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Abstract

Modern offshore wind turbines are flexible structures with natural frequencies near

the excitation frequencies related to wave and wind-induced loads. In order to obtain

a reliable prediction of the structural response, the dynamic stiffness of the founda-

tion must be evaluated accurately. This paper concerns the analysis of bucket foun-

dations with focus on torsional motion and coupled horizontal sliding and rocking.

The frequency-dependent stiffness is found by means of a three-dimensional coupled

boundary-element/finite-element scheme. Comparisons are made with known analyti-

cal and numerical solutions, finding that the present boundary-element–finite-element

model provides accurate results. The influence of the soil properties as well as the

skirt length of the foundation is analysed, and each dynamic stiffness component is

computed as function of a non-dimensional frequency.

Keywords: soil–structure interaction, finite elements, boundary elements, dynamics.

1 Introduction

Modern wind turbines are constantly increasing in size. Currently (2008), turbines

with rotor diameters and tower heights of more than 100 metres are in production,

and the natural frequencies of these structures are close to 0.2 Hz. This may be crit-

ical regarding the excitation by wave and wind-induced loads. In particular, the rotor

blades pass the tower at a frequency which is very close to the first natural frequency.

Hence, to predict the dynamic response and the fatigue lifespan of a wind turbine, the

dynamic stiffness of the structure must be modelled with sufficiently high accuracy.

This includes an adequate model of the soil–structure interaction.
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Depending on the seabed and subsoil at a given site, offshore wind turbines are

typically placed on monopiles or gravitational foundations. Recently, the bucket foun-

dation has been developed as a hybrid between these two foundation concepts. Based

on the same principles as the suction anchors widely applied in the offshore oil and

gas industry, the bucket foundation is designed to withstand torsional and rocking

moments as well as horizontal forces in addition to vertical loads.

The purpose of this paper is to evaluate the dynamic stiffness, or impedance, of

bucket foundations with emphasis on torsional vibrations and coupled horizontal slid-

ing and rocking. The torsional vibrations of rigid massless footings resting on a ho-

mogeneous elastic half-space were studied by Luco and Westman [1] who solved the

system as a mixed boundary-value problem with prescribed conditions under the foun-

dation and zero traction at the remaining free surface. The effects of material damping

on torsional vibrations were reported by Veletsos and Damodaran Nair [2], whereas

Wong and Luco [3] presented tables with horizontal, coupling, rocking, vertical and

torsional impedances for rigid massless square foundations resting on layered vis-

coelastic soil. A generalisation to footings with an arbitrary shape was provided by

Andersen and Clausen [4].

Mita and Luco [5] evaluated the impedance functions for rigid square founda-

tions embedded in a homogeneous elastic half-space by means of a hybrid approach,

whereas Emperador and Domínguez [6] applied the boundary-element (BE) method

for analysis of the dynamic response of axisymmetric embedded foundations. Ap-

proximate closed-form solutions for the torsional impedance of circular embedded

foundations were reported by Novak and Sachs [7] as well as Avilés and Pérez-Rocha

[8]. The coupled horizontal sliding and rocking motion of surface footings were ex-

amined by, for example, Veletsos and Wei [9]. This work will be used as reference so-

lution for the subsequent analyses of the coupled horizontal–moment vibrations of the

bucket foundation. An extensive review of the work on coupled horizontal–moment

vibrations of foundations was presented by Bu and Lin [10].

In the next section, the static and dynamic stiffness of the bucket foundation are

defined and a presentation of the coupled boundary-element/finite-element (BE/FE)

scheme applied for the numerical analysis is given. The torsional dynamic stiffness

of the bucket foundation is presented in Section 3 and the results for the coupled

horizontal sliding and rocking motion are given in Section 4. The main conclusions

are given in Section 5.

2 Computational model

2.1 Coupled boundary-element/finite-element model

Wave propagation in the subsoil is modelled by the boundary-element (BE) method.

A homogeneous viscoelastic domain with the boundary Γ is considered in two and

three dimensions. In the first case, plane strain is assumed and in either situation the
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complex amplitudes of the displacements and tractions, Ui(x, ω) and Pi(x, ω), on the

boundary Γ are related by the integral identity [11]

C(x) Ui(x, ω) +

∫

Γ

P ∗

ik(x, ω;y)Uk(y, ω)dΓy =

∫

Γ

U∗

ik(x, ω;y)Pk(y, ω)dΓy. (1)

It has been assumed that no forces are applied in the interior of domain. The tensors

U∗

ik(x, ω;y) and P ∗

ik(x, ω;y) denote the components of the Green’s function tensors

for the displacement and surface traction, respectively. These describe the response

at point x in direction i to a unit-amplitude point force or displacement applied at

point y in direction k and varying harmonically at the circular frequency ω. The scalar

quantity C(x) only depends on the geometry of the boundary at point x.

