p−1
q
is optimal in Exam-

ple 3.3 whenever q≥ p−1, p> 1.

Remark 3.4. fp,q was recently studied by F. Chamizo and A. Ubis for q ∈ N, p> 1. In [CU07,

Prop. 3.3] they treated nowhere-differentiability by convolving fp,q with the Fejér kernel; this

method was proposed as an alternative to those of [Lut86], and it is similar in spirit to the above

proof of Theorem 3.1. However, other statements are flawed. Eg, in [CU07, Thm. 3.1], fp,q is

claimed differentiable at an irreducible fraction r/s ∈ Q, s > 0, if and only if both q < p+1/2

and q divides γ − 1 but is relatively prime with σ − 1 for some maximal prime power σ γ in

the factorisation of s. But as noted above fp,q is C
1 for every q < p−1, and for the cases with

q ∈ N∩ [2, p−1] the condition on q and the prime factors of s is violated even in a dense subset

of R (eg where 2≤ γ ≤ q for each prime factor of s), so the claim is not correct for such q.

4. SLOWLY GROWING FREQUENCIES

As a result of Theorem 3.1, nowhere-differentiability follows in several new cases where the

ratio b j/ j
2 can have arbitrarily slow growth.

This will be clear from the examples of this section. They all relate to the limiting case p= 1,

q= 2 in Example 3.3.
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Example 4.1. Setting loga t = (log t)a for a ∈ R and t > 1, the functions

F1(t) =
∞

∑
j=2

exp(i t j2 logb j)

j loga j
, ReF1(t), ImF1(t) (4.1)

are for b≥ a> 1 continuous, bounded and nowhere differentiable on R; for b> a> 1 not even

Lipschitz continuous at any point.

Indeed, the auxiliary function ϕ(t) = t2 logb t has derivative ϕ ′(t) = t logb−1 t(b+ 2log t);

since this is increasing, so is ϕ(t)−ϕ(t−1). (Actually ϕ is convex as ϕ ′′ > 0.) This gives

a j∆b j = a j(b j−b j−1)

= ( j loga j)−1( j2 logb j− j2 logb( j−1)+2 j logb( j−1)− logb( j−1))

= j logb−a j(1− [
log j(1−1/ j)

log j
]b)+2logb−a j(1+

log(1−1/ j)

log j
)b−
logb( j−1)

j loga j
.

(4.2)

For the square bracket the binomial series gives

[1+
log(1−1/ j)

log j
]b = [1+

− j−1+O( j−2)

log j
]b

= 1+b
− j−1+O( j−2)

log j
+O(

− j−1+O( j−2)

log j
)2 = 1−

b

j log j
+O( j−2). (4.3)

Hence

a j∆b j = b log
b−a−1 j+2(1+o(1)) logb−a j+o(1) −−−→

j→∞

{

2 for b= a,

∞ for b> a.
(4.4)

Therefore Theorem 3.1 yields the stated properties of F1 . Taking eg a = b = 2 the frequencies

are (with decimals rounded off) 2, 11, 31, 65, 116, 186, 277, 391, . . .

To avoid repetition of lengthy details as above, one can adopt the next result, that also shows

that many examples arise simply by taking the frequencies as b j = j/|a j|:

Corollary 4.2. When ∑ j>J |a j| < ∞ for a sequence with |a j| ≥ |a j+1| for all j > J and there is

a convex function ϕ : ]J,∞[→ R such that ϕ( j) = j/|a j| for every j ∈ N∩ ]J,∞[ , then

f (t) = ∑
j>J

a j exp(i t j/|a j|) (4.5)

is a bounded continuous function on R, for which f , Re f , Im f are nowhere differentiable.

