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Parametric methods for spatial point processes

Jesper Møller

April 29, 2008

(This text is submitted for the volume ‘A Handbook of Spatial Statistics’
edited by A.E. Gelfand, P. Diggle, M. Fuentes, and P. Guttorp, to be pub-
lished by Chapmand and Hall/CRC Press, and planned to appear as Chap-
ter 4.4 with the title ‘Parametric methods’.)

1 Introduction

This chapter considers inference procedures for parametric spatial point pro-
cess models. The widespread use of sensible but ad hoc methods based on
summary statistics of the kind studied in Chapter 4.3 have through the last
two decades been supplied by likelihood based methods for parametric spatial
point process models. The increasing development of such likelihood based
methods, whether frequentist or Bayesian, has lead to more objective and
efficient statistical procedures. When checking a fitted parametric point pro-
cess model, summary statistics and residual analysis (Chapter 4.5) play an
important role in combination with simulation procedures.

Simulation free estimation methods based on composite likelihoods or pseu-
do likelihoods are discussed in Section 3. Markov chain Monte Carlo (MCMC)
methods have had an increasing impact on the development of simulation-
based likelihood inference, where maximum likelihood inference is studied
in Section 4, and Bayesian inference in Section 5. On one hand, as the
development in computer technology and computational statistics continues,
computationally-intensive simulation-based methods for likelihood inference
probably will play a increasing role for statistical analysis of spatial point
patterns. On the other hand, since larger and larger point pattern dataset
are expected to be collected in the future, and the simulation free methods are
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much faster, they may continue to be of importance, at least at a preliminary
stage of a parametric spatial point process analysis, where many different
parametric models may quickly be investigated.

Much of this review is inspired by the monograph Møller and Waagepeter-
sen (2003) and the discussion paper Møller and Waagepetersen (2007). Other
recent textbooks related to the topic of this chapter include Baddeley, Gre-
gori, Mateu, Stoica and Stoyan (2006), Diggle (2003), Illian, Penttinen,
Stoyan and Stoyan (2008), and Van Lieshout (2000). Readers interested in
background material on MCMC algorithms for spatial point processes are re-
ferred to Geyer and Møller (1994), Geyer (1999), Møller and Waagepetersen
(2003), and the references therein. Notice the comments and corrections to
Møller and Waagepetersen (2003) at www.math.aau.dk/~jm.

2 Setting and notation

The methods in this chapter will be applied to parametric models of Poisson,
Cox, Poisson cluster, and Gibbs (or Markov) point processes. These mod-
els also play a major role in Chapter 4.2, but the reader will be reminded
about the definitions and some of the basic concepts of these models. Chap-
ter 5.3 studies spatio-temporal point process models specified in terms on a
conditional intensity (of another kind than the Papangelou conditional den-
sity which is of fundamental importance in the present chapter), while other
kinds of spatio-temporal point process models, which are closely related to
the Cox point process models considered in this chapter, can be found in e.g.
Brix and Diggle (2001) and Brix and Møller (2001).

We mostly confine attention to planar point processes, but many concepts,
methods, and results easily extend to R

d or a more general metric space,
including multivariate and marked point process models. Chapter 4.6 treats
statistics for multivariate and marked point process models.

We illustrate the statistical methodology with various application exam-
ples, where most are examples of inhomogeneous point patterns. Often the
R package spatstat has been used, see Baddeley and Turner (2005, 2006).
Software in R and C, developed by Rasmus Waagepetersen in connection to
our paper Møller and Waagepetersen (2007), is available at www.math.aau.dk/
~rw/sppcode.

We consider a planar spatial point process X, excluding the case of multi-
ple points, meaning that X can viewed as a random subset of R

2. We assume
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also that X is locally finite, i.e. X ∩B is finite whenever B ⊂ R
2 is finite.

We let W ⊂ R
2 denote a bounded observation window of area |W | > 0.

In most application examples W is a rectangular region. Usually we assume
that just a single realization X ∩W = x is observed, i.e. the data

x = {s1, . . . , sn}

is a spatial point pattern. Here the number of points, denoted n(x) = n, is
finite and considered to be a realization of a non-negative discrete random
variable (if n = 0 then x is the empty point configuration). Sometimes,
including two of our application examples, two or more spatial point patterns
are observed, and sometimes a hierarchical point process model may then be
appropriate as illustrated in Sections 4.2 and 5.1 (see also Chapter 4.3 where
multivariate point patterns are discussed).

In order to account for edge effects, we may assume that X ∩W = x ∪ y
is observed so that ‘x conditional on y’ is conditionally independent of X
outside W . The details are given in Sections 3.4 and 4.1.

Finally, I[·] is an indicator function, and ‖ · ‖ denotes the usual distance
in R

2.

3 Simulation free estimation methods

This section reviews simple and quick estimation procedures based on various
estimating equations for parametric models of spatial point processes. The
methods are simulation free and the estimating equations are derived from
a composite likelihood (Sections 3.1-3.2), or by a minimum contrast estima-
tion procedure (Section 3.2), or by considering a pseudo likelihood function
(Section 3.4).

3.1 Methods based on first order moment properties

Consider a spatial point processX with a parametric intensity function ρβ(s),
where s ∈ R

2 and β is an unknown real d-dimensional parameter which we
want to estimate. We assume that ρβ(s) is expressible in closed form. This
is the case for many Poisson, Cox and Poisson cluster point process models,
while it is intractable for Gibbs (or Markov) point processes (Chapter 4.2).
Below we consider a composite likelihood function (Lindsay, 1988) based on
the intensity function.

3



Recall that we may interpret ρβ(s) ds as the probability that precisely one
point falls in an infinitesimally small region containing the location s and of
area ds. Let Ci, i ∈ I, be a finite partitioning of the observation window W
into disjoint cells Ci of small areas |Ci|. Define Ni = I[X ∩ Ci 6= ∅] and

pi(β) = Pβ(Ni = 1) ≈ ρβ(ui)|Ci|

where ui denotes a representative point in Ci. Consider the product of
marginal likelihoods for the Bernoulli trials Ni,

∏

i∈I

pi(β)Ni(1 − pi(β))1−Ni ≈
∏

i∈I

(ρβ(ui)|Ci|)
Ni(1 − ρβ(ui)|Ci|)

1−Ni. (1)

In the right hand side of (1) we may neglect the factors |Ci| in the first part
of the product, since they cancel when we form likelihood ratios. Then, as
the cell sizes |Ci| tend to zero, under suitable regularity conditions the limit
of the product of marginal likelihoods becomes

Lc(β;x) = exp

(

−

∫

W

ρβ(s) ds

) n
∏

i=1

ρβ(si). (2)

We call Lc(β;x) the composite likelihood function based on the intensity
function. If X is a Poisson point process with intensity function ρβ(s), then
Lc(β;x) coincides with the likelihood function.