The boundary-integral equation (1) is evaluated by discretization of the physical

fields into nodal values and interpolation by local quadratic shape functions Φj(x)
over space,

U(x, ω) = Φj(x)Uj(ω), P(x, ω) = Φj(x)Pj(ω), (2)

where Uj(ω) and Pj(ω) denote the vectors storing the amplitudes of the displace-

ments and tractions, respectively, at the nodes of boundary element j. Insertion of

Equation (2) into Equation (1) provides the system of equations for a BE domain,

H(ω)U(ω) = G(ω)P(ω), (3)

where the geometry constants C(x) are absorbed into the diagonal of H(ω). The

vectors U(ω) and P(ω) store the displacements and tractions, respectively, for all

nodes on Γ, whereas H(ω) and G(ω) store the influence from degree-of-freedom k
to degree-of-freedom i for the displacement and traction, respectively. Due to the sin-

gularities of the Green’s functions, special attention has to be made with regard to the

contributions from a node to itself. In the present analysis, the weak singularities of

U∗

ik(x, ω;y) are treated by a coordinate transformation [11], whereas the the diagonal

terms of H(ω) are evaluated by a local enclosing-elements technique [12, 13].

The bucket foundation is modelled by continuum finite elements, again employing

quadratic interpolation. For the finite-element (FE) part of the model, the system of

equations may be expressed in the well-known form

(

−Mω2 + iC + K
)

U = KFEU = F, (4)

where M, C and K are the mass, damping and stiffness matrices, respectively, whereas

U and F are the nodal displacements and forces, respectively. Finally, i =
√
−1 is the

imaginary unit. Hysteretic material dissipation is assumed, i.e. C = ηK. Hence, the

damping term is independent of the circular frequency, ω.

A coupling of the FE and the BE regions is carried out in a context of nodal forces,

i.e. in a finite element manner. This involves that each boundary element domain be

transformed into a macro finite element as depicted in Figure 1. Here T is a fre-

quency independent transformation matrix expressing the relationship between the

nodal forces and the surface traction applied over the surface of the BE domain. The
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KFE

KBE = TG
−1

H

HU = GP

Figure 1: Coupling of finite elements with a boundary element domain.

(a)

(b)

Figure 2: Bucket foundation: (a) geometry and (b) BE/FE model.

resulting coupled BE/FE scheme has been implemented in the computer code TEA

[12] for plane-strain analysis and BEASTS [13] for three-dimensional analysis.

The BE/FE model of the foundation consists of four sections: a massless finite-

element section that forms the top of the foundation where the load is applied, a finite-

element section of the skirts, a boundary-element domain inside the skirts and, finally,

a boundary-element domain outside the skirts that also forms the free surface. In to-
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tal, approximately 100 finite elements and 350 boundary elements are employed. The

mesh of the free surface is truncated at a distance of six times the radius R away

from the centre of the foundation. The connection between soil and foundation corre-

sponds to the condition of ‘rough’ contact, since the foundation and the surrounding

soil have common degrees of freedom. The three-dimensional model is illustrated in

Figure 2b. Due to geometrical symmetry, only half the foundation is included. In the

case of torsional vibrations, the applied load as well as the displacement response

is anti-symmetric, whereas symmetric loads and displacements occur in the case of

horizontal sliding and rocking.

2.2 Static and dynamic stiffness formulation

The lid of the bucket foundation is relatively stiff compared to the skirts and the sub-

soil. Hence, it may be simplified to a rigid foundation with six degrees of freedom:

one vertical, two horizontal, two rocking and one torsional. The six degrees of free-

dom and the corresponding forces and moments are shown in Figure 3. For a harmonic

excitation with the cyclic frequency ω, the vector of forces and moments R is equal

to the dynamic stiffness matrix K times the vector of displacements and rotations U,

i.e. R = KU. The component form can be written as

















V/GsR
2

H1/GsR
2

H2/GsR
2
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3
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3

M2/GsR
3


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
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=
















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V V 0 0 0 0 0
0 K∗

HH 0 0 0 −K∗
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0 0 K∗

HH 0 K∗

HM 0
0 0 0 K∗
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0 0 K∗

MH 0 K∗

MM 0
0 −K∗
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MM

































W/R
U1/R
U2/R
θT

θM1

θM2

















, (5)

where Gs is the shear modulus of the soil. The coupling terms, K∗

HM and K∗

MH , are

assumed to be equal, since a symmetric stiffness matrix is expected. This assumption

is investigated later.

