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Stochastic Models for Strength of Wind Turbine Blades using Tests 

Henrik Stensgaard Toft, Aalborg University, Denmark, hst@civil.aau.dk, phone +45 9940 8583 
John Dalsgaard Sørensen, Aalborg University and Risø National Laboratory, Denmark 

Abstract 
The structural cost of wind turbine blades is dependent on the values of the partial safety factors which re-
flect the uncertainties in the design values, including statistical uncertainty from a limited number of tests. 
This paper presents a probabilistic model for ultimate and fatigue strength of wind turbine blades especially 
considering the influence of prior knowledge and test results and how partial safety factors can be updated 
when additional full-scale tests are performed. This updating is performed by adopting a probabilistic design 
basis based on Bayesian statistical methods. 
 
1. Introduction 
To verify the ultimate and fatigue strength of new wind turbine blades, full-scale certification type tests must 
be performed according to [1]. Normally, several tests are performed with small coupons of the base material 
and a limited number of tests are performed with elements and details of the blade. However, normally only 
one full-scale test is performed according to the requirements in [2] which normally does not lead to failure. 
Only one non destructive full-scale test leaves a considerable amount of statistical uncertainty which must be 
taken into account in the assessment of the reliability and partial safety factors for the blades. 
 
Blade testing in ultimate loading is normally performed by multiple-loading in about six locations on the blade 
dependent on the blade length. In fatigue loading the test load is often applied by an eccentric mass exciter. 
These simplified load distributions mean that the test loading in some cross sections will be higher than re-
quired in order to reach the test load in other cross sections. In this paper the information obtained by the 
higher test loads is taken into account under the assumption that the test does not lead to failure. 
 
More tests would decrease the statistical uncertainty and could imply a decrease in the partial safety factors 
leading to a lighter design of the wind turbine blades. Even though full-scale tests of wind turbine blades are 
time-consuming and expensive the benefits from a lighter design is excessive, since also loads on other 
parts of the wind turbine are reduced. Besides, the series production of blades implies the possibility that 
costs of more tests can be paid due to decrease in the use of materials. 
 
In this paper only ultimate loading in the standstill mode and fatigue loading are taken into account. The sto-
chastic models presented for the material properties and uncertainties are based on the work presented in 
[3] and [4]. The fatigue strength is modelled using the SN-approach in the shape of Constant Life Diagrams 
and Miner’s rule. 
 
In section 2 ultimate loading is first examined by outlining a general load-bearing capacity model for the wind 
turbine blade and by a numerical example where the partial safety factors are updated based on additional 
full-scale tests and a simple linear limit state function. In section 3 fatigue loading is considered where a limit 
state function is arranged based on a numerical simulation of the flapwise bending moment at different mean 
wind speeds. Subsequently, the partial safety factors are updated based on additional full-scale tests and the 
limit state function. 
 
2. Ultimate Loading (standstill) 
In the following the approach for calculation of the reliability index is outlined, see [5], and it is illustrated by a 
numerical example how the partial safety factor can be updated based on additional full-scale tests. The fol-
lowing approach is based on a model where the load-bearing capacity of the blade is modelled as a series 
system of elements, see figure 1. However in real wind turbine blades the single elements are often con-
structed as a parallel system, which prevents local defectives from dissipating to the entire element (damage 
tolerant design) and makes the single elements redundant. 
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Figure 1: Series and series/parallel system for modelling of wind turbines blades. 

In the following it is assumed that a positive correlation exists between the material properties in the single 
elements of the blade, and a correlation from blade to blade due to common material sources. 
 
Tests with wind turbine blades can be modelled within a framework, where a decreasing number of tests are 
performed with more complicated structures, see figure 2 and [6]. In this paper the design of the wind turbine 
blades has been divided into three different levels. 

 
Figure 2: Framework for tests of wind turbine blades, see also [6]. 

The decreasing number of tests with more complicated structures means that the statistical uncertainty in-
creases at each level of the figure. On the other hand, the model uncertainty on the load-bearing capacity is 
decreasing because more accurate models are used implicitly accounting for local defects etc. These local 
defects will differ at each level because the increase in size will introduce new types of defects. In the gen-
eral case, the load-bearing capacity R  of the wind turbine blade is written 

 ( ),R RR X R= X P  (1) 

where RX  is the model uncertainty including statistical uncertainty. RR  is a load-bearing capacity model for 
instance obtained by a finite element model on basis of which different limit states are calculated with both 
linear and nonlinear models such as fibre failure analysis and buckling analysis. The load-bearing capacity 
model depends on the material strength properties given by a vector of stochastic variables X . The vector 
P  contains deterministic parameters. 
 
