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Connectivity analysis of one-dimensional ad-hoc networks

Martin Bøgsted Hansen · Jakob Gulddahl Rasmussen · Hans Peter

Schwefel

Abstract Applications and communication protocols

in dynamic ad-hoc networks are exposed to physical

limitations imposed by the connectivity relations that
result from mobility. Motivated by vehicular freeway

scenarios, this paper analyzes a number of important

connectivity metrics for instantaneous snapshots of sto-
chastic geographic movement patterns under the as-

sumption of a fixed radio range for each node: (1) The

node degree, corresponding to the number of single-

hop neighbors of a mobile node; (2) The connectivity
number, expressing the number of nodes reachable via

multi-hop paths of arbitrary hop-count; (3) the connec-

tivity distance, expressing the geographic distance that
a message can be propagated in the network on multi-

hop paths; (4) the connectivity hops, which corresponds

to the number of hops that are necessary to reach all
nodes in the connected network. The paper develops

analytic expressions for the distributions and moments

of these random variables for general stationary MAP

processes on a one dimensional space. The numerical
results compares bursty vehicular traffic with indepen-

dent movement scenarios described by a Poisson pro-

cess.
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1 Introduction

Vehicular communication scenarios are characterized

by high dynamicity and challenging propagation en-
vironments, while at the same time the communicat-

ing applications are frequently of safety-critical nature

and hence are subject to high availability and relia-
bility requirements. Example applications include acci-

dent warnings [18] that need to be broadcasted within a

certain geographic region, or cooperative reliable data
storage approaches such as used within the distributed

black-box application of Reference [4]. Special protocol

and middleware solutions are currently being developed

[6] to improve the dependability of such applications in
these challenging vehicular scenarios. Multi-hop com-

munication is thereby an essential element as it allows

to utilize redundancy and increase the geographic range
of wireless communication. However, the connectivity

between node pairs in such multi-hop networking sce-

narios is limiting the availability of communication ser-
vices and hence, its analysis is essential to provide up-

per bounds on communication service availability and

to determine other network topology related metrics

that influence communication performance. This paper
analyzes a set of relevant multi-hop topology connec-

tivity metrics for the vehicular scenario of a single,

infinitely long straight road, approximated by a one-
dimensional space, hence neglecting the width of the

road. This geometry is motivated by rural free-way sce-

narios. Cars are moving over time on this piece of road,
but for the metrics in this paper, we analyze an in-

stantaneous snapshot of the geographic location of the

cars, described by a spatial stochastic process. Rele-

vant examples later will include Poisson processes (re-
sulting from independent movements of the vehicles),

and bursty ON-OFF processes, which allow to reflect

inter-car dependence, e.g. scenarios of several cars be-
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ing stuck behind a slow truck. The general expressions

for the connectivity metrics will be derived for general
Markovian Arrival Processes (MAPs) [16]. It is assumed

that every car is equipped with wireless communica-

tion equipment, for which a constant communication
range R is assumed, i.e. whenever the distance between

two nodes is less or equal to R, these two nodes can

communicate in a single-hop manner. Given a spatial
allocation of the nodes, this so-called unit-disk com-

munication model allows to determine the multi-hop

connectivity graph, whose nodes are the cars, and the

– in this case undirected – edges reflect the possibil-
ity to communicate in a single-hop manner. Utilizing a

routing and/or broadcasting algorithm on this graph,

multi-hop communication can be implemented.
The paper defines and analyzes the following four

different connectivity metrics: (1) The node degree, cor-

responding to the number of single-hop neighbors of a
mobile node; (2) The connectivity number, expressing

the number of nodes reachable via multi-hop paths of

arbitrary hop-count; (3) the connectivity distance, ex-

pressing the geographic distance that a message can be
propagated in the network on multi-hop paths; (4) the

connectivity hops, which corresponds to the number of

hops that are necessary to reach all nodes in the con-
nected network. The relevance of these metrics for the

vehicular communication scenarios is illustrated in the

following:

– The number of direct (single-hop) neighbors in the

network topology graph, also called node degree, in-
fluences several performance aspects of the network:

On the application/middleware layer, data replica-

tion functionality for reliability of data in cases of
node crashes may rely on direct neighbors in order

to keep communication overhead and delay low. The

node degree here directly maps into data reliability.
On the network layer, high node degrees would lead

to so-called broadcast storm problems for simple

broadcasting strategies such as flooding, therefore

wasting wireless transmission capacity. Broadcast
optimizations, e.g. [8], reduce this problem, but the

efficiency gain depends on the node degree. Finally,

a high node degree can also lead to increased trans-
mission delays, e.g. caused by delays of the MAC

protocol, as links which share the same end-point

are in the general case not independent. For reasons
of resemblance of the names of the performance met-

rics below, the node degree in this paper is called

’single-hop connectivity number’.

– When forming car-to-car ad-hoc networks, the po-
tential size of such an ad-hoc network can become

rather large (in the extreme case, all cars on the

continent), which raises scalability problems, e.g. to

maintain such a large number of nodes in ad-hoc

routing tables. Strategies for forming sub-domains
will be required in such cases. However, in order

to determine whether such complicated and delay-

prone algorithms should be executed, a calculation
based on the expected mobility models and pre-

dicted car density is recommended. The random vari-

able ’Multi-hop connectivity number’ expresses the
size of the ad-hoc network, if multi-hop communi-

cation with arbitrary path lengths is used. For in-

stance, a high probability that the network size is

less than 50 cars may indicate that the execution of
domain forming algorithms may not be necessary.