The components in K are functions of the cyclic frequency ω and Poisson’s ratio

of the soil νs, and K reflects the dynamic stiffness of a rigid massless foundation. The

x1 x1

x2 x2

x3 x3

θM1

θM2 θT

U1

U2 W
M1

M2 T

H1

H2 V

(a) (b)

Figure 3: Degrees of freedom for a rigid surface footing: (a) displacements and rota-

tions, and (b) forces and moments.
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components of K can be written as

K∗

ij(a0) = K0

ij [kij (a0) + ia0cij (a0)] , (i, j = H,M, T, V ) , (6)

where K0

ij is the static value of stiffness component ij, kij and cij are the dynamic

stiffness and damping coefficients, respectively, and i =
√
−1 is the imaginary unit.

Furthermore, a0 = ωR/cS is the dimensionless frequency where cS =
√

Gs/ρs is

the shear-wave velocity of the soil. The mass density of the soil is ρs. The real part of

K∗

ij(a0) is related to the stiffness and inertia properties of the soil–structure system,

whereas the imaginary part describes the damping of the system. For a soil without

material dissipation, cij reflects the geometric damping, i.e. the radiation of waves into

the subsoil. However, in the present analyses hysteretic material damping with the loss

factor ηs is introduced, represented by a complex shear modulus, G∗

s = Gs(1 + iηs).

The information provided by the real and imaginary parts of Equation (6) tends to

be inconclusive in some situations, and for that reason it is convenient to examine the

magnitude and phase angle of Equation (6). The magnitude |K∗

ij| and the phase angle

φij of K∗

ij are given by

|K∗

ij| = |K0

ij|
√

(kij)
2 + (a0cij)

2, φij = atan

(

a0cij

kij

)

. (7)

The magnitude and phase-angle representation of the dynamic stiffness will be used

throughout the paper.

3 Stiffness for torsional vibrations

In this section, the torsional stiffness of the foundation is investigated. Poisson’s ratio

has no impact on the torsional stiffness, since torsional vibrations of the bucket foun-

dation only produce shear waves. Hence, the analysis only concerns the variation of

the normalised torsional stiffness due to a change in the skirt length H , cf. Figure 2a.

The section consists of three parts. Firstly, the static torsional stiffness obtained by

the BE/FE model is presented and compared with results from a static finite-element

analysis performed in ABAQUS [14]. In the second part, the dynamic stiffness for

torsional vibrations is examined. The third subsection presents the limiting damping

parameter for the high-frequency behaviour.

3.1 Static stiffness

The static torsional stiffness K0

TT corresponds to the stiffness of the soil–foundation

system without any inertial or material dissipation effects. The BE/FE model cannot

provide the static stiffness, since a positive value of the excitation frequency is re-

quired in the program BEASTS [13]. Instead, an estimate is achieved by analysing the

response at a very low frequency, a0 = 0.01, where the inertial effects are negligible.

To check the BE/FE solution, a static finite-element solution has been computed by
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H/D K0

TT (FE) K0

TT (BE/FE) Deviation (%)

1/4 12.94 13.15 −1.63

1 32.36 32.43 −0.23

2 56.88 53.90 +5.52

Table 1: Static torsional stiffness for different skirt lengths

means of a three-dimensional ABAQUS model. The finite-element model consists of

the bucket foundation and a near-field soil domain modelled by finite elements with

quadratic interpolation and a far-field soil domain modelled by infinite elements. The

ABAQUS model contains approximately 200,000 degrees of freedom.

In the present analysis, the soil properties are Gs = 1 MPa and νs = 1/3, whereas

the foundation has a Young’s modulus of Ef = 210 GPa and a Poisson’s ratio of

νf = 0.25 corresponding to construction steel. Here, the material properties of the

soil and the foundation are identified by the subscripts s and f , respectively. The

foundation has the skirt thickness t = 50 mm and the radius R = 5 m corresponding

to the diameter D = 2R = 10 m. Finally, a relatively high thickness and stiffness

ensures that the lid behaves almost as a rigid body.