If there is a unique β which maximizes Lc(β;x), we call it the maximum
composite likelihood estimate (based on the intensity function). The corre-
sponding estimating function sc(β;x) is given by the derivative of logLc(β;x)
with respect to β,

sc(β;x) =
n
∑

i=1

d log ρβ(si)/dβ −

∫

W

(d log ρβ(s)/dβ)ρβ(s) ds. (3)

The estimating equation sc(β;x) = 0 is unbiased (assuming in (3) that
(d/dβ)

∫

W
· · · =

∫

W
(d/dβ) · · · ). Asymptotic properties of maximum com-

posite likelihood estimators are investigated in Waagepetersen (2007) and
Waagepetersen and Guan (2007). For a discussion of asymptotic results for
maximum likelihood estimates of Poisson process models, see Rathbun and
Cressie (1994) and Waagepetersen (2007).
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The maximum composite likelihood estimate can easily be determined
using spatstat, provided ρβ(s) is of the log linear form

log ρβ(s) = βT z(s) (4)

where z(s) is a real function of the same dimension as β. In practice z(s) is
often a covariate. This covariate may only be partially observed on a grid
of points, and hence some interpolation technique may be needed (Rathbun,
1996; Rathbun, Shiffman and Gwaltneyet, 2007; Waagepetersen, 2008). An
example is considered in Section 3.3.

We refer to a log linear Poisson process when X is a Poisson process with
intensity function of the form (4). For many Cox process models, the intensity
function is also of the log linear form (4). Specifically, let Y = {Y (s) : s ∈ R

2}
be a spatial process where each Y (s) is a real random variable with mean one,
and let X conditional on Y (s) be a Poisson process with intensity function

Λ(s) = exp(βT z(s))Y (s). (5)

Then (4) is satisfied. Usually Y is not observed, and the distribution of Y
may depend on another parameter ψ, which may be estimated by another
method as discussed in Section 3.2.

3.2 Methods based on second order moment proper-

ties

Let the situation be as in Section 3.1. Consider a parametric model for the
pair correlation function gψ or another second order characteristic such as
the (inhomogeneous) K-function Kψ (Baddeley, Møller and Waagepetersen,
2000; see also Chapter 4.3). We assume that β and ψ are variation indepen-
dent, that is, (β, ψ) ∈ B × Ψ, where B ⊆ R

p and Ψ ⊆ R
q.

Recall that ρ
(2)
β,ψ(s, t) = ρβ(s)ρβ(t)gψ(s, t) is the second order product

density, and we may interpret ρ
(2)
β,ψ(s, t) ds dt as the probability of observing

a point in each of two infinitesimally small regions containing s and t and of
areas ds and dt, respectively. Using the same principle as in Section 3.1 but
considering now pairs of cells Ci and Cj, i 6= j, we can derive a composite
likelihood Lc(β, ψ) based on the second order product density. Plugging in
an estimate β̂, e.g. the maximum composite likelihood estimate based on the
intensity function, we obtain a function Lc(β̂, ψ) which may be maximized
to obtain an estimate of ψ. See Møller and Waagepetersen (2007).
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Minimum contrast estimation is a more common estimation procedure,
where the idea is to minimize a ‘contrast’ (or ‘distance’) between e.g. Kψ

and its non-parametric counterpart K̂(r) (Chapter 4.3), thereby obtaining a
minimum contrast estimate. For instance, ψ may be estimated by minimizing
the contrast

∫ b

a

(

K̂(r)α −Kψ(r)α
)2

dr (6)

where 0 ≤ a < b < ∞ and α > 0 are chosen on an ad hoc basis, see e.g.
Diggle (2003) and Møller and Waagepetersen (2003). Theoretical properties
of minimum contrast estimators are studied in Heinrich (1992).

These ‘simulation-free’ estimation procedures are fast and computation-
ally easy, but the disadvantage is that we have to specify tuning parameters
such as a, b, α in (6).

3.3 Example: tropical rain forest trees

Figure 1 provides an example of an inhomogeneous point pattern where the
methods described in Sections 3.1-3.2 apply. The figure shows the locations
of rain forest trees in a rectangular observation window W of size 500× 1000
m. This point pattern together with another point pattern of another kind of
trees have previously been analyzed in Waagepetersen (2007) and Møller and
Waagepetersen (2007). They are just a small part of a much larger data set
comprising hundreds of thousands of trees belonging to hundreds of species
(Hubbell and Foster, 1983; Condit, Hubbell and Foster, 1996; Condit, 1998).
Figure 2 shows two kinds of covariates z1 (altitude) and z2 (norm of altitude
gradient) which are measured on a 100 × 200 square grid, meaning that we
approximate the altitude and the norm of altitude gradient to be constant
on each of 100 × 200 squares of size 5 × 5 m.

A plot of a non-parametric estimate of the inhomogeneous K-function
(omitted here) confirms that the point pattern in Figure 1 is clustered. This
clustering may be explained by the covariates in Figure 2, by other unob-
served covariates, and by tree reproduction by seed dispersal. We there-
fore assume an inhomogeneous Cox process model as specified by (5) with
β = (β0, β1, β2)

T and z = (z0, z1, z2)
T , where z0 ≡ 1 so that β0 is interpreted

as an intercept. Moreover, Y in (5) is modelled by a stationary shot noise
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Figure 1: Locations of 3605 Beilschmiedia pendula Lauraceae trees observed
within a 500 × 1000 m region at Barro Colorado Island.
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Figure 2: Rain forest trees: the covariates z1 (altitude; left panel) and z2

(norm of altitude gradient; right panel) are recorded on a 5 by 5 m grid (the
units on the axes are in meters).

process with mean one, that is,

Y (s) =
1

ωσ2

∑

t∈Φ

k((s− t)/σ) (7)

where Φ is a stationary Poisson process with intensity ω > 0, k(·) is a density
function with respect to Lebesgue measure, and σ > 0 is a scaling parameter.
We call X an inhomogeneous shot noise Cox process (Møller, 2003; Waage-
petersen, 2007; Møller and Waagepetersen, 2007). Finally, as in a modified
Thomas process (Thomas, 1949), we assume that k(x) = exp(−‖x‖2/2)/(2π)
is a bivariate normal kernel. For short we then refer to X as an inhomoge-
neous Thomas process.

For β we obtain the maximum composite likelihood estimate (β̂0, β̂1, β̂2) =
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(−4.989, 0.021, 5.842) (under the Poisson model this is the maximum like-
lihood estimate). Assuming asymptotic normality (Waagepetersen, 2007),
95% confidence intervals for β1 and β2 under the fitted inhomogeneous Thomas
process are [−0.018, 0.061] and [0.885, 10.797], respectively, while much more
narrow intervals are obtained under the fitted Poisson process ([0.017, 0.026]
and [5.340, 6.342]).

