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Abstract
A linear time-invariant filter is designed in order to improve
speech understanding when the speech is played back in a noisy
environment. To accomplish this, the speech intelligibility in-
dex (SII) is maximized under the constraint that the speech
energy is held constant. A nonlinear approximation is used
for the SII such that a closed-form solution exists to the con-
strained optimization problem. The resulting filter is depen-
dent both on the long-term average noise and speech spectrum
and the global SNR and, in general, has a high-pass character-
istic. In contrast to existing methods, the proposed filter sets
certain frequency bands to zero when they do not contribute to
intelligibility anymore. Experiments show large intelligibility
improvements with the proposed method when used in station-
ary speech-shaped noise. However, it was also found that the
method does not perform well for speech corrupted by a com-
peting speaker. This is due to the fact that the SII is not a reliable
intelligibility predictor for fluctuating noise sources. MATLAB
code is provided.
Index Terms: Speech intelligibility, speech enhancement, near-
end enhancement, speech intelligibility index

1. Introduction
Intelligibility in speech communication systems can be nega-
tively affected by background noise originating from both the
far-end and the near-end side of the communication channel.
Here we assume that the listener is located at the near-end. In
order to eliminate the negative impact of the far-end noise, one
would typically apply a (single-channel) noise-reduction algo-
rithm (see [1] for an overview). However, the speech can also
be pre-processed before playback in order to become more in-
telligible in presence of the near-end background noise. The
latter approach is the focus in this work where typical examples
can be found in the field of telephony and public address sys-
tems. The common assumptions here are that a clean version
of the far-end signal is available (i.e., the potential noise is as-
sumed to be successfully suppressed) and that we have knowl-
edge of the near-end noise statistics [2]. One obvious solution to
the near-end listening enhancement problem is to increase the
playback level of the speech. However, at a certain point, in-
creasing the playback level may not be possible anymore due to
loudspeaker limitations or unpleasant playback levels. There-
fore, a common approach is to fix the speech energy (i.e. the
global SNR remains unaltered) and redistribute speech energy
over time and/or frequency [3, 4, 2].

One effective and simple way to improve speech intelligi-
bility is by changing the spectrum of the speech. For example,
speech understanding will increase when high frequencies are

amplified at a cost of low frequencies [5, 6, 7, 8, 9]. How-
ever, the exact design of these high-pass type of filters are often
heuristic in nature and do not use some type of mathematical
descriptor of speech intelligibility. This makes it difficult to
claim any form of optimality. As a consequence, many differ-
ent solutions exist, for example: (1) it was suggested to ’whiten’
the speech spectrum (independent of noise type) [5, 7], (2)
shape the speech spectrum such that SNRs are equal in each
frequency band [3, 10] or (3) adjust the speech spectrum such
that is shaped as the inverse noise spectrum [3, 11]. In [12] we
proposed a linear filter which maximizes the speech intelligi-
bility index (SII) [13]. Experiments showed large intelligibil-
ity improvements with this method over the unprocessed noisy
speech and better performance than one state-of-the art method
[2]. However, [12] did not provide an extensive analysis of al-
gorithm performance as a function of SNR and noise type. It
would be of interest to see its behavior in relation with the three
previously mentioned different approaches.

In this paper an additional analysis is provided for the
proposed method [12] in terms of processed speech spectra,
frequency-dependent SNRs and filter gains. Moreover, our
method participated in the Hurricane Challenge1 [14, 15] for
which we will also report the listening test results in this paper.
These results also include a non-stationary noise condition; we
expect this to be a difficult condition for the proposed method
since the SII is not reliable with non-stationary noise sources
[16]. First the mathematical details of the proposed method will
be summarized followed by analysis of our method and experi-
mental results.