In Table 1, K0

TT is given for three normalised skirt lengths defined by H/D = 1/4,

1 and 2, respectively. It is observed that the two numerical models provide similar

results, indicating that the ABAQUS and BEASTS models are nearly converged. The

deviation is partly due to the fact that better convergence has been obtained by the

FE solution, however at the cost of significantly more degrees of freedom and, as a

result of this, long computation times. Further, as already mentioned the static BE/FE

solution is actually an estimate obtained with a0 = 0.01.

3.2 Dynamic stiffness

The normalised torsional dynamic stiffness, |STT |/K0

TT is analysed for three nor-

malised skirt lengths, H/D = 1/4, 1 and 2, and in the normalised frequency range

a0 ∈ ]0;10]. A comparison is made with two reference solutions. Firstly, the nor-

malised torsional dynamic stiffness has been found for a surface footing. This re-

sult has been obtained by means of a three-dimensional BE/FE model with no skirt,

i.e. with H = 0. Secondly, the dynamic stiffness per unit length of an infinite hollow

cylinder subjected to dynamic excitation is evaluated by means of the two-dimensional

coupled BE/FE program TEA [12]. The hollow cylinder is modelled with 64 quadri-

lateral finite elements employing quadratic interpolation. The interior and exterior soil

domains are modelled with 64 boundary elements each. The model is sketched in

Figure 4, and plane strain is assumed.

In all the analyses, the soil has the shear modulus Gs = 1 MPa, a Poisson’s ratio

of νs = 1/3, the mass density ρs = 1000 kg/m3 and the loss factor ηs = 5%. The

foundation has a Young’s modulus of Ef = 210 GPa, a Poisson’s ratio of νf = 0.25,

the loss factor ηf = 2% and the skirt thickness t = 50 mm. In order to model a

7



massless foundation, the mass density is ρf = 0 for the lid of the caisson and ρf = ρs

for the skirt. In any case, the inertia of the skirt is insignificant compared with the

contribution from the skirt to the stiffness of the bucket foundation.

As indicated by Figure 5, the normalised magnitudes of the torsional impedance

are similar for the surface footing, the caissons and the infinite cylinder in the fre-

quency interval a0 ∈ [0; 2]. Note that the actual magnitude of the impedance for each

skirt length is scaled by the static stiffness values given in Table 1. For a0 > 2 the

impedance of all the skirted foundations are greater than the impedance of the surface

footing. The dynamic stiffness of the caisson with a relatively small embedment depth

(H/D = 1/4) varies smoothly with the frequency. However, the normalised magni-

tudes for H/D = 1 and 2 are characterised by distinct peaks close to a0 = 4, 7 and 10.

The peaks become more pronounced when the skirt length is increased, and the be-

haviour corresponds well to that of the infinite cylinder. Between the peaks, the nor-

malised torsional impedances for all skirt lengths are nearly identical in magnitude.

This is even the case for the infinite cylinder. However, K0

TT (and therefore also |STT |)
is increased significantly with an increase in the skirt length, cf. Table 1.

The local peaks in the normalised magnitude are associated with a significant

change in the phase angle, φTT . The fact that the oscillations are repeated for equal

distances in frequency implies that the frequencies at the local peaks correspond to

antiresonance modes of the soil inside the suction caisson.

3.3 High-frequency limit

The limiting damping parameter C∞

TT of the bucket foundation consists of two contri-

butions: one from the vibration of the lid and one originating from the vibration of the

(a) (b)

x1 x1

x2x3

Ωi

Ωe

Finite elements

Figure 4: Infinite hollow cylinder (a) and two-dimensional BE/FE model (b). The

interior and exterior boundary-element domains are denoted Ωi and Ωe, respectively.

8



0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10
0

Dimensionless frequency a0

Dimensionless frequency a0

|S
T

T
|/

K
0 T

T
φ

T
T

(r
ad

)
Surface footing

H/D = 1/4

H/D = 1

H/D = 2

Infinite cylinder

π
4

π
2

3π
4

Figure 5: Torsional impedance at different skirt lengths.

skirt. Thus, C∞

TT of the bucket foundation is given by

C∞

TT = ρscSJlid + (2ρscSAskirt) R2, (8)

where Jlid is the polar moment of inertia of the lid about the axis of rotation and Askirt

is the surface area of skirt. Note that S-waves are generated both inside and outside

the skirt; hence, the factor ‘2’ in the latter contribution in Equation (8). The radius R
is the distance from skirt to the axis of rotation.