An unbiased estimate of the inhomogeneous K-function at distance r > 0
is given by

∑

i,j=1,...,n: i6=j

I[‖si − sj‖ ≤ r]

ρ(si)ρ(sj)|W ∩ (W + si − sj)|

where W + s denotes W translated by s, and |W ∩ (W + si − sj)| is an
edge correction factor, which is needed since we sum over all pairs of points
observed within W . In practice we need to plug in an estimate of ρ(si)ρ(sj),

and we use the parametric estimate ρβ̂(si)ρβ̂(sj) with β̂ the estimate obtained

above. Let K̂(r) denote the resulting estimate of K(r). Using the minimum
contrast estimation procedure based on (6) with a = 0, b = 100, and α = 1/4,
we obtain (ω̂, σ̂) = (8 × 10−5, 20).

Estimation of this inhomogeneous Thomas process and an inhomogeneous
log Gaussian Cox process, i.e. when log Y in (5) is a Gaussian process (see
Møller, Syversveen and Waagepetersen, 1998, and Chapter 4.2), and their
corresponding estimated K-functions are further considered in Møller and
Waaagepetersen (2007).

3.4 Pseudo likelihood

The maximum pseudo likelihood estimate is a simple and computationally
fast but less efficient alternative to the maximum likelihood estimate. In
the special case of a parametric Poisson point process model, the two kinds
of estimates coincide. Since the pseudo likelihood function is expressed in
terms of the Papangelou conditional intensity, pseudo likelihood estimation is
particular useful for Gibbs (or Markov) point processes, while it is in general
not useful for Cox and Poisson cluster processes.

We recall first the definition of the Papangelou conditional intensity in the
case where X restricted to W has a parametric density fθ(x) with respect
to the Poisson process on W with unit intensity (Chapter 4.2). Let x =
{s1, . . . , sn} ⊂ W denote an arbitrary finite point configuration in W , and s

an arbitrary location in W \x. Assume that fθ(x) is hereditary, meaning that
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fθ(x∪ {s}) > 0 implies that fθ(x) > 0. For fθ(x) > 0, define the Papangelou
conditional intensity by

λθ(s, x) = fθ(x ∪ {s})/fθ(x). (8)

We may interpret λθ(s, x) ds as the conditional probability that there is a
point of the process in an infinitesimally small region containing s and of area
ds given that the rest of the point process coincides with x. How we define
λθ(s, x) if fθ(x) = 0 turns out not to be that important, but for completeness
let us set λθ(s, x) = 0 if fθ(x) = 0. In the special case of a Poisson process
with intensity function ρθ(s), we simply have λθ(s, x) = ρθ(s). In the case of
a Gibbs (or Markov) point process, λθ(s, x) depends only on x through its
neighbours to s (see Chapter 4.2), and the intractable normalizing constant
of the density cancel in (8).

The pseudo likelihood can then be derived by a limiting argument similar
to that used for deriving the composite likelihood in (2), the only difference
being that we replace pi(β) in (1) by the conditional probability

pi(θ) := Pθ(Ni = 1|X \ Ci = x \ Ci) ≈ λθ(ui, x \ Ci)|Ci|.

Under mild conditions (Besag, Milne and Zachary, 1982; Jensen and Møller,
1991) the limit becomes the pseudo likelihood function

Lp(θ;x) = exp

(

−

∫

W

λθ(s, x) ds

) n
∏

i=1

λθ(si, x) (9)

which was first introduced in Besag (1977). Clearly, for a Poisson process
with a parametric intensity function, the pseudo likelihood is the same as
the likelihood. The pseudo score is the derivative of logLp(θ;x) with respect
to θ, that is,

s(θ;x) =
n
∑

i=1

d log λθ(si, x)/dθ −

∫

W

(d log λθ(s, x)/dθ)λθ(s, x) ds. (10)

This provides an unbiased estimating equation s(θ;x) = 0 (assuming in (10)
that (d/dθ)

∫

W
· · · =

∫

W
(d/dθ) · · · ). This can be solved using spatstat if

λθ is of a log linear form similar to that in (4), that is,

log λθ(s, x) = βT t(s, x) (11)
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(Baddeley and Turner, 2000).
Suppose that X may have points outside W , and we do not know its

marginal density fθ(x) on W . To account for edge effects, assume a spatial
Markov property is satisfied. Specifically, suppose there is a region W⊖R ⊂
W such that conditional on X ∩ (W \W⊖R) = y, we have that X ∩W⊖R

is independent of X \ W , and we know the conditional density fθ(x|y) of
X ∩W⊖R given X ∩ (W \W⊖R) = y, where fθ(·|y) is hereditary. Here the
notation W⊖R refers to the common case where X is a Gibbs (or Markov)
point process with a finite interaction radius R (see Chapter 4.2), in which
case W⊖R is naturally given by the W eroded by a disc of radius R, that is,

W⊖R = {s ∈W : ‖s − t‖ ≤ R for all t ∈W}. (12)

For s ∈W⊖R, exploiting the spatial Markov property, the Papangelou condi-
tional intensity is seen not to depend on points from X \W , and it is given by
replacing fθ(x) by fθ(x|y) in the definition (8). We denote this Papangelou
conditional intensity by λθ(s, x ∪ y). Note that λθ(s, x ∪ y) depends only
on x ∪ y through its neighbours to s, and all normalizing constants cancel.
Consequently, we need only to specify fθ(·|y) up to proportionality, and the
pseudo likelihood Lp(θ;x ∪ y) is given by (9) when λθ(s, x) is replaced by
λθ(s, x ∪ y). The pseudo score s(θ;x ∪ y) is obtained as the derivative of
logLp(θ;x ∪ y) with respect to θ, and it provides an unbiased estimating
equation s(θ;x ∪ y) = 0.

For an application example of maximum pseudo likelihood, see Section 4.2.
Asymptotic results for maximum pseudo likelihood estimates are established
in Jensen and Møller (1991), Jensen and Kunsch (1994), and Mase (1995,
1999). Alternatively a parametric bootstrap can be used, see e.g. Baddeley
and Turner (2000).

4 Simulation-based maximum likelihood in-

ference

For Poisson process models, computation of the likelihood function is usu-
ally easy, cf. Section 3.1. For Gibbs (or Markov) point process models, the
likelihood contains an unknown normalizing constant, while for Cox process
models, the likelihood is given in terms of a complicated integral. Using
MCMC methods, it is now becoming quite feasible to compute accurate ap-
proximations of the likelihood function for Gibbs and Cox process models as
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discussed in Sections 4.1 and 4.3. However, the computations may be time
consuming and standard software is yet not available.