At level 1 coupons with the base material are considered and the coupons can in the sense of [7] be consid-
ered as a kind of reference volume on micro-scale. Therefore, level 1 contains the physical and statistical 
uncertainty related to the material properties including the effect from local defectives in the coupons. The 
physical uncertainty (aleatory uncertainty) cannot be reduced, but the statistical uncertainty (epistemic uncer-
tainty) can be reduced by performing additional tests. The uncertainty related to the material properties is 
modelled by stochastic variables X  which contain both the physical and statistical uncertainty, but not model 
uncertainty. X  can be both space and time dependent. The stochastic variables can be determined from 
tests and prior knowledge from engineering judgement by use of a Bayesian procedure given in e.g. [7] and 
[8]. The updated material properties from this level are used at the next levels. 
 
At level 2 elements of the blade are considered, which can be considered equivalent to the meso-scale level 
[7]. The uncertainties related to elements of the blades are mainly related to the material properties, where 
size effects and local defectives influence the load-bearing capacity of the blade. Even small local defectives 
will often have a large influence because the element can be regarded as a weakest link model with defects 
modelling the elements. The model and statistical uncertainty related to the element level elemX  are therefore 
modelled by a Weibull distribution. The uncertainty on the element level will also depend on how good the 
load-bearing capacity model can predict these local defectives and the size of the element compared to the 
coupon size. The load-bearing capacity of an element is written 
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 ( ),element elem elemR X R= X P  (2) 

At level 3 full-scale tests with the blade are considered which also can be considered equivalent to the meso-
scale level [7]. The model and statistical uncertainties related to the full-scale level are generally the same as 
for the element level which contains size effects and local defectives. The model and statistical uncertainty 
related to the full-scale level fullX  is modelled by a Weibull distribution and the uncertainty is among others 
dependent on the full-scale size compared to the size of the elements. Therefore, fullX  models the extra un-
certainty from level 2 (element) to level 3 (full-scale). The load-bearing capacity of the full-scale blade is writ-
ten 

 ( ),full scale full elem fullR X X R− = X P  (3) 

The model and statistical uncertainties elemX  and fullX  related to level 2 and 3 can be calibrated based on 
tests and prior knowledge by a method similar to the one described in  [8] annex D, which is based on 
Bayesian statistics. It is not taken into account that the full-scale test only captures some of the real load 
cases. 
 
The above approach is general for all limit states, but in the following only a simple linear limit state is con-
sidered for calculating the internal stresses in the blade. This simple method is rather crude and a more re-
fined nonlinear model should be preferred for calculating the internal stresses. However, part of the uncer-
tainty introduced by applying the linear model can be made up by introducing extra uncertainty in the model 
uncertainties elemX  and fullX . 
 
Design equation and limit state function (standstill) 
The limit state function and the design equation are in the general case written 

 g R S= −  (4) 
 d dR S≥  (5) 

where R  is the load-bearing capacity of the blade and S  is the load. Wind turbine blades are primarily ex-
posed to aerodynamic and gravity loads. In the following flapwise bending is considered and only the aero-
dynamic loading is taken into account. The design equation is written 

 c
f c

m n

R
Sγ

γ γ
≥  (6) 

where cR  and cS  are the characteristic value of the load-bearing capacity and load, respectively. mγ , nγ  and 

fγ  are the partial safety factors defined in table 1. The general limit state function for a wind turbine blade in 
flapwise bending can be formulated according to [3]. 

 ( ) ( )exp ,R dyn st aero str sim wg X R X X X X X X X S P I= −  (7) 

where ( )R X  is the load-bearing capacity model and ( ),wS P I  is the load model dependent on the mean wind 
pressure and the turbulence intensity. For the load the model and statistical uncertainties are divided into 
their respective components according to [3]. dynX  is the uncertainty related to modelling of the dynamic re-
sponse for the wind turbine, such as damping ratios and eigenfrequencies. expX  is the uncertainty related to 
the modelling of the exposure such as the terrain roughness and the landscape topography. stX  is taking the 
statistical uncertainty related to the limited amount of wind data into account and aeroX  is related to the un-
certainty in assessment of the lift and drag coefficients. strX  accounts for the uncertainty related to the com-
putation of stresses from the wind load. The uncertainty simX  accounts for the statistical uncertainty related 
to the limited number of simulations in order to estimate the extreme load effect. 
 