4 Stiffness for coupled sliding and rocking

In this section, the coupled sliding–rocking vibrations are investigated for several dif-

ferent combinations of the mechanical properties of the soil–foundation system. The

first case concerns the effects of Poisson’s ratio on the stiffness. The second analysis

investigates the variation of the stiffness due to a change in the skirt length. Finally,

the limiting damping parameters for vibration in the high-frequency range are given.
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4.1 Boundary-element/finite-element model

The geometry and the discretization in the BE/FE models employed for the present

analyses are as described in the previous section. However, the load is applied differ-

ently. For a given excitation frequency, two analyses are performed: one analysis with

horizontal loading at the base of the lid of the caisson, and one analysis with a set

of opposing vertical forces that are applied at either side of the foundation in order

to create a rocking moment. The first analysis provides a relation between the hori-

zontal force and the resulting displacements and rotations. The second analysis relates

the applied moment to the resulting displacements and rotations. The system can be

written as a subset of Equation (5), given as

[

H1/GsR
2

M2/GsR
3

]

=

[

SHH −SHM

−SMH SMM

] [

U1/R
θM2

]

. (9)

These two equations are solved simultaneously in order obtain the complex horizontal-

sliding impedance, SHH , the rocking-moment impedance, SMM , and the coupling

impedances, SHM and SMH . As already mentioned and further discussed below, SHM

is identical to SMH within the precision of the model.

4.2 Static stiffness

Similarly to the case of torsional vibrations, the static stiffness coefficients of the

foundation–soil system have been approximated by applying the BE/FE models at

the frequency a0 = 0.01. The BE/FE solutions are compared with the results of static

finite element analyses in ABAQUS. The non-dimensional values of K0

HH , K0

MM ,

K0

HM and K0

MH are given for two cases:

Different skirt lengths: The static stiffness components are given for various ratios

between the foundation diameter D and the length of the skirt H in Table 2. The

soil properties are Gs = 1 MPa and νs = 1/3.

Different Poisson’s ratios: The variation of static stiffness with respect to Poisson’s

ratio is shown in Table 2. Here, H/D = 1 and Gs = 1 MPa.

Note that the values in parentheses in Table 2 are obtained by the static finite-element

analyses in ABAQUS, serving as the reference solution. The data are shown for fixed

material properties of the foundation (Ef = 210 GPa, νf = 0.25). The foundation

radius is R = 5 m and the skirt thickness is t = 50 mm. In addition to the analyses

listed above, it may be relevant to check the influence of the skirt flexibility. However,

a preliminary study indicates that changes in Ef and t within the range that is relevant

for bucket foundations have little impact on the overall performance of the foundation

compared with the skirt length and the Poisson’s ratio of the ground. Therefore, this

study will not be included in the present analysis.
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The largest deviation between the results from the BE/FE model and the ABAQUS

models in Table 2 are 7.4%, 7.2% and 16.8% for the sliding, rocking and coupling

term, respectively. Furthermore, the assumption of K0

HM = K0

MH holds true. The

maximum deviation between K0

HM and K0

MH is 11% in the BE/FE model and only

3.3% for the ABAQUS model. In general there is a good agreement between the val-

ues of the impedance components computed by the FE and the BE/FE models. As

expected, all the stiffness components increase with the skirt length, cf. Table 2. The

magnitude of the sliding, rocking and coupling terms increase slightly with Poisson’s

ratio, νs. This is due to the fact that an increase in νs for a fixed value of Gs implies

an increase in the Young’s modulus, Es = 2Gs(1 + νs).

4.3 Dynamic stiffness—variation of Poisson’s ratio

The dynamic stiffness for different Poisson’s ratios is presented in this section. The

skirt length is fixed (H/D = 1), and the remaining model properties are: Gs = 1.0 MPa,

ρs = 1000 kg/m3, ηs = 5%, Ef = 210 GPa, νf = 0.25, ηf = 2% and t = 50 mm. In

order to model a massless foundation ρf = 0 for the lid of the caisson and ρf = ρs for

the skirt. In Figures 6–8, the results are shown for five different values of Poisson’s

ratio and for the frequency range a0 ∈ ]0;6]. Note that the range in Poisson’s ratio is

thought to cover fully drained (νs = 0.1 − 0.2) to undrained (νs = 0.495) conditions.