Proof. To analyse ∆b j , note that

j
|a j|

− j−1
|a j−1|

≤ j+1
|a j+1|

− j
|a j|

⇐⇒ j
|a j|

≤ 1
2(
j+1

|a j+1|
+ j−1

|a j−1|
); (4.6)

the last inequality holds true by the assumptions on ϕ . Therefore

|a j|∆b j = |a j|(
j

|a j|
− j−1

|a j−1|
) =

|a j|
|a j−1|

+ j(1−
|a j|
|a j−1|

). (4.7)
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If λ := limsup
|a j|
|a j−1|

fulfils 0< λ ≤ 1, one has limsup |a j|∆b j ≥ λ > 0 because |a j∆b j| ≥
|a j|
|a j−1|
.

Otherwise λ = 0, but since |a j|∆b j ≥ j(1−1/2) eventually, limsup |a j|∆b j = ∞. In both cases

Theorem 3.1 yields the claim, for the b j = j/|a j| are strictly increasing. ¤

The corollary applies to the example preceeding it for b = a > 1, for the function ϕ(t) =

t2 loga t has for all t > 1 the derivative

ϕ ′(t) = t(a+2log t) loga−1 t, (4.8)

which is increasing for a> 1, so that ϕ is convex. Clearly ϕ( j) = j/( j loga j)−1 for j > 1.

A slower growth is obtained as follows:

Example 4.3. Setting log◦2
a t = (log log t)a for a ∈ R, t > e, there is a bounded, continuous but

nowhere differentiable function given by

F2(t) =
∞

∑
j=3

exp(i t j2 log j log◦2
a j)

j log j log◦2
a j

, a> 1. (4.9)

Indeed, ∑( j log j log◦2
a j)−1 < ∞ by the integral criterion since the ‘primitive’ function (1−

a)−1 log◦2
1−a t→ 0 for t→ ∞. Here ϕ(t) = t2 log t log◦2

a t , and since

ϕ ′(t) = t log◦2
a−1 t(a+(1+2log t) log◦2 t), t > e (4.10)

is monotone increasing, ϕ is convex so the corollary applies. For a= 2 the (rounded) frequencies

for j ≥ 2 are 0.37, 0.09, 2, 9, 22, 42, 71, 110, 160,. . .

To elucidate Example 4.3, the imaginary part ImF2 is skecthed in Figure 1. All figures are

made using Maple11 with a plot of a partial sum with 1000 terms and 1000 partition points in

the interval, and possibly a further subdivision into at most 10 bits as decided by the program.

However, the plots are by no means optimal or even faithful. In fact, neither the details are

rendered correctly (absent or blurred) and nor are the macroscopic properties, as the graphs

appear to be C1 in certain subintervals. This is unavoidable due to the line thickness; anyhow

each figure should provide an overview of the function’s behaviour and an impression of its

highly oscillatory nature.

The quasi-periodic behaviour visible in Figure 1 comes about because the first term of the

series is dominating in the sense that it is much larger in magnitude than the remainder.

Remark 4.4. In Examples 4.1, 4.3 and 4.5 below, the series ∑a j converges very slowly, so most

properties of t 7→ ∑ j≤N a j exp(i t j/|a j|) are likely to be destroyed by addition of the terms with

j > N . Especially because the frequencies in b j = j/|a j| do not change very much. Therefore

the inference in Remark 1.3 is unlikely to apply in general.

One can give more pronounced examples of slow growth:
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FIGURE 1. ImF2(t) for the function in Example 4.3
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FIGURE 2. ImF3(t) for the function in Example 4.5, n= 3, a= 2



16 JON JOHNSEN

Example 4.5. Denoting the n-fold logarithm by log◦n t := log . . . log t , defined for t > En−2 :=

exp . . .exp1 (ie exp applied n−2 times), and setting loga◦n t = (log◦n t)
a for a ∈ R and t > En−1

(so that s 7→ sa is defined at s = log◦n t ), there is a continuous nowhere differentiable function

given by

Fn(t) = ∑
j>En−1

exp(i t j2 log j . . . log◦(n−1) j · log
a
◦n j)

j log j . . . log◦(n−1) j · log
a
◦n j

. (4.11)