4.1 Gibbs point processes

Consider a parametric model for a spatial point processX, whereX restricted
to W has a parametric density fθ(x) with respect to the Poisson process on
W with unit intensity. For simplicity and specificity, assume that fθ(x) is of
exponential family form

fθ(x) = exp(t(x)T θ)/cθ (13)

where t(x) is a real function of the same dimension as the real parameter θ,
and cθ is a normalizing constant. In general, apart from the special case of
a Poisson process, cθ is not ‘known’, i.e. cθ has no closed form expression.
Equation (13) holds if the Papangeleou conditional intensity λθ(s, x) is of
the log linear form (11). This is the case for many Gibbs (or Markov) point
processes when the interaction radius R < ∞ is known. Examples include
most pairwise interaction point processes such as the Strauss process, and
more complicated interaction point processes such as the area-interaction
point process, see Chapter 4.2.

From (13) we obtain the score function u(θ;x) and the observed informa-
tion j(θ),

u(θ;x) = t(x) − Eθt(X), j(θ) = Varθt(X),

where Eθ and Varθ denote expectation and variance with respect to X ∼
fθ. Let θ0 denote a fixed reference parameter value. The score function
and observed information may be evaluated using the importance sampling
formula

Eθk(X) = Eθ0

[

k(X) exp
(

t(X)T (θ − θ0)
)]

/(cθ/cθ0) (14)

with k(X) given by t(X) or t(X)t(X)T . For k ≡ 1, we obtain

cθ/cθ0 = Eθ0

[

exp
(

t(X)T (θ − θ0)
)]

. (15)

Approximations of the likelihood ratio fθ(x)/fθ0(x), score, and observed in-
formation can be obtained by Monte Carlo approximation of the expecta-
tions Eθ0[· · · ] using MCMC samples from fθ0. Here, to obtain an approx-
imate maximum likelihood estimate, Monte Carlo approximations may be
combined with Newton-Raphson updates. Furthermore, if we want to test
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a submodel, approximate p-values based on the likelihood ratio statistic or
the Wald statistic can be derived by MCMC methods. See Geyer and Møller
(1994), Geyer (1999), and Møller and Waagepetersen (2003).

The path sampling identity (Gelman and Meng, 1998)

log(cθ/cθ0) =

∫ 1

0

Eθ(s)t(X)(dθ(s)/ds)Tds (16)

provides an alternative and often numerically more stable way of computing
a ratio of normalizing constants. Here θ(s) is a differentiable curve, e.g. a
straight line segment, connecting θ0 = θ(0) and θ = θ(1). The log ratio
of normalizing constants is approximated by evaluating the outer integral
in (16) using e.g. the trapezoidal rule and the expectation using MCMC
methods (Berthelsen and Møller, 2003; Møller and Waagepetersen, 2003).

For a Gibbs point process with unknown interaction radius R, the like-
lihood function is usually not differentiable as a function of R. Therefore
maximum likelihood estimates of R are often found using a profile likelihood
approach, where for each fixed value of R we maximize the likelihood as
discussed above. Examples are given in Møller and Waagepetersen (2003).

If X may have points outside W , and we do not know its marginal density
fθ(x) on W , we may account for edge effects by exploiting the spatial Markov
property (Section 3.4), using the smaller observation window W⊖R given by
(12). If fθ(x|y) denotes the conditional density of X ∩ W⊖R = x given
X ∩ (W \W⊖R) = y, the likelihood function

L(θ;x) = Eθfθ (x|X ∩ (W \W⊖R))

may be computed using a missing data approach, see Geyer (1999) and Møller
and Waagepetersen (2003). A simpler but less efficient alternative is the
border method, considering the conditional likelihood function

L(θ;x|y) = fθ(x|y)

where the score, observed information, and likelihood ratios may be com-
puted by analogy with the case above based on (14). See Møller and Waage-
petersen (2003) for a discussion of these and other approaches for handling
edge effects.

Asymptotic results for maximum likelihood estimates of Gibbs point pro-
cess models are reviewed in Møller and Waagepetersen (2003) but these
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results are derived under restrictive assumptions of stationarity and weak
interaction. According to standard asymptotic results, the inverse observed
information provides an approximate covariance matrix of the maximum like-
lihood estimate, and log likelihood ratio and Wald statistics are asymptoti-
cally χ2-distributed. If one is suspicious about the validity of the asymptotic
approach, an alternative is to use a parametric bootstrap. See Møller and
Waagepetersen (2003).

4.2 Example: ants nests

Figure 3 shows two point patterns of ants nests which are of two types,
Messor wasmanni and Cataglyphis bicolor, see Harkness and Isham (1983).
The interaction between the two types of ants nests is of main interest for
this data set. Notice the rather atypical polygonal observation window W
given in Figure 3.

The Catagplyphis ants feed on dead Messors and hence the positions of
Messor nests might affect the choice of sites for Cataglyphis nests, while
the Messor ants are believed not to be influenced by presence or absence of
Cataglyphis ants when choosing sites for their nests. Högmander and Särkkä
(1999) therefore specified a hierarchical model based on first a point pro-
cess model for the Messor nests, and second a point process model for the
Cataglyphis nests given the Messor nests. Both types of models are pair-
wise interaction point process models, with the log Papangelou conditional
intensity of the form

log λ(s, x) = U(s) +
n
∑

i=1

V (‖s − si‖)

for x = {s1, . . . , sn} ⊂ W and s 6∈ x, where U(s) and V (‖s − si‖) are real
functions called the first respective second order potential. In other words,
if X is such a pairwise interaction point process, then X has density

f(x) ∝ exp

(

n
∑

i=1

U(si) +
∑

1≤i<j≤n

V (‖si − sj‖)

)

with respect to the Poisson process on W with intensity one. Furthermore,
the pairwise interaction process models are so-called Strauss processes with
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Figure 3: Locations of nests for Messor (triangles) and Cataglyphis (circles)
ants. The observation window W is polygonal (solid line), and the enclosing
rectangle for W (dashed line) is 414.5 ft by 383 ft.

hard cores specified as follows. For distances t > 0, define

V (t; r) =











−∞ if t ≤ r

1 if r < t ≤ R

0 otherwise

where R ≥ 0 is the interaction range, r ∈ [0, R) denotes a hard core distance
(or no hard core if r = 0), and exp(−∞) = 0. First, for the Messor nests,
the Strauss process with hard core rM is given by first and second order
potentials

UM1({s}) = βM , UM2({si, sj}) = ψMV (‖si − sj‖; rM).

Thus the conditional intensity for a putative Messor nest at a location s

is zero if an existing Messor nest occurs within distance rM from s, and
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otherwise the log conditional density is given by the sum of βM and ψM
times the number of neighbouring Messor nests within distance R. Second,
conditional on the pattern xM of Messor nests, the Cataglyphis nests are
modelled as an inhomogeneous Strauss process with one hard core rCM to
the Messor nests and another hard core rC between the Cataglyphis nests,
i.e. using potentials

UC1({s}) = βC+ψCM

n
∑

i=1

V (‖s−si‖; rCM), UC2({si, sj}) = ψCV (‖si−sj‖; rC).