The analytical solution for a surface footing proposed by Veletsos and Wei [9] is in-

cluded as reference. Two numerical models of a massless surface footing are included

for comparison with the analytical solution. The sliding and rocking impedance of the

surface footing have been determined by a BE/FE model. In the case of the coupling

between horizontal sliding and rocking, numerical experiments indicate that conver-

gence of the impedance cannot be established with a reasonably low number of de-

grees of freedom in the BE/FE model. In particular it has been found that both the

magnitude and the phase of the impedance is strongly dependent on the distance from

the footing to the truncation edge of the free ground surface. Adaptive meshing could

possibly improve the accuracy versus the number of degrees of freedom, but this fa-

cility is currently not available in the BE/FE software.

K0

HH K0

MM K0

HM K0

MH

H/D = 1/4 8.00 (7.47) 8.51 (8.41) -3.13 (-2.68) -2.78 (-2.68)

1 13.92 (12.98) 52.91 (49.73) -18.28 (-16.11) -17.20 (-16.12)

2 18.61 (18.47) 198.87 (193.41) -44.80 (-43.02) -43.54 (-43.12)

νs = 0.1 12.49 (11.62) 49.75 (46.91) -17.11 (-15.19) -16.09 (-15.21)

0.2 13.01 (12.14) 50.83 (47.92) -17.50 (-15.53) -16.47 (-15.55)

0.333 13.92 (12.98) 52.91 (49.73) -18.28 (-16.11) -17.20 (-16.12)

0.4 14.54 (13.53) 54.42 (51.02) -18.86 (-16.54) -17.75 (-16.53)

0.495 15.74 (14.51) 57.79 (53.98) -20.19 (-17.42) -18.95 (-17.39)

Table 2: Static stiffness for coupled sliding and rocking.
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Therefore, instead of the coupled BE/FE model based on the Green’s function for

the full-space, an alternative method proposed by Andersen and Clausen [4] has been

applied. Here the solution is established in the wavenumber domain, and the funda-

mental solution for a half-space is employed. Moreover, the impedance is computed

directly by integration of the interaction forces between the footing and the subsoil.

This is in contrast to the BE/FE approach, in which the impedance is found by inver-

sion of the dynamic flexibility matrix. The latter approach may involve great inaccu-

racies with respect to the coupling term since |SHM | is much smaller than |SHH | and

|SMM |, in particular in the high-frequency range.

The sliding and rocking impedances are clearly dependent on Poisson’s ratio. The

frequency at the first local extremum in the magnitude of the impedance in Figures 6

and 7 changes significantly with Poisson’s ratio. The first peak for νs = 0.1 occurs

at a0 = 3.2, whereas the first peak for νs = 0.4 is placed close to a0 = 4.5. How-

ever, the second local extremum is found at the frequency a0 = 5.5 − 5.7 for all

values of Poisson’s ratio. This behaviour is explained by the fact that sliding and rock-

ing impedances are governed by both shear wave propagation and compression wave

propagation. More specifically, the first peak in the response corresponds to antireso-

nance of P-waves inside the caisson, whereas the second peak corresponds to antireso-

nance of S-waves. The latter is independent of the Poisson’s ratio whereas an increase

in νs involves an increase in cP . Hence, the first peak in Figures 6–8 occurs at lower
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Figure 7: Rocking impedance for different Poisson’s ratios.

frequencies for lower Poisson’s ratios.

The coupling impedance in Figure 8 follows the pattern of the horizontal sliding

and rocking impedances. Hence, an increase in the frequency provides an increase

in the magnitude of the coupling impedance over the normalised frequency range

a0 ∈ ]0;6]. It is noted that the phase angle of the coupling impedance is close to π
radians for a0 = 0 and slightly increasing with the frequency in the range a0 ∈ ]0;6].

Accordingly the static stiffness components K0

HM and K0

MH are negative, see Table 2.

It is generally observed that the coupling impedances of the bucket foundation and the

surface footing behave differently. Thus, in the case of the surface footing a decrease

of both the magnitude and the phase angle of the coupling impedance with frequency

is recorded in the interval a0 ∈ ]0;6].

A few remarks on the impedance of the surface footing: The sliding and rocking

impedance determined by the BE/FE model agrees very well with the analytical so-

lution reported by Veletsos and Wei [9]. Furthermore, the coupling terms obtained by

the alternative method [4] is consistent with the coupling reported by Veletsos and Wei

[9]. Note that the analytical solution with respect to the coupling term is an approxi-

mation, due to fact that the boundary conditions in the interface between the soil and

the footing are partly relaxed. Finally, it is emphasised that the problem of determin-

ing the coupling between horizontal sliding and rocking only is encountered for the

surface footing. The coupling between horizontal sliding and rocking for the suction

caisson is described satisfactorily by the BE/FE model.
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Figure 8: Sliding–rocking coupling impedance for different Poisson’s ratios.