By inserting the load-bearing capacity R  and the load S  into the design equation we obtain 

 ( )inf , 1 2c
f w c p c

m n

c p k I
σ

γ
γ γ

≥ +  (8) 
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where cσ  is the characteristic material strength and pk  is a peak factor which according to [9] is 3,5. infc  is 
an influence factor which is proportional to the section modulus. The limit state function is written 

 ( )inf exp1 2full scale full elem w p dyn st aero str simg X X c P k I X X X X X X− = Σ − +  (9) 

where Σ  is the material strength. A similar limit state function can be arranged for elements of the blades by 
omitting fullX . 
 
Limit state function (full-scale tests) 
In full-scale testing the limit state function is written as in formula (4). However, in the full-scale testing the 
load is applied in a controlled manner and magnitude according to the guidance in [2]. The test load is de-
termined from the characteristic value of the material strength properties multiplied by partial safety factors. 
The limit state function under full-scale tests is written 

 full scale m full elem s l c strh X X Xγ κ γ γ σ− = Σ −  (10) 

where the partial safety factors sγ  and lγ  are defined in table 1 and κ  is modelling the load factor in a se-
lected cross-section. Similarly to (10) a limit state function for test of blade elements can be arranged by 
omitting fullX . 
 
Updating of the probability of failure 
The information collected by full-scale tests can be taken into account by updating the probability of failure in 
the case where the test blade survives the full-scale test. At full-scale level n  test blades are taken into ac-
count and the updated probability of failure for the blade ,

u
f full scaleP −  is written 

 , ,
1

0 0| n
u
f full scale full scale full scale i

i

P P g h− − −
=

⎛ ⎞
= ≤ >⎜ ⎟

⎝ ⎠
∩  (11) 

However, if the wind turbine blade is considered at element level and consisting of m  elements capturing the 
entire blade, the updated probability of failure for the whole blade can be written 

 , , ,
1 1 1

0 0|m n m
u
f full scale element j element ij

j i j

P P g h−
= = =

⎛ ⎞
= ≤ >⎜ ⎟

⎝ ⎠
∪ ∩∩  (12) 

As explained previously, the material properties for the blade material X  can vary in both space and time. In 
order to calculate the updated probability of failure it is necessary to establish this variation in terms of a cor-
relation coefficient function. The correlation coefficient function will primarily depend on how local defectives 
and material properties are distributed in a wind turbine blade. However such a model is not yet available. 
 
When the updated probability is considered at element level it is necessary to establish a correlation coeffi-
cient function for the variation within blades and between blades. At the full-scale level only a function for the 
variation between blades is necessary because the variation within blades is captured by the stochastic vari-
able fullX . However, if the correlation coefficient function is known fullX  can be calibrated from this and re-
verse. 
 
In the following the limit state function is considered at full-scale level and it is assumed that the material 
properties only vary in space and not in time. The correlation of the material properties from blade to blade is 
given by Bρ  which is assumed to be 0.50Bρ = . The stochastic variables for the model and statistical uncer-
tainties are assumed to be fully correlated. 
 
Partial safety factors and stochastic models 
The partial safety factors taken from [2], [6] and [10] are listed in table 1. 
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Table 1: Partial safety factors, ultimate and fatigue loading. 

Name Description Ultimate Fatigue 

mγ  Partial safety factor for blade material 1.2 1.2 

nγ  Partial safety factor for consequences of failure (class 2) 1.0 1.15 

fγ  Partial safety factor for loads, see equation (13) 1.1-1.35 1.0 

sγ  Partial safety factor for blade to blade variation 1.1 1.1 

lγ  Partial safety factor for environmental effects 1.0 1.0 

eγ  Partial safety factor for error in fatigue formulation (5⋅106 cycles) - 1.025 
 
In the 3rd edition of IEC 61400-1 [10] the partial safety factor for loads is a function of the ratio between the 
response from gravity loading and the characteristic response. In standstill mode the partial safety factor is 
given by 

 2
1 ;

1.1 0.25 where
1 ;

gravity
gravity c

cf

gravity c

F
F F

F

F F
γ ς ς

⎧
− ≤⎪⎪= + = ⎨

⎪ >⎪⎩

 (13) 

The stochastic models for the loads and material properties taken from [3] and [9] are listed in table 2. 