We use the maximum likelihood estimates rM = 9.35 and rC = 2.45 (dis-
tances are measured in ft), which are given by the observed minimum inter-
point distances in the two types of point patterns. Using positive hard cores
rM and rC may be viewed as an ad hoc approach to obtain a model which is
well-defined for all real values of the parameters βM , βC , ψM , ψCM , and ψC ,
whereby both repulsive and attractive interaction within and between the
two types of ants can be modelled. However, as noted by Møller (1994) and
Geyer and Thompson (1995), the Strauss hard core process is a poor model
for clustering due to the following ‘phase transition property’: for positive
values of the interaction parameter, except for a narrow range of values, the
distribution will either be concentrated on point patterns with one dense
cluster of points or in ‘Poisson-like’ point patterns.

In contrast to Högmander and Särkkä (1999), we find it natural to let
rCM = 0, meaning there is no hard core between the two types of ants nests.
Further, for comparison we fix R at the value 45 used in Högmander and
Särkkä (1999), though pseudo likelihood computations indicate that a more
appropriate interaction range would be 15. In fact, Högmander and Särkkä
(1999) considered a subset of the data in Figure 3 within a rectangular re-
gion, and they conditioned on the observed number of points for the two
species when computing maximum likelihood and maximum pseudo likeli-
hood estimates, whereby the parameters βM and βC vanish. Instead we fit
the hierarchical model to the full data set, and we do not condition on the
observed number of points.

We first correct for edge effects by conditioning on the data in W \W⊖45,
where W⊖45 denotes the points within W with distance less than 45 to the
boundary of W . Using spatstat, the maximum pseudo likelihood estimate
(MPLE) of (βM , ψM) is (−8.21,−0.09), indicating (weak) repulsion between
the Messor ants nests. Without edge correction, we obtain a rather sim-

15



ilar MPLE (−8.22,−0.12). The edge corrected MPLE of (βC , ψCM , ψC) is
(−9.51, 0.13,−0.66), indicating a positive association between the two species
and repulsion within the Cataglyphis nests. If no edge correction is used, the
MPLE for (βC , ψCM , ψC) is (−9.39, 0.04,−0.30). Högmander and Särkkä
(1999) also found a repulsion within the Cataglyphis nests, but in contrast
to our result a weak repulsive interaction between the two types of nests.
This may be explained by the different modelling approach in Högmander
and Särkkä (1999), where the smaller observation window excludes a pair of
very close Cataglyphis nests, and where also the conditioning on the observed
number of points in the two point patterns may make a difference.

No edge correction is used for our maximum likelihood estimates (MLE’s).
The MLE’s β̂M = −8.39 and ψ̂M = −0.06 again indicate a weak repul-
sion within the Messor nests, and the MLE’s β̂C = −9.24, ψ̂CM = 0.04,
and ψ̂C = −0.39 also indicate positive association between Messor and
Cataglyphis nests, and repulsion within the Cataglyphis nests. Confidence
intervals for ψCM , when the asymptotic variance estimate is based on ob-
served information or a parametric bootstrap, are [−0.20, 0.28] (observed
information) and [−0.16, 0.30] (parametric bootstrap).

The differences between the MLE and the MPLE (without edge correc-
tion) seem rather minor. This is also the experience for MLE’s and corre-
sponding MPLE’s in Møller and Waagepetersen (2003), though differences
may appear in cases with a strong interaction.

4.3 Cluster and Cox processes

This section considers maximum likelihood inference for cluster and Cox
process models. This is in general complicated and computionally more de-
manding than for Gibbs (or Markov) point processes.

For example, consider the case of an inhomogeneous shot noise Cox pro-
cess X as defined by (5) and (7). We can interpret this as a Poisson cluster
process as follows. The points in the stationary Poisson process Φ in (7)
specify the centres of the clusters. Conditional on Φ, the clusters are inde-
pendent Poisson processes, where the cluster associated to t ∈ Φ has intensity
function

λθ(s|t) = exp(βT z(s))
1

ωσ2
k((s − t)/σ), s ∈ R

2,

where θ = (β, ω, σ). Finally, X consists of the union of all cluster points.
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With probability one, X and Φ are disjoint. Moreover, in applications Φ
is usually unobserved. In order to deal with edge effects, consider a bounded
region Wext ⊇ W so that it is very unlikely that clusters associated to centres
outsideWext have points falling inW (see Brix and Kendall, 2002, and Møller,
2003). We approximate then X ∩W by the union of clusters with centres in
Ψ := Φ ∩Wext. Let f(x|ψ) denote the conditional density of X ∩W given
Ψ = ψ, where the density is with respect to the Poisson process on W with
intensity one. For x = {s1, . . . , sn},

fθ(x|ψ) = exp

(

|W | −

∫

W

∑

t∈ψ

λθ(s|t) ds

)

n
∏

i=1

λθ(si|t) (17)

and the likelihood based on observing X ∩W = x is

L(θ;x) = Eωfθ(x|Ψ) (18)

where the expectation is with respect to the Poisson process Ψ on Wext with
intensity ω. As this likelihood has no closed form expression, we may con-
sider Ψ as missing data and use MCMC methods for finding an approximate
maximum likelihood estimate, see Møller and Waagepetersen (2003). Here
one important ingredient is an MCMC simulation algorithm for the condi-
tional distribution of Ψ given X ∩W = x. This conditional distribution has
density

fθ(ψ|x) ∝ fθ(x|ψ)fω(ψ) (19)

where
fω(ψ) = exp (|Wext|(1 − ω))ωn(ψ) (20)

is the density of Ψ. For conditional simulation from (19), we use a birth-death
type Metropolis-Hastings algorithm studied in Møller (2003).

For a log Gaussian Cox process model, the simulation-based maximum
likelihood approach is as above except for the following. To specify the
density of the Poisson process X ∩ W |Y , since log Y in (5) is a Gaussian
process, we need only to consider Y (s) for s ∈ W . Hence, in contrast to
above, edge effects is not a problem, and the conditional density of X ∩W
given Y is

f(x|Y (s), s ∈W ) = exp

(

|W | −

∫

W

exp(Y (s)) ds +
n
∑

i=1

Y (si)

)

. (21)
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However, when evaluating the integral in (21) and when simulating from
the conditional distribution of Y on W given X ∩W = x, we need to ap-
proximate Y on W by a finite-dimensional log Gaussian random variable
YI = (Y (ui), i ∈ I) corresponding to a finite partition {Ci, i ∈ I} of W ,
where ui is a representative point of the cell Ci and we use the approxima-
tion Y (s) ≈ Y (ui) if s ∈ Ci. For simulation from the conditional distribution
of YI given X ∩W = x, we use a Langevin-Hastings algorithm (also called a
Metropolis adjusted Langevin algorithm), see Møller, Syversveen and Waage-
petersen (1998) and Møller and Waagepetersen (2003).