4.4 Dynamic stiffness—variation of skirt length

The variation of the coupled dynamic stiffness components with respect to a change in

the skirt length H is presented in the following. The model properties are Gs = 1 MPa,

νs = 1/3, ρs = 1000 kg/m3, ηs = 5%, Ef = 210 GPa, νf = 0.25, ηf = 2% and

t = 50 mm. Again, ρf = 0 for the lid of the caisson and ρf = ρs for the skirt in order

to model a massless foundation.

The magnitudes and the phase angles of the impedance for H/D = 1/4, 1 and 2 are

shown in Figures 9–11 for the frequency range a0 ∈ ]0;12]. The magnitudes are nor-

malised with respect to the static stiffness coefficients listed in Table 2, and the results

achieved with two numerical models of a massless surface footing are included for

comparison, see Subsection 4.3. In addition to this, the horizontal sliding impedance

of an infinitely long hollow cylinder (H/D = ∞) has been computed by application

of the two-dimensional BE/FE code TEA as described in Subsection 3.2 for the case

of torsional vibrations. Evidently, a similar two-dimensional analysis cannot be per-

formed for the rocking and coupling impedances. With reference to Figure 9, there is

no indication of antiresonance of the waves inside the caisson with a relatively small

embedment depth (H/D = 1/4), i.e. there are no local peaks in the normalised magni-

tude of the impedance component for sliding. Thus the dynamic behaviour is similar

to that of the surface footing, though the increase of the impedance with increasing
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frequency is more pronounced for the skirted foundation than the surface footing.

However, the sliding impedances for H/D = 1 and 2 are characterised by a num-

ber of local tips and dips. The peaks are not repeated with the normalised frequency

interval ∆a0 = π. This is the case for the torsional impedance, where the location of

the peaks is governed by the shear waves only. In contrast to this, the location of the

peaks for the coupled sliding–rocking impedances are controlled by antiresonance of

both shear waves and compression waves. Clearly, the locations of the peaks in the

magnitude of the sliding impedance for H/D = 1 and 2 correspond to those for the

infinitely long cylinder. Likewise, the variation of the phase angle φHH is similar for

H/D = 1, 2 and ∞, cf. Figure 9. The magnitude of the horizontal impedance (Fig-

ure 9) seems to increase with skirt length. However, the change from H/D = 1/4 to

H/D = 1 is significant, whereas only a small change is observed from H/D = 1
to H/D = 2. The magnitude of the impedance for H/D = 2 is actually below the

impedance for H/D = 1 at high frequencies. This behaviour suggests that the hori-

zontal vibrations are transmitted to the surrounding soil at relatively shallow depths.

Hence, the effects of increasing the skirt length diminish with depth. This is not the

case for the moment impedance in Figure 10, where the effects of increasing the skirt

length increase with depth. These tendencies are also evident in the static stiffness

coefficients listed in Table 2. Finally, the coupling impedance in Figure 11 increases

moderately with an increase of the skirt length, and again the phase angle is close to π
radians for all frequencies. Otherwise, the overall response is similar to the horizontal
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Figure 9: Sliding impedance for different skirt lengths.
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and moment impedances.

4.5 High-frequency limit

The total geometrical damping is equal to the sum of the waves radiating from the

skirts and the lid of the caisson. The limiting damping parameter for the horizontal

vibration (C∞

HH) consists of three contributions: shear waves radiating from the lid,

shear waves radiating from the skirt parallel to the direction of loading, and com-

pression waves radiating from the skirt perpendicular to the direction of loading. The

high-frequency impedance for the rocking and coupling terms consist of similar con-

tributions, see [10, 15, 16, 17, 18] for further details. Assuming that both the lid and

the skirts of the bucket foundation are rigid, the limiting damping parameters C∞

HH ,

C∞

MM and C∞

HM are given by

C∞

HH = ρscSπR2 + 2ρcSπRH + 2ρcP πRH, (10a)

C∞

MM = ρscP

π

4
R4 + 2ρscP

1

3
πRH3 + 2ρscS

1

3
πRH3 + 2ρscSπR3H, (10b)

C∞

HM = −2ρscS

1

2
πRH2 − 2ρscP

1

2
πRH20 = C∞

MH . (10c)

Note that waves radiate from both inside and outside the skirts; hence, the factor ‘2’

in front of the appropriate contributions in Equations (10a)–(10c).
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Figure 11: Sliding–rocking coupling impedance for different skirt lengths.