Table 2: Stochastic models for loads and material properties, ultimate loading. Abbreviations: N – Normal distribution, LN 
– LogNormal distribution, G – Gumbel distribution, W – Weibull distribution, COV – Coefficient of variation, Char – Char-
acteristic value, µ - mean value. 

Name Description Type COV Char. 
Σ  Material strength for fiber reinforced polymer LN 10 % 5 % 

wP  Mean wind pressure G 23 % 98 % 
I  Turbulence intensity LN 5 % µ  

 
According to [10], the mean value for the turbulence intensity I  is determined to 0,11. The stochastic mod-
els for the model and statistical uncertainties taken from [3], [4], [11] and by engineering judgement are listed 
in table 3. 

Table 3: Stochastic models for model and statistical uncertainties, ultimate and fatigue loading. 

Name Description Category Type COV Char. 
∆  Linear damage accumulation - LN 30 % µ  

elemX  Elements Materials W 5 % µ  

fullX  Full-scale Materials W 5 % µ  

dynX  Structural dynamics Load effect LN 5 % µ  

expX  Exposure Exposure LN 20 % µ  

stX  Climate statistics Exposure LN 10 % µ  

aeroX  Shape factors Load effect G 10 % µ  

strX  Stress evaluation Load effect LN 3 % µ  

simX  Simulation statistics - N 5 % µ  

RFCX  Rainflow counting - LN 2 % µ  

Results 
The partial safety factor mγ  as a function of the number of full-scale blade tests is given in figure 3 for differ-
ent values of the load factor κ . The partial safety factor is determined by calibration of the updated probabil-
ity failure (11) to the probability of failure for the limit state function in (9). The accumulated probability of fail-
ure is fP = 1.3⋅10-2 corresponding to an accumulated reliability index of β =2.24. The annual reliability index 
is β =3.12. 
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Figure 3: Partial safety factor and probability of test failure dependent on number of full-scale tests and load factor κ. 

From the figure it is seen, that the number of full-scale tests has a significant influence on the partial safety 
factor mγ . However, the load factor κ  regarding the simplified load distribution has a great influence on the 
partial safety factor under the assumption that the blade survives the full-scale test. As seen from the figure, 
this assumption is not always fulfilled especially for a high load factor. If a blade fails the test it will lead to a 
large increase in the partial safety factor even though the blade fails at a higher test load than required. The 
increase in the partial safety factor will be largest if there is a high correlation between the material properties 
from blade to blade. 
 
The above-mentioned calculation for the standstill position should also be performed for operational condi-
tions, which can be critical for wind turbines, because the magnitude of the loads is influenced by the control 
system. 
 
3. Fatigue loading 
For fatigue loading the framework used for ultimate loading in figure 2 can also be applied because the un-
certainties in the material properties on the higher levels are dependent on size effects and local defectives. 
In the following the general formulas for fatigue strength calculation are outlined using an SN-approach in the 
framework of Constant Life Diagrams and Miner’s rule. Subsequently the approach for calculation of the reli-
ability index is outlined and it is by a numerical example illustrated how the partial safety factor can be up-
dated based on additional full-scale tests. This example is based on stochastic simulation of the flapwise 
bending moment at the blade root for twelve different mean wind speeds. 
 
The fatigue approach used in this paper is based on linear damage accumulation given by Miner’s rule. A 
more refined nonlinear damage model could be used which according to [12] gives better results. However, 
the linear Miner’s rule is still the damage model used by the industry and recommended in [6] and [10]. 

 k

k k

n l
D

N
= ∑  (14) 

where kn  is the number of cycles per year in the stress range kσ  and kN  is the number of stress cycles 
which the blade can resist in this stress range. l  is the lifetime in years. The S-N curve for the blade material 
can for a given R-ratio be approximated by, see [13] 

 log log logk kN K m σ ε= − +  (15) 

where m  is the slope of the S-N curve and log K  is determining the location of the S-N curve. ε  is the re-
sidual term. The applied S-N curve is given in terms of stresses but a similar approach could be taken in 
terms of strains. For materials used in wind turbine blades the mean stress often has a significant influence 
on the fatigue properties. The effect of the mean stress is often modelled by the R-ratio 