Indeed, ∑ |a j| < ∞ for a j = 1/( j log j . . . log◦(n−1) j log
a
◦n j); this may be seen from the integral

criterion since a j is the value at t = j of the derivative of

g(t) = 1
1−a log

1−a
◦n t =

1
1−a(log . . . log t)

1−a −−−→
t→∞

0 for a> 1. (4.12)

It is clear that a j ≥ a j+1 , since all iterated logarithms are monotone increasing and positive for

j > En−1 . To apply the corollary one needs convexity of

ϕa,n(t) = t2 log t . . . log◦(n−1) t · log
a
◦n t, t > En−1. (4.13)

Writing Sn(x) = (x+1) log◦n t for n ∈ N, the derivative equals

ϕ ′
a,n(t) = t loga−1◦n t(a+Sn ◦ · · · ◦S2(1+2log t)), a> 0. (4.14)

In fact, in a proof by induction the basis is provided by the previous example; and if this formula

has been shown for all a> 0 for some integer n≥ 2, Leibniz’ rule gives

ϕ ′
a,n+1(t) = ϕ ′

1,n(t) log
a
◦(n+1) t+ϕ1,n(t)(log

a
◦(n+1) t)

′

= t loga−1◦(n+1) t((1+Sn ◦ · · · ◦S2(1+2log t)) log◦(n+1) t+a)

= t loga−1◦(n+1)(a+Sn+1 ◦Sn ◦ · · · ◦S2(1+2log t)).

(4.15)

The formula for ϕ ′
a,n shows that, for a > 1, this function is monotone increasing on ]En−1,∞[ ,

since loga−1◦n is so and all iterated logarithms are positive on this interval. Hence ϕa,n is convex

on ]En−1,∞[ as required.

For a= 2 and n= 3 one has En−1 = ee ≈ 15.15, and for j ≥ 16 the (rounded) frequencies are

0.28, 1.4, 3.5, 6.8, 11, 17, 25, 34, 45, 57,. . . (4.16)

(As a= 2 it is also possible to sum over j ∈ {3,4, . . . ,15}, but these indices are best left out since

the frequencies decrease from 11 for j = 6 to 0.009 for j = 15.) The function f2 is sketched in

Figure 2, where also the first term is drawn.

Example 4.6. As a last comparison, for a = 2 and n = 4, summation begins in (4.11) after

E3 = ee
e
= 3814279.1 . . . Cf Figure 3. A few of the resulting frequencies b j are given in Table 1.

This clearly shows that, despite the larger number of j-dependent factors, one gets slower

growth of the frequencies by using iterated logarithms of higher order. This may also be seen
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term no. 1 .. 10 .. 20 .. 100 .. 1000

index j 3814280 3814290 3814300 3814380 3815280

frequency 0.02 2.4 10.6 247 24326

TABLE 1. Selected frequencies in Example 4.5 for a= 2, n= 4

t
0 100 200 300 400 500 600

K2#108

K1#108

1#108

2#108

FIGURE 3. ImF4(t) for the function in Example 4.3, n= 4, a= 2

analytically since a substitution in limt→∞ t
−α logβ t = 0, yields that for a> 1

log◦n t log
a
◦(n+1) t = o(log

a
◦n t) for t→ ∞. (4.17)

It appears from Figures 1, 2 and 3 that as the frequency growth is reduced, one gets increas-

ingly larger deviations from a sinusoidal curve. Ie the first term becomes less dominating, cf

Remark 4.4.
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To illustrate that, Figure 4 shows the deviation from the first term, ie the sum over j ≥

3814281. Notice that the sinusoidal structure is almost completely lost, ie the first term is not

dominating here. So this case seems to corroborate Remark 4.4 more clearly.

In addition to the vertical tangent at the origin in Figure 4, there are many approximate self-

similarities, like those for R(t) analysed by J. Duistermaat [Dui91]. Eg the behaviour for ca.