As an example for the opposite boundary, the prob-

ability that the network contains less than 5 cars
gives an indication whether enough cars are within

multi-hop communication range as e.g. needed for

multi-hop data replication for dependability pur-
poses [9].

– For certain vehicular applications, e.g. propagation

of hazard/accident warning, it is important that the

warning message can be transmitted geographically
far enough, so that the receiving cars or drivers can

take the necessary actions to avoid the hazard or re-

duce its impact. In the example of an accident warn-
ing to trigger speed reductions of cars approaching

the accident, a geographic range of at least 500 me-

ters, better few kilometers, would be required. The
random variable ’Connectivity Distance’ describes

the geographic range that can be covered by such a

message. For instance, if the connectivity distance

is less than 500m, it is physically not possible to
propagate the message in a multi-hop manner be-

yond a 500m range due to non-existing links in the

multi-hop forwarding chain.
– The path-length measured in number of hops is an

important metric to determine network overhead (as

the packet needs to be forwarded by every interme-
diate node) and end-to-end packet delays. The lat-

ter typically increase approximately linearly with

the number of hops. Furthermore, the packet-loss

probability is expected to increase with increasing
path-length (due to accumulated link-layer loss and

due to higher probability of route breakage in dy-

namic scenarios). In the one dimensional space and
for constant communication radius, as assumed in

this paper, the shortest path to a specific destina-

tion node is always using the next-hop intermediate
node in the direction of the destination node that

is geographically furthest within the communication

range. The random variable ’Connectivity Hops’ is

the smallest hop-count that is sufficient to reach all
nodes in the connected network. For flooding broad-
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cast approaches with synchronized retransmission

rounds, the ’connectivity hops’ would be propor-
tional to the delay to reach all nodes within the

network. In case of broadcast optimizations such as

in [8], also longer paths can result.

Section 2 provides a rigorous definition of these con-

nectivity metrics together with some background on

MAPs that are used as a general process class for char-
acterization of the spatial node location in the one di-

mensional space. The results thereby are more general

compared to the existing analysis in [10], which is re-
stricted to renewal processes, and hence does not allow

for the interesting vehicular cases of correlated inter-car

distances. Section 3 derives analytic solutions for the

connectivity metrics, focusing on distributions of the
associated random variables and their moments. Sec-

tion 4 presents numerical results for two specific MAP

types, a Poisson process and an ON/OFF process. Fi-
nally, Section 5 summarizes the paper and discusses

future extensions of the analysis.

2 Preliminaries

2.1 Point processes and connectivity

Let X = {xi}i∈Z denote a point process on the real

line R (for an introduction to point processes, see [5]);

we will frequently call the points xi nodes to emphasize
that they represent nodes in a network. Throughout

the paper we will assume that X is stationary, ergodic,

and non-empty with probability one. Furthermore, we
denote the counting process by N , i.e. N(B) is the num-

ber of points falling in a Borel set B ⊆ R.

Below we define various notions of connectivity on

X, all of them quantifying the amount of connectivity

to an arbitrary point xi ∈ X. The precise meaning of an

arbitrary point can be established through Palm theory.
Roughly speaking, the Palm distribution means that we

consider the point process conditioned on that there is

a point at a specific location (for a strict definition, see
e.g. [5]). Since we are only considering stationary point

processes, we let this point be located at zero, and we

can think of this as a typical point of the point process.
We denote the Palm process by X0.

For xi, xj ∈ X, we say that xi and xj are single-hop
connected if |xi − xj | < R for some fixed radio range

R > 0, and we denote this by xi ∼ xj . Furthermore,

we say that xi and xj are multi-hop connected if there

exists n ∈ N and {xi1 , . . . , xin−1
} ⊆ X such that xi ∼

xi1 ∼ · · · ∼ xin−1
∼ xj , and we denote this by xi ∼̇ xj .

Here n is the number of hops of the shortest path for

the multi-hop connection, and when needed we denote

that xi and xj are multi-hop connected by exactly n

hops by xi ∼̇n xj .
Consider an arbitrary point x ∈ R. We then define

γ(x,X) to be a non-negative function quantifying the

amount of connectivity to x. The specific examples of γ
considered in this paper will follow below. Considering

the connectivity to an arbitrary node in X using such

a connectivity metric is equivalent to considering the
connectivity to a point placed at 0 in the Palm process

X0, so in the rest of the paper we will consider the ran-

dom variable Yγ = γ(0,X0). Furthermore, we denote

the cumulative distribution function of Yγ by Fγ and
the Laplace-Stieltjes transform by Lγ .

The first example of connectivity metrics is the single-

hop connectivity number Yscn. We define this by γ(x,X) =
scn(x,X), where scn(x,X) is the number of points con-

nected to x through single-hop connections,

scn(x,X) = #{xi ∈ X \ x; xi ∼ x}.