For the shot noise Cox process model considered above, the likelihood
(18) and its MCMC approximation are complicated functions of θ, possibly
with many local modes. Similarly, in the case of a log Gaussian Cox process
model. Careful maximization procedures are therefore needed when finding
the (approximate) maximum likelihood estimate. Further details, including
examples and specific algorithms of the MCMC missing data approach for
shot noise and log Gaussian Cox processes, are given in Møller and Waage-
petersen (2003, 2007).

5 Simulation-based Bayesian inference

A Bayesian approach often provides a flexible framework for incorporat-
ing prior information and analyzing spatial point process process models.
Section 5.1 considers an application example of a Poisson process, where
a Bayesian approach is obviously more suited than a maximum likelihood
approach. Bayesian analysis for cluster and Cox processes is discussed in
Section 5.2, while Section 5.3 considers Gibbs (or Markov) point processes.
In the latter case a Bayesian analysis is more complicated because of the un-
known normalizing constant appearing in the likelihood term of the posterior
density.

5.1 Example: reseeding plants

Armstrong (1991) considered the locations of 6378 plants from 67 species on
a 22 m by 22 m observation window W in the south western area of Western
Australia. The plants have adapted to regular natural fires, where resprout-
ing species survive the fire, while seeding species die in the fire but the fire
triggers the shedding of seeds, which have been stored since the previous
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fire. See also Illian, Møller and Waagepetersen (2008), where further back-
ground material is provided and various examples of the point patterns of
resprouting and reseeding plants are shown. Figure 4 shows the locations of
one of the reseeding plants Leucopogon conostephioides (called seeder 4 in Il-
lian, Møller and Waagepetersen, 2008). This and 5 other species of reseeding
plants together with the 19 most dominant (influential) species of resprouters
are analyzed in Illian, Møller and Waagepetersen (2008). Since it is natural
to model the locations of the reseeding plants conditionally on the locations
of the resprouting plants, we consider below a model for the point pattern
x in Figure 4 conditional on the point patterns y1, . . . , y19 corresponding to
the 19 most dominant species of resprouters, as given in Figure 1 in Illian,
Møller and Waagepetersen (2008). For a discussion of possible interaction
with other seeder species, and the biological justification of the the covariates
defined below, we refer again to Illian, Møller and Waagepetersen (2008).

seeder  4

 

 

Figure 4: Locations of 657 Leucopogon conostephioides plants observed within
a 22 × 22 m window.

Let κt,i ≥ 0 denote a parameter which specifies the radius of interaction
of the ith resprouter at location t ∈ yi, and let κ denote the collection of
all κt,i for t ∈ yi and i = 1, . . . , 19. For i = 1, . . . , 19, define covariates
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zi(s) = zi(s;κt,i, t ∈ yi) by

zi(s;κt,i, t ∈ yi) =
∑

t∈yi: ‖s−t‖≤κt,i

(

1 − (‖s− t‖/κt,i)
2)2 .

Conditional on y1, . . . , y19, we assume that x = {s1, . . . , sn} is a realization
of a Poisson process with log linear intensity function

log ρθ,y1,...,yn
(s) = β0 +

19
∑

i=1

βizi(s;κt,i, t ∈ yi)

where θ = (β, κ) and β = (β0, . . . , β19) is a regression parameter, where β0

is an intercept and βi for i > 0 controls the influence of the ith resprouter.
The likelihood depends on κ in a complicated way, and the dimension of κ
is much larger than the size of the data x. This makes it meaningless to find
maximum likelihood estimates.

Using a Bayesian setting we treat θ = (β, κ) as a random variable. Based
on Table 1 in Illian, Møller and Waagepetersen (2008) and other consid-
erations in that paper, we make the following prior assumptions. We let
κt,i follow the restriction of a normal distribution N(µi, σ

2
i ) to [0,∞), where

(µi, σ
2
i ) is chosen so that under the unrestricted normal distribution the range

of the zone of influence is a central 95% interval. Furthermore, we let all the
κt,i and the βi be independent, and each βi is N(0, σ2)-distributed, where
σ = 8. Combining these prior assumptions with the likelihood term, we
obtain the posterior density

π(β, κ|x) ∝ exp
(

− β0/(2σ
2) −

19
∑

i=1

{

β2
i /(2σ

2) +
∑

t∈yi

(κt,i − µi)
2/(2σ2

i )
})

× exp
(

−

∫

W

ρθ,y1,...,yn
(s) ds

)

n
∏

i=1

ρθ,y1,...,yn
(si), βi ∈ R, κt,i ≥ 0 (22)

(suppressing in the notation π(β, κ|x) that we have conditioned on y1, . . . , y19

in the posterior distribution).
Simulations from (22) are obtained by a Metropolis-within-Gibbs algo-

rithm (also called a hybrid MCMC algorithm, see e.g. Robert and Casella,
1999), where we alter between updating β and κ using random walk Metropo-
lis updates (for details, see Illian, Møller and Waagepetersen, 2008). Thereby
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various posterior probabilities of interest can be estimated. For example,
a large (small) value of P(βi > 0|x) indicates a positive/attractive (nega-
tive/repulsive) association to the ith resprouter, see Figure 2 in Illian, Møller
and Waagepetersen (2008).

The model can be checked following the idea of posterior predictive model
assessment (Gelman, Meng and Stern, 1996), comparing various summary
statistics with their posterior predictive distributions. The posterior predic-
tive distribution of statistics depending on X (and possibly also on (β, κ))
is obtained from simulations: we generate a posterior sample (β(j), κ(j)),
j = 1, . . . ,m, and for each j ‘new data’ x(j) from the conditional distribu-
tion of X given (β(j), κ(j)). For instance, the grey scale plot in Figure 5 is a
residual plot based on quadrant counts. We divide the observation window
into 100 equally sized quadrants and count the number of plants within each
quadrant. The grey scales reflect the probabilities that counts drawn from
the posterior predictive distribution are less or equal to the observed quad-
rant counts where dark means small probability. The stars mark quadrants
where the observed counts are ‘extreme’ in the sense of being either below
the 2.5% quantile or above the 97.5% quantile of the posterior predictive
distribution. Figure 5 does not provide evidence against our model. A plot
based on the L-function (Chapter 4.3) and the posterior predictive distribu-
tion is also given in Illian, Møller and Waagepetersen (2008). Also this plot
shows no evidence against our model.

5.2 Cluster and Cox processes

The simulation-based Bayesian approach exemplified above extends to cluster
and Cox processes, where we include the ‘missing data’ η, say, in the posterior
and use a Metropolis-within-Gibbs (or MCMC algorithm) algorithm, where
we alter between updating θ and η. Examples are given below.