5 Conclusion

The stiffness of bucket foundations with respect to torsional vibrations and coupled

sliding–rocking vibrations has been analysed by means of a three-dimensional coupled

Boundary-Element/Finite-Element model. The dynamic stiffness components have

been found as function of the non-dimensional frequency a0 = ωR/cS , where ω is

the circular frequency of excitation, R is the radius of the foundation and cS is the

shear-wave velocity of the soil.

All the analyses are carried out for a bucket foundation with a lid diameter of

10 m, a skirt thickness of 50 mm and material properties corresponding to construction

steel. It has been found by a preliminary study, not presented in this paper, that slight

modifications of the foundation properties has an insignificant impact on the overall

results, given that the foundation is in any case much stiffer than the surrounding soil.

5.1 Torsional vibrations

The torsional dynamic stiffness has been analysed with respect to the variation of the

stiffness due to a change in the skirt length H . The main conclusions are:
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• The static torsional stiffness, K0

TT , obtained with the BE/FE model has been

compared with the results from a finite element analysis. There is good agree-

ment between the estimations of K0

TT provided by the two methods with a max-

imum deviation of 5.52%

• The torsional impedance is independent of Poisson’s ratio, since torsional mo-

tion of the bucket foundation does not produce compressional waves but only

shear waves.

• The magnitude of the static and dynamic torsional stiffness increases with the

skirt length.

• The torsional impedance of the suction caisson with a relatively small embed-

ment depth (H/D = 1/4) varies smoothly with the frequency, whereas the

torsional impedances for H/D = 1 and 2 are characterised by distinct peaks in

the normalised magnitude close to a0 = 4, 7 and 10.

• The oscillations are repeated for equal distances in frequency, corresponding to

antiresonance modes in the soil inside the bucket foundation.

• The torsional impedance of the bucket foundation has been compared with the

impedance of an infinite cylinder subjected to a torsional moment. The changes

with frequency in the magnitude and the phase angle of the impedance are

equivalent for the bucket foundation and the infinite cylinder.

5.2 Coupled sliding and rocking

The impedance related to the coupled sliding–rocking vibrations has been analysed

with respect to the effects of changes in Poisson’s ratio and the skirt length. The fol-

lowing conclusions can be made:

• The static stiffness has been calculated with a BE/FE model and a finite-element

model. The largest deviation of the results of the two models are 7.4%, 7.2% and

16.8% for the sliding, rocking and coupling terms, respectively. Presumably, the

finite-element model is slightly better converged than the BE/FE model.

• The two coupling terms between sliding and rocking (and vice versa) are equal,

i.e. K0

HM = K0

MH , within the accuracy of the analysis. The maximum deviation

between K0

HM and K0

MH is 11%

• The sliding and rocking impedances are clearly dependent on Poisson’s ratio

of the soil, and the local extremum in the magnitude of the impedance changes

significantly with Poisson’s ratio.

• The effects of increasing the skirt length diminish with depth with respect to

the horizontal impedance. The effects of increasing the skirt length enlarge with
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depth with respect to the rocking impedance and the sliding–rocking coupling

components.

• The coupled sliding–rocking impedances are characterised by a complex wave

interference pattern in the soil inside the skirts. The local peaks in the magnitude

of the impedance components are not repeated by ∆a0 = π, which is the case

for the vertical and torsional impedance components. The location of the peaks

for the coupled sliding–rocking impedances are controlled by antiresonance of

both shear waves and compression waves.

• The analysis of the horizontal impedance for an infinite hollow cylinder clearly

shows the antiresonance frequencies of both shear waves and compression waves

for the vibrating cylinder. The results agree well with the horizontal impedance

of the suction caissons.

Finally, it is noted that the high-frequency limits of the impedance components have

been established for the skirted foundation. These will be applied in combination with

the low-frequency impedances obtained with the BE/FE models in future formulations

of lumped-parameter models of bucket foundations as described by Andersen and

Liingaard [19] for surface footings on layered soil. The lumped-parameter models are

to be applied within the aeroelastic codes utilised by the Danish wind-turbine industry

for the design of offshore wind turbines.
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