To emphasize that we count the number of nodes reached

in either direction on the line, we call Yscn the two-

sided single-hop connectivity number. We also consider

the right-sided scn(x,X), which is called scn+(x,X)
and defined as scn(x,X) except that we only count

xi > x. Similarly we define the left-sided version, called

scn−(x,X), as scn(x,X) but only counting xi < x.
The second example is the multi-hop connectivity

number Ymcn. This is defined exactly as the single-hop

connectivity number except ∼ is exchanged for ∼̇ , i.e.

mcn(x,X) = #{xi ∈ X \ x; xi ∼̇ x}.

Similarly, we also have a right-sided version mcn+(x,X)

and a left-sided version mcn−(x,X) defined analogously

to the single-hop connectivity number.
The third example is the connectivity distance, i.e.

the distance a signal can travel from a node through

multi-hop connections. Here it is most convenient to
start by defining the right-sided version,

cd+(x,X) = sup{xi ∈ R;xj ∈ X, |xj−xi| < R, xj ∼̇ x}.

The left-sided version cd−(x,X) is defined similarly,

except that the supremum is exchanged for an infi-
mum. The two-sided version is given by the length of

the whole interval that can be reached, i.e. cd(x,X) =

cd+(x,X) + cd−(x,X).
The last example is the connectivity hops, i.e. the

minimum number of hops required to reach all other

nodes that can be reached through multi-hop connec-
tions,

ch+(x,X) = sup{inf{n ∈ N0;x ∼̇n xj};xj ∈ X}.

The left-sided version is given by exchanging the supre-

mum for an infimum. We will not consider a two-sided
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version as the one-sided ones are already difficult to

obtain.

2.2 Markov arrival processes

Throughout most of the paper, we will consider a par-

ticular class of point processes on R called Markov ar-

rival processes, or simply MAP (see e.g. [2] and [15] for

an introduction to these). We choose to focus on MAPs
since this is a very flexible class of point processes with

important special cases (e.g. Markov modulated Pois-

son processes and renewal processes with phase-type
distributed inter-renewal times).

A MAP is defined in the following way: consider
a Markov process Jt, t ∈ R, which has state space S

consisting of m < ∞ states and intensity matrix Λ.

This intensity matrix is decomposed into the sum of
two matrices C and D, where D corresponds to the

intensity of changes between states in Jt with a point

xi appearing in the point process X, and C corresponds

to the intensity of changes without any point in X. In
other words, the ijth entry of D and C are given by

dij =

{
βi i = j

λijqij i 6= j
, cij =

{
λii i = j

λij(1 − qij) i 6= j
,

where λii = −
∑

k 6=i cik −
∑

k dik. Here βi is the inten-

sity for points in X with while Jt stays in state i (i.e.

a change from i to i), λij is the intensity for a change

from state i to j, and qij is the probability of a point
resulting from a change from state i to j. Since we are

only considering non-empty point processes, we require

that D is not the zero-matrix.

In addition to C and D, we need to specify the dis-

tribution of J0, say α, to completely specify the back-
ground process Jt. However, since we have assumed that

X is stationary and ergodic, α is the stationary dis-

tribution of a Markov process with intensity Λ, which
means α = π where π is a distribution on the states of

the Markov process that satisfies πΛ = 0, where 0 is

the zero-vector.

We will also need the reversed process X̃, i.e. xi ∈ X̃

if and only if −xi ∈ X. This is also a MAP, and by
Theorem 5.2 in [2] the matrices needed for representing

this process, say C̃ and D̃, is easily obtained from C and

D by using the following formulas for the ijth entry in

C̃ and D̃,

c̃ij =
αj

αi

cji, d̃ij =
αj

αi

dji.

The stationary distribution α is the same for X̃ and X.

The MAPs have various properties that will be use-

ful later in this paper (see e.g. Section IX.1a in [2] for

proofs of these). The Palm version of a MAP is obtained

by letting α = α0 = πD/πD1⊤, where 1 denotes the
row vector of ones. Furthermore, the joint density for

the n first inter-arrival distances t1, . . . , tn under the

Palm distribution is

f0(t1, . . . , tn) = α0e
Ct1D · · · eCtnD1⊤. (1)

Finally, the probability generating function conditional
on J0 = i and Jt = j is given by

Ei

[
zN((0,t]);Jt = j

]
=

[
et(C+zD)

]

ij
, (2)

where [·]ij denotes the ijth entry in a matrix.

As the superposition of two or more independent

MAPs is also a MAP, multi-lane scenarios of road-traffic
under the assumption of independence between lanes

and when neglecting the width of the road can be easily

approximated by the 1-dimensional MAP case (see e.g.
[15] for details on obtaining the parameter matrices for

the superposition).

3 Analytical results

In this section we prove results about the distributions,

Laplace-Stieltjes transforms, and moments of the four
connectivity metrics.

3.1 Single-hop connectivity number

We start by noting that the right-sided single-hop con-

nectivity number is simply the number of nodes in the

interval (0, R], i.e.

Yscn+
= N((0, R]).

This quantity has been studied extensively, see e.g. [12]
and [14]. The probability generating function is given by

formula (2) (substituting t for R in the formula), but

as is mentioned in [16], the distributions do not have
closed form expressions for the general case. However,

the expectation is given by

EYscn+
=πD1⊤R+α0(I−e(C+D)R)(1⊤π−(C+D))−1D1⊤

(see [14] for this expression, as well as an expression

for the variance). A similar result obviously holds for
Yscn

−

= N([−R, 0)) using the reversed MAP by ex-

changing C and D for C̃ and D̃. Finally, the expecta-

tion of Yscn is simply the sum of the expectations of

Yscn+
and Yscn

−

.