In case of the Poisson cluster process model for X considered in Sec-
tion 4.3, η = Ψ is the point process of centre points. Incorporating this into
the posterior, we obtain the posterior density

π(θ, ψ|x) ∝ fθ(x|ψ)fω(ψ)π(θ)

where fθ(x|ψ) and fω(ψ) are specified in (17) and (20), and π(θ) is the prior
density. The Metropolis-within-Gibbs algorithm alters between updating
from ‘full conditionals’ given by

π(θ|ψ, x) ∝ fθ(x|ψ)fω(ψ)π(θ) (23)
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Figure 5: Residual plot based on quadrant counts. Quadrants with a ‘*’
are where the observed counts fall below the 2.5% quantile (white ‘*’) or
above the 97.5% quantile (black ‘*’) of the posterior predictive distribution.
The grey scales reflect the probabilities that counts drawn from the posterior
predictive distribution are less or equal to the observed quadrant counts (dark
means small probability).

and
π(ψ|θ, x) ∝ fθ(x|ψ)fω(ψ). (24)

Yet another Metropolis-within-Gibbs algorithm may be used when updating
from (23), cf. Section 4.3. When updating from (24) we use the birth-death
type Metropolis-Hastings algorithm mentioned in connection to (19).

Similarly, for a log Gaussian Cox process model for X. Then we may
approximate the log Gaussian process Y on W by the finite-dimensional
log Gaussian random variable η = YI specified in Section 4.3, and use a
Langevin-Hastings algorithm for simulating from the conditional distribution
of η given (θ, x). Rue, Martino and Chopin (2007) demonstrate that it may be
possible to compute accurate Laplace approximations of marginal posterior
distributions without MCMC simulations.

22



For instance, Møller and Waagepetersen (2007) considered a log Gaus-
sian Cox process model for the rain forest trees considered in Section 3.3,
and they used a 200×100 grid to index η, and imposed certain flat priors on
the unknown parameters. Figure 6 shows the posterior means of the system-
atic part β0 + β1z1(s) + β2z2(s) (left panel) and the random part Y (s) (right
panel) of the log random intensity function log Λ(s) given by (5). The sys-
tematic part seems to depend more on z2 (norm of altitude gradient) than z1

(altitude), cf. Figure 2. The fluctuations of the random part may be caused
by small scale clustering due to seed dispersal and covariates concerning soil
properties. The fluctuation may also be due to between-species competition.
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Figure 6: Posterior mean of β0+β1z1(s)+β2z2(s) (left panel) and Y (s) (right
panel), s ∈ W , under the log Gaussian Cox process model for the tropical
rain forest trees.

Møller and Waagepetersen (2003, 2007), Beněs, Bodlák, Møller and Waa-
gepetersen (2005), and Waagepetersen and Schweder (2006) exemplified the
simulation-based Bayesian approach for both Poisson cluster (or shot noise
Cox) process and log Gaussian Cox process models. Other Cox models and
application examples are considered in Heikkinen and Arjas (1998), Wolpert
and Ickstadt (1998), Best, Ickstadt and Wolpert (2000), and Cressie and
Lawson (2000).

5.3 Gibbs point processes

For a Gibbs (or Markov) point process the likelihood function depends on the
unknown normalizing constant cθ, cf. (13). Hence, in a Bayesian approach
to inference, the posterior distribution for θ also depends on the unknown
cθ, and in an ‘ordinary’ Metropolis-Hastings algorithm, the Hastings ratio
depends on a ratio of unknown normalizing constants. This ratio may be
estimated using another method, see Section 4.1, but it is then unclear from
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which equilibrium distribution (if any) we are simulating and whether it is a
good approximation of the posterior. Recently, the problem with unknown
normalizing constants has been solved using an MCMC auxiliary variable
method (Møller, Pettitt, Berthelsen and Reeves, 2006) which involves per-
fect simulations (Kendall, 1998; Kendall and Møller, 2000). The technique is
applied for Bayesian inference of Markov point processes in Berthelsen and
Møller (2004, 2006, 2008), where also the many technical details are dis-
cussed. Below we briefly demonstrate the potential of this technique when
applied for non/semi-parametric Bayesian inference of a pairwise interaction
point process.

5.4 Example: cell data

The left panel of Figure 7 shows the location of 617 cells in a section of the
mocous membrane of the stomach of a healthy rat, where (after some rescal-
ing) W = [0, 1] × [0, 0.893] is the observation window. The left hand side of
the observation window corresponds to where the stomach cavity begins and
the right hand side to where the muscle tissue begins. The centre panel of
Figure 7 shows a non-parametric estimate ĝ(r), r > 0, of the pair correlation
function for the data and simulated 95%-envelopes under an inhomogeneous
Poisson process with a non-parametric estimate for its intensity function
(Chapter 4.3). Under a Poisson process model the theoretical pair correlation
function is constant one. The low values of ĝ(r) for distances r < 0.01 indi-
cates repulsion between the points. The point pattern looks inhomogeneous
in the horizontal direction, and the data was originally analyzed by Nielsen
(2000) using a Strauss point process model after transforming the first coor-
dinates of the points. The right panel of Figure 7 shows a non-parametric
estimate of the pair correlation function for the data, with simulated 95%-
envelopes under the fitted transformed Strauss point process. The estimated
pair correlation is almost within the 95% evelopes for small values of the dis-
tance r, suggesting that the transformed Strauss model captures the small
scale inhibition in the data. Overall, the estimated pair correlation function
follows the trend of the 95%-envelopes, but it falls outside the envelopes for
some values. As the comparison with the envelopes can be considered as a
multiple test problem, this is not necessarily reason to reject the transformed
Strauss model.

We consider an inhomogeneous pairwise interaction point process model
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Figure 7: Left panel: locations of 617 cells in a 2D section of the mocous mem-
brane of the stomach of a healthy rat. Centre panel: non-parametric estimate
of the pair correlation function for the cell data (full line) and 95%-envelopes
calculated from 200 simulations of a fitted inhomogeneous Poisson process.
Right panel: non-parametric estimate of the pair correlation function for the
cell data (full line) and 95%-envelopes calculated from 200 simulations of the
model fitted by Nielsen (2000).

for the point pattern x = {s1, . . . , sn} in Figure 7 (left panel). The density is

fβ,ϕ(x) =
1

c(β,ϕ)

n
∏

i=1

β(si)
∏

1≤i<j<≤n

ϕ(‖si − sj‖) (25)

with respect to the Poisson process on W with intensity one. Here the first
order term β is a non-negative function which models the inhomogeneity,
the second order term ϕ is a non-negative function which models the inter-
action, and c(β,ϕ) is a normalizing constant. A priori it is expected that the
cell intensity only changes in the direction from the stomach cavity to the
surrounding muscles tissue. It is therefore assumed that β(s) depends only
on s = (t, u) through its first coordinate t. Further, partly in order to obtain
a well-defined density and partly in order to model a repulsive interaction
between the cells, we assume that 0 ≤ ϕ(‖si − sj‖) ≤ 1 is a non-decreasing
function of the distance r = ‖si − sj‖. Furthermore, we specify a flexible
prior for β(s) = β(t) by a shot noise process and a flexible prior for ϕ(r) by a
piecewise linear function modelled by a marked Poisson process. For details
of these priors and how the auxiliary variable method from Møller, Pettitt,
Berthelsen and Reeves (2006) is implemented to obtain simulations from the
posterior distribution of (β, ϕ) given x, see Berthelsen and Møller (2008).