40< t < 75 seems similar to that found for 25< t < 40 and so on for t→ 0+ .

t
0 50 100 150

K6#107

K4#107

K2#107

2#107

4#107

FIGURE 4. Deviation from the first term of ImF4(t) in Example 4.5, n= 4, a= 2

For larger n I have not found it worthwhile to attempt any plots, for already for n = 5 the

summation runs over j > E4 = e3814279.1... . This tremendous number would make even a sketch

of the partial sums a tricky task in scientific computing.
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5. FINAL REMARKS

The first example of a nowhere differentiable function is due to R. Bolzano (ca. 1830, dis-

covered 1920). T. Takagi [Tak03] introduced t 7→ ∑∞
j=0 2

− j dist(2 jt,Z) where the terms are only

piecewise C1 . Recently examples of nowhere-differentiability were given by means of infinite

products; cf [Wen02]. For a review of the historical development of the subject the reader could

consult the illustrated thesis of J. Thim [Thi03].

My interest in the subject developed during a recent study of pseudo-differential operators of

order d ∈ R and type 1,1; cf [Joh]. The basic pathologies of this operator class are deduced by

means of functions on Rn of the form

uξ0(x) = v(x)
∞

∑
j=1

2− jd exp(i2 j〈x, ξ0 〉). (5.1)

Eg when v is in S (Rn) and has a small compact spectrum, it may be seen that the above uξ0

has Rn× (R+ξ0) as its wavefront set. This enters the proof that not all operators A of type 1,1

preserve wavefront sets: A can be taken such that Rn× (R+(−ξ0)) is the wavefront set of Auξ0 ;

cf [Joh]. However, an interesting aspect of this is that the sum defines a nowhere differentiable

function for 0< d ≤ 1 (nowhere C∞ for general d ∈ R). Multiplication by the analytic function

v gives uξ0 the same lack of differentiability almost everywhere, which explains why uξ0 has its

singular support spread over the entire Rn .

When the manuscript was almost complete, it was discovered that a few elements of the argu-

ments exist sporadically in the literature; cf Remark 3.4 for comments on [CU07]. Moreover, the

real and imaginary parts of fθ , θ = 1 have been analysed by Y. Meyer [Mey93, Ch. 9.2] with

a method partly based on wavelets and partly similar to the proof of Theorem 2.2. The method

was attributed to G. Freud but without any references.

Subsequently an inspection of [Fre62, Satz VI] revealed that G. Freud showed that an inte-

grable periodic function f with Fourier series ∑ρk sin(nkt+ϕk), infnk+1/nk > 1 is differentiable

at a point only if limρknk = 0, similarly to Theorem 2.2. His proof was based on estimates of the

differentiated Cesaro means using inequalities for the corresponding Fejer kernel (as done also

in [SS03]), so it is applicable only for periodic functions.

There is much more overlap with the work of Y. Meyer, especially in the use of the Fourier

transformation F on R. Whereas the purpose in [Mey93, Ch. 9.2] was to explain that the lack

of differentiability of Re f1 , Im f1 can be derived with wavelet theory, the present paper goes

much beyond this. Eg nowhere-differentiability of fθ , or W , is shown to follow directly from

basic facts in integration theory; cf the introduction. And using only F , differentiability was in

Theorem 2.2 linked to the growth of the frequencies b j . Moreover, the removal of the spectral
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gap condition liminfb j+1/b j > 1 in Theorem 3.1 seems to be a novelty, which shows that the

growth of the frequency increments ∆b j is equally important.

In the context of distribution theory, the present proofs are rather straightforward. But even

so they may be valuable, eg because of the easy access to the examples in Section 4, that have a

rather different nature than the previously known ones.

Acknowledgement. I am grateful to Prof. L. Rodino and Prof. H. Cornean for their interest in

this work and for their call to publish it.
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