In the special case that the spatial process is Poisson
with parameter λ, Yscn is Poisson distributed with mean

2λR. Hence, the average number of 1-hop neighbors

increases linearly with the communication range.
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3.2 Multi-hop connectivity number

The multi-hop connectivity number for MAPS turns

out to be phase-type distributed (for an introduction
to phase-type distributions, see e.g. [16] or [13]). In the

following two propositions, we prove this and obtain the

parameter matrices for the distributions.

Proposition 1 If X is a stationary, ergodic and non-

empty MAP with representation (C,D), then Ymcn+
+1

and Ymcn
−

+ 1 have discrete phase-type distributions

with representations (α0, A) and (α0, Ã), where A =

C−1(eCR − I)D and Ã = C̃−1(e
eCR − I)D̃.

Proof Consider Ymcn+
. For n ∈ N0, using (1), we get

that

P(Ymcn+
≥ n) =

∫ R

0

· · ·

∫ R

0

α0e
Ct1D · · · eCtnD1⊤dt1· · · dtn

= α0

∫ R

0

eCt1dt1D · · ·

∫ R

0

eCtndtnD1⊤

= α0A
n1⊤.

Thus

P(Ymcn+
+ 1 ≤ n) = 1 − α0A

n1⊤,

which is the distribution function for a phase-type dis-

tribution, since it follows from Lemma 1 that A is a

substochastic matrix. The result for Ymcn
−

is proved in
the same way.

Proposition 2 If X is a stationary, ergodic and non-

empty MAP with representation (C,D), then Ymcn + 2

has a discrete phase-type distribution with representa-

tion

((α0,1e1,0, . . . , α0,mem,0), B) , (3)

where B is a block diagonal matrix with m blocks where

the jth block is given by

Bj =

(
A (I − A)1⊤

ej

O Ã

)
,

O is the zero-matrix, and ej is the unit vector with one

at the jth entry and zero elsewhere.

Proof Firstly note that conditional on J0 = j, the dis-

tribution of Ymcn+
+1 is a phase-type distribution with

representation (ej , A); the proof of this is completely

analogous to the proof of Proposition 1. A similar result

holds for Ymcn
−

+1. Conditional on J0 = j, the positive

and negative halves of the process X are independent,
and hence Ymcn+

and Ymcn
−

are also conditionally inde-

pendent. Thus the conditional distribution of Ymcn + 2

is the convolution of the conditional distributions of

Ymcn+
+ 1 and Ymcn+

+ 1, which is a phase-type dis-

tribution with representation ((ej ,0), Bj) (see e.g. [16]
for the convolution of phase-type distributions). The

distribution of Ymcn + 2 is a mixture of the conditional

distributions of Ymcn +2 with mixture weights given by
the entries of α0, and thus it is a phase-type distribu-

tion with representation given by (3) (see e.g. [16] for

mixtures of phase-type distributions).

Since Ymcn
−

, Ymcn+
and Ymcn are all phase-type dis-

tributed, expressions for their moments are easily ob-

tained. For example, using Proposition 2 and exploiting

the block diagonal structure of B, we get that the ex-
pected value of Ymcn is given by

EYmcn =

m∑

j=1

(α0,jej ,0)(I − Bj)
−11⊤ − 2. (4)

In the special case where X is a Poisson process with

parameter λ, we get that

EYmcn = 2eλR − 2.

3.3 Connectivity distance

In this section, we obtain the Laplace transforms (and

thus moments) of the connectivity distance. For nota-
tional convenience, we let

g(s,α, C,D) = α(I − (C − sI)−1(e(C−sI)R − I)D)−1

C−1eCRD1⊤.

We start by considering results for the one-sided cases

of the connectivity distance; the proof of this is partly

inspired by a queueing theoretic result in [7].

Proposition 3 If X is a stationary, ergodic and non-

empty MAP with representation (C,D), then Ycd+
and

Ycd
−

have Laplace-Stieltjes transforms

Lcd+
(s) = −e−sRg(s,α0, C,D)

and

Lcd
−

(s) = −e−sRg(s,α0, C̃, D̃).

Proof Consider Ycd+
. Denoting the cumulative distri-

bution function of Ycd+
− R by F 0

cd+
, we get that

F 0
cd+

(t) =

∞∑

n=1

P

(
n−1∑

j=1

tj ≤ t, ti ≤ R (i = 1, . . . , n − 1),

tn > R

)

=
∞∑

n=1

∫ t

0

· · ·

∫ t−t1−···−tn−2

0

n−1∏

i=1

I(ti ≤ R)

∫ ∞

R

f0(t1, . . . , tn)dtn · · · dt1,
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where f0(t1, . . . , tn) is the joint density function given

by (1) and I is the indicator function. Inserting (1), solv-
ing the innermost integral, and rearranging the terms,

we get that

F 0
cd+

(t) = −α0

∞∑

n=1

∫ t

0

· · ·

∫ t−t1−···−tn−2

0

n−1∏

i=1

I(ti ≤ R)

eCt1D · · · eCtn−1Ddtn−1 · · · dt1C
−1eCRD1⊤.