 min

max

R
σ
σ

=  (16) 

where minσ  is the minimum stress and maxσ  the maximum stress in a fatigue stress cycle. According to the 
recommendations in [6] a Constant Life Diagram is constructed with five different R-ratios, see figure 4. The 
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five R-ratios [0.5 0.1 -0.4 -1.0 -2.5] have been chosen based on [14] which recommends five R-ratios be-
tween 0.5 and -2.0 or 0.7 and -2.0. The S-N curves are determined from the “OptiDat – fatigue of wind tur-
bine materials database” [15] and based on constant amplitude tests with the MD2 lay up and the geometry 
R0400. 
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Figure 4: Constant Life Diagram with five different S-N curves for MD2 lay up and geometry R0400. 

The Constant Life Diagram in figure 4 is constructed by five S-N curves determined from constant amplitude 
tests at five different R-ratios with coupons of the material. For these constant amplitude data an S-N curve 
is determined based on (15) and the results are plotted into the Constant Life Diagram for specified values of 
N . The range of the constant amplitude tests is indicated at each R-ratio by a line. Between the different R-
ratios the fatigue strength is estimated by linear interpolation which is also applied to the ultimate tension and 
compression strength outside the R-ratios. 
 
Real fatigue stress cycles will, however, never be limited to the five R-ratios given in figure 4 by means of 
which interpolation is necessary. In [6] a method is described for transforming fatigue cycles with random R-
ratios into one of the R-ratios given in the Constant Life Diagram (CLD). In the following this method is briefly 
explained and sketched in figure 5. 
 
Steps in obtaining the expected number of cycles to failure expN : 

• The observed stress cycle P  is located in the CLD-diagram as the point with mean stress meanσ  
and stress amplitude ampσ . 

• Draw a line a  from the origin of the CLD-diagram through and beyond the point P . 
• Identify the two constant life lines closest to P , denoted 1n  and 2n  

• Calculate the length 1a  on line a  between the two constant life lines 1n  and 2n . 

• Calculate the length 2a  on line a  between point P  and the constant life line 2n . 

• Find the R-ratio closest to P . 
• Calculate the length 1b  between 1n  and 2n . 

• Calculate: 1 2
2

1

b a
b

a
=  

• Find the stress amplitude CLDσ  corresponding to point Q . 

• Obtain the expected number of cycles to failure expN  using the S-N curve for the given R-ratio. 
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Figure 5: Graphical interpretation of the transformation to known R-ratios, see also [6]. 

Limit state function (operational) 
In this paper the limit state function for fatigue is based on a stochastic simulation of the flapwise bending 
moment at the blade root. The simulations are performed for twelve different mean wind speeds in the range 
from 3 to 25 m/s. By combining Miner’s rule (14) and the SN-approach (15) the limit state function including 
model uncertainty are written. 

 exp

10

j

j

m

ijk dyn aero str RFC
full scale i ijk

i j k full elemj

n X X X X X
g p l

X XK ε σ−

⎛ ⎞
= ∆ − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑∑  (17) 

where index i  refers to each of the twelve different mean wind speeds and ip  is the probability that this 
mean wind speed occurs. The probability ip  is a stochastic variable because the distribution parameters in 
the Weibull distribution (wind speeds) are modelled by stochastic variables modelling statistical uncertainty. 
The distribution parameters are assumed having mean value according to IEC class I, coefficient of variation 
on 5 % and correlated with a correlation coefficient of 0.30 [4]. Index j  refers to the different R-ratios for the 
different S-N curves. Index k  refers to the different stress range bins. The fatigue stress cycles are deter-
mined by rainflow-counting of the flapwise bending moment and the stress cycles are subsequently binned 
according to mean stress and stress range. These bins correspond to different R-ratios which are trans-
formed into the five R-ratios given in the Constant Life Diagram, by the method previously described. 
 
The uncertainties in (17) are mainly the same as for ultimate loading. However, the uncertainties stX  and 

simX  in ultimate loading are omitted and two new uncertainties RFCX  and ∆  are introduced. The uncertainty 

RFCX  models the model uncertainty related to the counting procedure and ∆  models the model uncertainty 
related to Miner’s rule for linear damage accumulation, see also [16] and [17]. 
 