The left panel of Figure 8 shows the posterior mean of β, E(β|x), together
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with pointwise 95% central posterior intervals. Also the smooth estimate of
the first order term obtained by Nielsen (2000) is shown, where the main
difference compared with E(β|x) is the abrupt change of E(β|x) in the interval
[0.2, 0.4]. For locations near the edges of W , E(β|x) is ‘pulled’ towards its
prior mean as a consequence of the smoothing prior.

The intensity ρβ,ϕ(s) of the point process is given by the mean of the
Papangelou conditional intensity, that is,

ρβ,ϕ(s) = E [λβ,ϕ(s, Y )fβ,ϕ(Y )] (26)

where the expectation is with respect to the Poisson process Y on W with
intensity one, see e.g. Møller and Waagepetersen (2003). Define

ρβ,ϕ(t) =
1

b

∫ b

0

ρβ,ϕ(t, u) du

where W = [0, a] × [0, b] = [0, 1] × [0, 0.893]. Apart from boundary effects,
since β(s) only depends on the first coordinate of s = (t, u), we may expect
that the intensity (26) only slightly depends on the second coordinate u, i.e.
ρβ,ϕ(s) ≈ ρβ,ϕ(t). We therefore refer to ρβ,ϕ(t) as the cell intensity, though it
is more precisely the average cell intensity in W at u ∈ [0, a]. The left panel
of Figure 8 also shows a non-parametric estimate ρ̂(t) of the cell intensity
(the dot-dashed line). The posterior mean of β(t) is not unlike ρ̂(t) except
that E(β(t)|x) is higher as would be expected due to the repulsion in the
pairwise interaction point process model.

The posterior mean of ϕ is shown in the right panel of Figure 8 together
with pointwise 95% central posterior intervals. The figure shows a distinct
hard core on the interval from zero to the observed minimum inter-point
distance d = mini6=j ‖si−sj‖ which is a little less than 0.006, and an effective
interaction range which is no more than 0.015 (the posterior distribution of
ϕ(r) is concentrated close to one for r > 0.015). The corner at r = d of the
curve showing the posterior mean of ϕ(r) is caused by that ϕ(r) is often zero
for r < d (since the hard core is concentrated close to d), while ϕ(r) > 0 for
r > d.
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[34] J. L. Jensen and H. R. Künsch. On asymptotic normality of pseudo
likelihood estimates for pairwise interaction processes. Annals of the
Institute of Statistical Mathematics, 46:475–486, 1994.

30



[35] J. L. Jensen and J. Møller. Pseudolikelihood for exponential family
models of spatial point processes. Annals of Applied Probability, 3:445–
461, 1991.

[36] W. S. Kendall. Perfect simulation for the area-interaction point process.
In L. Accardi and C.C. Heyde, editors, Probability Towards 2000, pages
218–234. Springer Lecture Notes in Statistics 128, Springer Verlag, New
York, 1998.

[37] W. S. Kendall and J. Møller. Perfect simulation using dominating pro-
cesses on ordered spaces, with application to locally stable point pro-
cesses. Advances in Applied Probability, 32:844–865, 2000.

[38] Lieshout, M. N. M. van. Markov Point Processes and Their Applications.
Imperial College Press, London, 2000.

[39] B. G. Lindsay. Composite likelihood methods. Contemporary Mathe-
matics, 80:221–239, 1988.

[40] S. Mase. Consistency of the maximum pseudo-likelihood estimator of
continuous state space Gibbs processes. Annals of Applied Probability,
5:603–612, 1995.

[41] S. Mase. Marked Gibbs processes and asymptotic normality of maximum
pseudo-likelihood estimators. Mathematische Nachrichten, 209:151–169,
1999.

[42] J. Møller. Contribution to the discussion of N.L. Hjort and H. Omre
(1994): Topics in spatial statistics. Scandinavian Journal of Statistics,
21:346–349, 1994.

[43] J. Møller. Shot noise Cox processes. Advances in Applied Probability,
35:4–26, 2003.

[44] J. Møller, A. N. Pettitt, K. K. Berthelsen, and R. W. Reeves. An efficient
MCMC method for distributions with intractable normalising constants.
Biometrika, 93:451–458, 2006.

[45] J. Møller, A. R. Syversveen, and R. P. Waagepetersen. Log Gaussian
Cox processes. Scandinavian Journal of Statistics, 25:451–482, 1998.

31



[46] J. Møller and R. P. Waagepetersen. Statistical Inference and Simulation
for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton, 2003.

[47] J. Møller and R. P. Waagepetersen. Modern spatial point process mod-
elling and inference (with discussion). Scandinavian Journal of Statis-
tics, 34:643–711, 2007.

[48] L. S. Nielsen. Modelling the position of cell profiles allowing for both
inhomogeneity and interaction. Image Analysis and Stereology, 19:183–
187, 2000.

[49] S. L. Rathbun. Estimation of Poisson intensity using partially observed
concomitant variables. Biometrics, 52:226–242, 1996.

[50] S. L. Rathbun and N. Cressie. Asymptotic properties of estimators for
the parameters of spatial inhomogeneous Poisson processes. Advances
in Applied Probability, 26:122–154, 1994.

[51] S. L. Rathbun, S. Shiffman, and C. J. Gwaltney. Modelling the effects of
partially observed covariates on Poisson process intensity. Biometrika,
94:153–165, 2007.

[52] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-
Verlag, New York, 1999.

[53] H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for
latent Gaussian models using integrated nested Laplace approximations.
Preprint Statistics No. 1/2007, Norwegian University of Science and
Technology, 2007.

[54] M. Thomas. A generalization of Poisson’s binomial limit for use in
ecology. Biometrika, 36:18–25, 1949.

[55] R. Waagepetersen. An estimating function approach to inference for
inhomogeneous Neyman-Scott processes. Biometrics, 63:252–258, 2007.

[56] R. Waagepetersen. Estimating functions for inhomogeneous spatial
point processes with incomplete covariate data. Biometrika, 95, 2008.
To appear.

[57] R. Waagepetersen and Y. Guan. Two-step estimation for inhomogeneous
spatial point processes. Submitted, 2007.

32



[58] R. Waagepetersen and T. Schweder. Likelihood-based inference for clus-
tered line transect data. Journal of Agricultural, Biological, and Envi-
ronmental Statistics, 11:264–279, 2006.

[59] R. L. Wolpert and K. Ickstadt. Poisson/gamma random field models for
spatial statistics. Biometrika, 85:251–267, 1998.

33