From this and Lemma 2 in the appendix, we get that

the Laplace-Stieltjes transform for Ycd+
−R is given by

L0
cd+

(s) =

∫ ∞

0

e−stdF 0
cd+

(t)

= −α0

∞∑

n=1

(
n−1∏

i=1

∫ ∞

0

I(ti ≤ R)e(C−sI)tiDdti

)

C−1eCRD1⊤

= −α0

∞∑

n=1

(
(C − sI)−1(e(C−sI)R − I)D

)n−1

C−1eCRD1⊤

= −g(s,α0, C,D).

Thus the Laplace-Stieltjes transform for Ycd+
is given

by

Lcd+
(s) = Ee−sYcd+

= e−sR
Ee−s(Ycd+

−R)

= −e−sRg(s,α0, C,D).

The result for Lcd
−

is proven in the same way.

Proposition 4 If X is a stationary, ergodic and non-

empty MAP with representation (C,D), then Ycd has

Laplace-Stieltjes transforms

Lcd(s) =
m∑

j=1

α0,ie
−2sRg(s,ej , C,D)g(s,ej , C̃, D̃).

Proof Denote the Laplace-Stieltjes transform of Ycd+

and Ycd
−

conditional on J0 = j by Lj
cd+

and Lj
cd
−

.

Then

Lj
cd+

(s) = −e−sRg(s,ej , C,D)

and

Lj
cd
−

(s) = −e−sRg(s,ej , C̃, D̃)

(this is proven in the same way as Proposition 3). Since

Ycd+
and Ycd

−

are conditionally independent given J0 =

j, the Laplace-Stieltjes transform for Ycd conditional on
J0 = j is given by

Lj
cd = e−2sRg(s,ej , C,D)g(s,ej , C̃, D̃).

The result now follows, since Lcd is the weighted aver-

age of Lj
cd with weights given by the entries in α0.

Using Proposition 4, we can obtain the expectation

of Ycd by differentiation,

EYcd = −
d

ds
Lcd(s)

∣∣∣∣
s=0

= −

m∑

j=1

α0,j

(
g′(0,ej , C,D)g(0,ej , C̃, D̃)

+g(0,ej , C,D)g′(0,ej , C̃, D̃)
)

where g and its derivative g′ with s = 0 inserted is given
by

g(0,ej , C,D) = ej(I − A)−1C−1eCRD1⊤

and

g′(0,ej , C,D) = ej(I − A)−1(C−1(A − ReCRD)

(I − A)−1 − RI)C−1eCRD1⊤,

and A is defined in Proposition 1. In the special case

where X is a Poisson process with intensity λ, this sim-

plifies to

EYcd =
2eλR − 2

λ

In principle, for any MAP moments of any order can be

obtained from these Laplace-Stieltjes transforms using
differentiation, but the expressions quickly become hard

to evaluate.

3.4 Connectivity hops

Expressions for the connectivity hops metric are much
harder to obtain, so we restrict attention to Poisson pro-

cesses, left- and right-sided metrics, and expectations

rather than distributions. Even then closed form ex-
pressions seem difficult to obtain. The following propo-

sition formulates the expectations EYch+
and EYch

−

us-

ing an integral equation. The same problem has been

considered in [3], but a different approach not involving
integral equations was taken in that paper. The advan-

tage of the integral equation over the approach taken

in [3] is that, even though we cannot get a solution for
the integral equation, we get a recursive formula for

approximating the solution and an upper bound on the

error in this approximation (see Proposition 6 below).

Proposition 5 If X is a stationary Poisson process

with intensity λ > 0, then

EYch+
= EYch

−

= h(0) − 1, (5)

where h : [0, R] → R+ is the solution to the integral

equation

h(t) = 1 +

∫ R−t

0

λe−λsh(s)ds. (6)
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R

R

R

s1 s2

0

Fig. 1 Three hops with radio range R, where the last hop does

not reach any new nodes. The distance between the last node

and the last point reached by the first and second hops are also

shown.

Proof We will prove the result for EYch+
(the result for

EYch
−

follows by symmetry).

It is convenient to start by considering the distance

between the last node and the last point reached by
the nth hop. Let sn denote this distance (see Figure 1

for an illustration of sn). Consider the first hop; the

distribution function for s1 ∈ (0, R] is given by

P(s1 ≤ t) =

∞∑

k=0

P(s1 ≤ t|N((0, R]) = k)
(λR)k

k!
e−λR

=

∞∑

k=0

P(max{x1, . . . , xk}≥R − t|N((0, R])=k)

(λR)k

k!
e−λR

= e−λR +

∞∑

k=1

(
1 −

(
R − t

R

)k
)

(λR)k

k!
e−λR

= e−λR+ 1− e−λR−

(
∞∑

k=1

(λ(R − t))k

k!

)
e−λR

= 1 −

(
∞∑

k=0

(λ(R − t))k

k!
− 1

)
e−λR

= 1 − e−λt + e−λR.

In other words, s1 follows a mixture of a truncated ex-

ponential distribution on (0, R] with parameter λ and
a point mass at zero. Note that the point mass cor-

responds to no new nodes being reached (since X is

Poisson, the probability of having no points in (0, R] is
e−λR), so this is the probability that the first hop never

occurs.