The uncertainty related to the material properties is at coupon level modelled by the uncertainty in the S-N 
curve, where also the statistical uncertainty is taken into account. The uncertainty in using the S-N curve 
from the coupon level on the element and full-scale level (see Figure 2) is modelled by the stochastic vari-
ables elemX  and fullX  which are divided the stress range. Because the model uncertainty related to the linear 
damage accumulation is covered by  ∆ , elemX  and fullX  only covers the size effects and local defectives 
from which fatigue cracks often initiate. 
 
Design equation (operational) 
The design equation for fatigue loading is used to calibrate the section modulus. According to [6] and [10], 
the design equation is written. 

 ( )
,

1jmijk
i m n f ijk

i j k c j

n
D p l

K
γ γ γ σ= ≤∑ ∑∑  (18) 

where subscript c is used for characteristic value and D  is the damage which equals one when failure oc-
curs. The characteristic value for the material properties is determined according to [10] with a 95 % survival 
probability with a confidence level of 95 %. The partial safety factors mγ , nγ  and fγ  are defined in table 1 
and the stochastic variables are defined in table 3. 
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Limit state function (full-scale tests) 
Fatigue full-scale testing of wind turbine blades is performed by applying a fatigue damage equivalent to the 
fatigue damage caused by the design load. In this paper is it assumed that the fatigue test loading is per-
formed by 5⋅106 cycles at the R-ratio which is most significant for the rated wind speed. The limit state func-
tion for full-scale testing is written, see [10]. 

 
10

j

j

m

eq str
full scale n f s e l eq

full elemj

n X
h

X XK ε κ γ γ γ γ γ σ−

⎛ ⎞
= ∆ − ⎜ ⎟⎜ ⎟

⎝ ⎠
 (19) 

where the partial safety factors sγ , eγ  and lγ  are defined in table 1 and the partial safety factor mγ  is omitted 
according to [10]. In the following it is assumed that the test is characterized by 0.1R = . 
 
Updating of the probability of failure 
The information collected by full-scale tests can be taken into account by updating the probability of failure 
for the case where the test blade survives the full-scale test. At full-scale level n  test blades are taken into 
account and the updated probability of failure for the blade ,

u
f full scaleP −  is written 

 , ,
1

0 0| n
u
f full scale full scale full scale i

i

P P g h− − −
=

⎛ ⎞
= ≤ >⎜ ⎟

⎝ ⎠
∩  (20) 

The material properties for fatigue loading are given by the parameters in the S-N curve which are m , K  
and ε , where m  is deterministic. The stochastic variable for the residual term ε  models the physical and 
model uncertainty related to the S-N curve. The statistical uncertainty is modelled by the stochastic variables 
K  and the stochastic variables εσ  which is the standard deviation of the residual term ε . 
 
As explained for ultimate loading the material properties can vary in space and time also in fatigue loading. In 
the following the same correlations as for ultimate loading are assumed. 
 
Results 
The partial safety factor mγ  as a function of the number of full-scale blade tests is given in figure 6 for differ-
ent values of the load factor κ . The partial safety factor is determined by calibration of the updated probabil-
ity of failure (20) to the probability of failure for the limit state function in (17). The accumulated probability of 
failure is fP = 1.7⋅10-2 corresponding to an accumulated reliability index of β =2.11. The annual reliability 
index in year 20 is β =3.10. 
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Figure 6: Partial safety factor and probability of test failure dependent on number of full-scale tests and load factor κ. 

The result in figure 6 shows the same trend as in figure 3 for ultimate loading, given that the partial safety 
factor mγ  decreases when additional full-scale tests is performed. However, the load factor κ  has a more 
significant influence in fatigue loading. 
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4. Conclusion 
A probabilistic approach is described for updating the material partial safety factor mγ  in ultimate and fatigue 
loading when additional information from full-scale tests is taken into account. For both load cases additional 
full-scale tests will lead to a decrease in the partial safety factor. A much more significant influence on the 
partial safety factor is seen for the load factor κ , where even a small increase in the test load leads to a sig-
nificant decrease in the partial safety factor based on the assumption that the blades survive the tests. This 
extra load factor is often already available because of the simplified load distribution under testing. For higher 
test loads the influence from additional full-scale tests is also more significant. 
 
The updated partial safety factors are based on the assumption that all blades survive the test. However, if a 
blade fails it will lead to a significant increase in the partial safety factor, which will be conditional on the load 
under which the blade failed and the correlation between the material properties from blade to blade. 
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