Consider now the nth hop. Following the above ap-

proach, we get that conditional on sn−1, we have prob-

ability e−λ(R−sn−1) that no new nodes are reached with
the nth hop, and if there are any nodes, the distribu-

tion of sn is a truncated exponential distribution on

the interval (0, R − sn−1) with parameter λ. If we de-

fine s0 = 0, then s1 also fits into system.

Since sn only depends on sn−1, we can regard Ych+

as the absorption (or hitting) time in the Markov chain

of sn. From standard theory of Markov chains (see e.g.

[17]), we get that the mean absorption time of sn given a
starting state t is given by h(t), which solves the integral

equation (6). Finally, the result follows from the facts

that the Markov chain is started at t = s0 = 0, and that
1 is subtracted in equation (5) since we do not count

the final hop that does not reach any new nodes (e.g.

the third hop in Figure 1).

Since the integral equation (6) is not analytically
solvable, we need to approximate the solution. The next

proposition, which uses an approach similar to [11], pro-

vides one way of doing this. First, let H be the set of
measurable functions H : [0, R] → [0,∞) and define ϕ

as

ϕ(H) = 1 +

∫ R−t

0

λe−λsH(s)ds.

Note that if H ∈ H, then ϕ(H) ∈ H. Furthermore, we

equip H with the supremum norm,

‖H‖∞ = sup
t∈[0,R]

|H(t)|.

The following proposition then tells us how to approx-

imate h and how to evaluate the approximation.

Proposition 6 Let h0 ∈ H, and define hi iteratively

for i = 1, 2, . . . by hi = ϕ(hi−1). Then

lim
i→∞

hi = h, (7)

and

‖h − hi‖∞ ≤ (1 − e−λR)ieλR‖h1 − h0‖∞. (8)

Proof Let H1,H2 ∈ H. Then

‖ϕ(H1)−ϕ(H2)‖∞ =

∥∥∥∥∥

∫ R−t

0

λe−λs(H1(s)−H2(s))ds

∥∥∥∥∥
∞

≤

∫ R

0

λe−λs‖H1 − H2‖∞ds

= ‖H1 − H2‖∞(1 − e−λR), (9)

which shows that ϕ is a contraction on H. Since H

is a complete metric space, it then follows from the
fixed-point theorem for contractions (see e.g. [1]) that

ϕ has a unique fixed point. By definition this is h, since

the integral equation (6) can be expressed as ϕ(h) =

h. Repeated use of the contraction inequality (9) now
shows that

‖h − hi‖∞ ≤ (1 − e−λR)i‖h − h0‖∞, (10)

which implies (7), if we let i tend to infinity. Similarly,

‖hi+1 − hi‖∞ ≤ (1 − e−λR)i‖h1 − h0‖∞, (11)
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By the triangle inequality and (11), we get that

‖h − h0‖∞ = lim
i→∞

‖hi − h0‖∞

≤ lim
i→∞

i−1∑

j=0

‖hj+1 − hj‖∞

≤ lim
i→∞

‖h1 − h0‖∞

i−1∑

j=0

(1 − e−λR)i

= eλR‖h1 − h0‖∞. (12)

Then (8) follows from inserting (12) into (10).

Combining Propositions 5 and 6, we can get an ar-

bitrarily good approximation of the mean connectivity

hops by choosing a sufficiently high i in

EYch+
= EYch

−

≈ hi(0) − 1.

In particular, if we choose h0(t) = 0, then hi(0) − 1

(for i = 1, 2, . . .) is the mean number of hops if we stop
counting after we have reached i hops. Thus in this case

hi(0) − 1 is a lower bound on h(0) − 1, and by (8) it

deviates from h(0)− 1 at most by (1− e−λR)ieλR. Fur-
thermore, we can calculate hi analytically for arbitrary

values of i in this case, although the expressions become

increasingly complicated. It does not seem possible to
obtain a closed form expression for h by this approach.

4 Numerical results

In this section, we will apply the results from Section 3

to obtain numerical results for two specific MAPs, a

Poisson process and an ON/OFF process. These two

processes are chosen as models for freely moving traffic
and traffic with queues, respectively.

The stationary Poisson process with intensity λ is

obtained in the form of a MAP simply by letting C =
−λ and D = λ. The ON/OFF process is chosen to have

a hyper-exponentially distributed ON period with pa-

rameters (p, λ1, λ2), an exponentially distributed OFF
period λ3, and during the ON period points are gen-

erated according to a Poisson process with intensity β.

This yields the matrix representation

C =



−β − λ1 0 λ1

0 −β − λ2 λ2

pλ3 (1 − p)λ3 −λ3


 , D =




β 0 0
0 β 0

0 0 0




The intensity of the process is given by

λ =
βµON

µON + µOFF
, (13)

where

µON =
p

λ1
+

1 − p

λ2
, µOFF =

1

λ3
(14)

are the mean lengths of the ON and OFF periods. We

also consider the mean number of nodes in an ON pe-
riod nc = βµON (this has the interpretation of vehi-

cles trapped in a queue behind a slow moving vehicle),

and the squared coefficient of variation for the hyper-
exponential distribution

c2 =
2(pλ−2

1 + (1 − p)λ−2
2 )

(pλ−1
1 + (1 − p)λ−1

2 )2
− 1. (15)

We will calculate the expectation of the connectivity

metrics for both processes (where possible) for various
parameter settings.

The left plot in Figure 2 shows the two-sided ex-

pected single-hop connectivity number EYscn+
for ra-

dio ranges R ranging from 0m to 300m. We consider
both processes with both low traffic and high traffic,

i.e. with intensities λhigh = 1/60m and λlow = 1/250m.

We fix β = 1/30m, p = 0.1, c2 = 5, and nc = 8 for the
ON/OFF process (and calculate the other parameters

using (13), (14), and (15), resulting in µON = µOFF =

240m for the high-traffic scenario, and µON = 240m,

µOFF = 1760m for the low traffic case). The Poisson
road traffic models yield the expected linear growth

with slope 2λ. For the ON/OFF process with the con-

sidered parameter settings, the average number of di-
rect neighbors is significantly higher than in the Pois-

son case, and much less sensitive to the overall traf-

fic density λ, as direct neighbors are mainly resulting
within a queue. Only when the communication radius

becomes large, communication links between queues be-

come more frequent.

In the right plot in Figure 2, we study the impact of
the average number of cars in an ON period, by varying

nc from 0.2 to 20. The communication range is fixed at

R = 100m and the rest of the parameters are chosen as

above. With an increasing of nc, the resulting expected
single-hop connectivity number also increases, however,

much more strongly for low nc. For larger nc, the total

average car density becomes less relevant, as single-hop
connectivity neighbors are almost exclusively cars from

the same ON-period. For the same reason, the curves

converge to a value of 2Rβ.

Figure 3 shows the two-sided expected multi-hop
connectivity number EYmcn for the same scenarios as

for the single-hop case. This expected value, increased

by one, corresponds to the expected number of nodes
in the connected ad-hoc network. The left graph shows

that for the Poisson case with high traffic intensity, the

expected number of multi-hop neighbors and hence the

network size increases rapidly when the communication
range is increased. On the other hand, the Poisson case

with low traffic intensity shows hardly any connectivity,

as the largest plotted communication range R = 300m
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Fig. 2 Left: Expected single-hop connectivity number versus radio range for different processes: ON/OFF process with high traffic

(solid), Poisson process with high traffic (dashed), ON/OFF process with low traffic (dotted), and Poisson process with low traffic

(dashed/dotted). Right: Expected single-hop connectivity number versus nc for ON/OFF process with high traffic (solid) and low

traffic (dotted) for a radio range R = 100m.

is not far above the average inter-car distance of the

Poisson process, 1/λlow = 250m. For the ON/OFF

process, the differences between low average traffic and

high average traffic only become visible for larger com-
munication ranges R > 100m, as then the probability

of connectivity between cars of different ON periods

increases for the high-traffic scenario (µOFF = 240m),
while it still remains very small for the low-traffic case

with µOFF = 1760m. The right graph in Figure 3 shows

the impact of the average queue size nc on the ex-
pected multi-hop connectivity number for a commu-

nication range of R = 100m. As connectivity mainly

occurs within a burst, the multi-hop connectivity in-

creases with increasing nc.

Figure 4 shows the two-sided expected multihop con-

nectivity distance EYcd for the scenario with varying
R. For increasing communication range R as shown in

the left figure, the behavior of the connectivity dis-

tance is qualitatively similar to the network sizes as

shown in the left of Figure 3. In order to on aver-
age be able to propagate messages to a geographic re-

gion spanning more than 1km in the given settings of

the high-traffic density, the Poisson case would require
about R > 135m, while in the ON/OFF process, only

R > 115m would be required.

Figure 5 shows the right-sided expected number of
hops EYch+

for the Poisson processes with high and low

intensity. The radio ranges R varies from 0m to 300m.

The expectation EYch+
has been approximated using
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Fig. 4 Expected connectivity distance versus radio range for

different processes: ON/OFF process with high traffic (solid),

Poisson process with high traffic (dashed), ON/OFF process

with low traffic (dotted), and Poisson process with low traffic

(dashed/dotted).

h100(0) − 1, where h0(t) = 0. The error resulting from
this approximation is bounded by (1 − e−λR)100eλR ≈

0.7413 in the case with high traffic and R = 200m (ap-

proximately the worst case which is visible in the fig-
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Fig. 3 Left: Expected multi-hop connectivity number versus radio range for different processes: ON/OFF process with high traffic

(solid), Poisson process with high traffic (dashed), ON/OFF process with low traffic (dotted), and Poisson process with low traffic

(dashed/dotted). Right: Expected multi-hop connectivity number versus nc for ON/OFF process with high traffic (solid) and low

traffic (dotted).

ure). To our experience, the bound is rather conserva-

tive and the error is much smaller (using h200(0) − 1

gives almost the same result in the case R = 200m,

but in this case the bound is much smaller). Since the
calculations in Section 3.4 only cover the Poisson case,

we have approximated the mean number of hops re-

quired in the case of the ON/OFF processes by aver-
aging over 1000 simulations. Comparing the ON/OFF

processes with the Poisson process, we see that the traf-

fic intensity has less impact on the number of hops for
the ON/OFF process. Furthermore, for R < 150m, the

ON/OFF process has the highest number of hops, but

after this the Poisson process with high intensity be-

comes highest. Comparing Figure 5 with Figures 3 and
4, we see that this is strongly related to the fact the

Poisson process has better connectivity measured by

either of the two metrics for high values of R (note that
although Figures 3 and 4 show the two-sided cases, both

processes are symmetric around 0, so the expectations

in the one-sided cases can obtained simply by dividing
the values on the y-axis by 2). Finally, unlike the Pois-

son process, the ON/OFF process do not give a strictly

increasing number of hops when R is increased. We sus-

pect that the reason for this is that when R is increased
fewer hops are required to reach all cars in a queue, and

other queues are still hard to reach. If R is increased

even further (not shown in the plot) the number of hops
again increases since other queues can then be reached

more easily.
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Fig. 5 Expected connectivity hops versus radio range for dif-

ferent processes: ON/OFF process with high traffic (solid),

Poisson process with high traffic (dashed), ON/OFF process

with low traffic (dotted), and Poisson process with low traffic

(dashed/dotted).

The results show that even though the ad-hoc net-
work contains on average about 50 nodes in the high-

traffic case with R = 200m (see Figure 3), and it has

a geographic coverage of more than 3000m (Figure 4),
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the average hop-count from an arbitrary node nodes at

the very edge of the network is only slightly higher than
8. A comparison with analytic results for bursty traffic

models is for future study.

5 Summary and Outlook

This paper analyzes a number of important connectiv-

ity metrics for instantaneous snapshots of stochastic ge-
ographic movement patterns under the assumption of

a fixed radio range for each node: (1) The node de-

gree, corresponding to the number of single-hop neigh-

bors of a mobile node; (2) The connectivity number,
expressing the number of nodes reachable via multi-

hop paths of arbitrary hop-count; (3) the connectiv-

ity distance, expressing the geographic distance that
a message can be propagated in the network on multi-

hop paths; (4) the connectivity hops, which corresponds

to the number of hops that are necessary to reach all
nodes in the connected network. The paper develops

analytic expressions for the distributions and moments

of these random variables for general stationary MAP

processes on a 1-dimensional space. The numerical re-
sults compares bursty ON/OFF vehicular traffic with

hyper-exponential burst-lengths to independent move-

ment scenarios described by a Poisson process. The
numerical results for the considered parameter ranges

show that the average traffic density has only minor

influence on the connectivity metrics for the ON-OFF
models in case of small communication ranges. Further-

more, simulation analysis shows that the mean connec-

tivity hops can decrease when the communication range

is increasing within certain ranges. Such behavior is pe-
culiar to the ON/OFF placement models and does not

occur for Poisson models.

As several dependability middleware functions are

reacting to changes in the connectivity, future work

could extend the analysis to dynamic scenarios and con-

sider life-time distributions of direct links and multi-
hop connectivity paths.

A Lemmas

In this appendix, we have included two lemmas, which are used

in Section 3.

Lemma 1 If X is a stationary, ergodic and non-empty MAP

with representation (C, D), then C−1(eCR
−I)D is a substochas-

tic matrix.

Proof To verify the assertion, rewrite C−1(eCR
− I)D to (I −

eCR)(−C−1D) and consider first the matrix I − eCR. Using (2)

and letting z = 0 and t = R, we get that the ijth entry in eCR

is the probability of having no points in (0, R] given that J0 = i

and JR = j. Since D is not the zero-matrix and the process is

ergodic, the void probabilities are strictly positive, and thus the

row sums of eCR are all strictly positive. Hence all row sums of

I − eCR are strictly less than one.

Consider now −C−1D; this is a transition matrix (see e.g.

the proof of Proposition 1.4 in Chapter IX in [2]). Denoting the

ijth element of I − eCR by aij and the ijth element of −C−1D

by bij , we get that the sum of the elements in the ith row of

(I − eCR)(−C−1D) is

X

j

X

k

aikbkj =
X

k

aik

X

j

bkj =
X

k

aik < 1.

Combining this with the fact that the ijth element of

(I − eCR)(−C−1D)

is the probability of Ymcn+
> 0 given that J0 = i and JR = j,

and thus is non-negative, we get that (I − eCR)(−C−1D) is a

substochastic matrix.

Lemma 2 Assume f is a function that can be factorised in the

following way

f(t1, . . . , tn) =

n
Y

i=1

fi(ti),

and that the Laplace transform of the derivative of

F1(t) =

Z t

0

· · ·

Z t−t1−···−tn−1

0

f(t1, . . . , tn)dtn · · · dt1

exists. Then

Z

∞

0

e−st d

dt
F1(t)dt =

n
Y

i=1

Z

∞

0

e−stifi(ti)dti.

Proof Rearranging the terms in F1(t), we get that

F1(t) =

Z t

0

· · ·

Z t−t1−···−tn−1

0

n
Y

i=1

fi(ti)dtn · · · dt1

=

Z t

0

f1(t1)F2(t − t1)dt1

= (f1 ∗ F2)(t),

where

F2(t) =

Z t

0

· · ·

Z t−t2−···−tn−1

0

n
Y

i=2

fi(ti)dtn · · · dt2.

Since F2 is of the same form as F1, we proceed by induction, and

get that

F1(t) = (f1 ∗ · · · ∗ fn−1 ∗ Fn)(t),

where

Fn(t) =

Z t

0

fn(tn)dtn

Using the rules for differentiating a convolution and the funda-

mental theorem of calculus, we get that

d

dt
F1(t) = (f1 ∗ · · · ∗ fn)(t).

The result now follows, since the Laplace transform of convolu-

tions of fi is the product of the Laplace transforms of fi.
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