2. SII-based linear filter
2.1. Intelligibility Measure

The intelligibility measure which will be used for optimiza-
tion is based on the standardized SII [13]. We assume that the
speech and noise are presented above the threshold in quiet at a
comfortable level. Also, effects of masking are excluded from
the standard SII procedure (as in [4]). Based on these assump-
tions the approximated SII measure can be summarized by the
following three stages: (1) The long-term average spectra of
the speech and noise are estimated within critical bands. (2)
A within-band SNR is calculated, clipped between -15 and 15
dB followed by normalization to the range of 0 and 1. (3) A
weighted average of the normalized within-band SNRs is cal-
culated to obtain one outcome.

Next, details are given for each stage. Let x and ε denote the
time-domain signals of the clean speech and noise, respectively.

1Our method is abbreviated as OptimalSII in [14] where the Hurri-
cane Challenge results are reported.
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A windowed version of x is denoted by xm where m denotes
the window frame-index. A Hann-window is used with 50%
overlap, and 32 ms length. The impulse response of the ith

auditory filter is denoted by hi, where i ∈ {1, . . . , n} and n
is the total number of auditory filters. Subsequently, the energy
within one time-frequency (TF) unit is calculated as follows for
the clean speech,

X2
m,i =

∑
k

|Xm(k)|2|Hi(k)|2, (1)

where Xm(k) and Hi(k) denote DFT coefficients of xm and
hi, respectively, with frequency-bin index k. Signals are sam-
pled at 20 kHz where short-time frames are zero-padded to 64
ms before applying the DFT. In total, 64 auditory filters are used
where center frequencies are linearly spaced on an equivalent
rectangular bandwidth (ERB) scale between 150 and 8500 Hz
[17]. Its squared magnitude responses |Hi(k)|2 are chosen as
described in [17]. The average energy within one critical band is
based on a long-term sample mean over many short-time frames
(e.g., several minutes) and is denoted as follows,

σ2
Xi

=
1

M

∑
m

X2
m,i, (2)

whereM equals the total number of short-time frames and sim-
ilar definitions hold for σ2

Ei
, the average noise energy within

critical band i. Let the SNR within one critical band be denoted
by,

ξi =
σ2
Xi

σ2
Ei

, (3)

which is used to calculate an intermediate measure to determine
the audibility of the speech in presence of the noise within one
band. This SNR is log-transformed, clipped between -15 and
+15 dB and normalized such that its range is between zero and
one, i.e.,

d (ξi) = max (min (10log10 (ξi) , 15) ,−15) /30 +
1

2
. (4)

Subsequently, a weighted average is calculated as follows,

SII =
∑
i

γid (ξi), (5)

where γ denotes the band-importance function given in the
critical-band SII procedure in Table 1 in [13]. In summary, this
weighting-function reduces the importance of bands with center
frequency below 450 Hz and above 4000 Hz. It is expected that
Eq. (5) is a monotonic increasing function of the intelligibility
of speech in additive, stationary noise [13].

2.2. Constrained Optimization

The goal is to maximize the speech intelligibility, i.e., maxi-
mize Eq. (5), by redistributing the speech energy over the crit-
ical bands. Hence, the total energy over all bands remains un-
changed. We constrain ourselves to redistribute speech energy
using a linear, time-invariant filter. In practice one could es-
timate the statistics online, e.g., with a noise-tracker [18], and
use a time-varying filter. The same mathematical framework
can be used for this time-varying case. Let αi be a real and
non-negative scalar applied to each critical band. It follows that
1

M

∑
m

(αixm,i)
2 = α2

iσ
2
Xi
. As a consequence, the constrained

problem can be formulated as follows,
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Figure 1: Used error criteria for intelligibility prediction as used
by the SII (solid line, Eq. (4)), and proposed approximation
(dashed line, Eq. (7)).
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Figure 2: The proposed approximation of the SII, as in Eq. (7),
is concave in α2

ix
2
i . Figure shows results for ξ = 1.

max
∑
i

γid
(
α2
i ξi

)
s.t.

∑
i

α2
iσ

2
Xi

=
∑
i

σ2
Xi

α2
iσ

2
Xi
≥ 0, ∀i

(6)

In order to find a closed-form solution to this constrained opti-
mization problem we propose to approximate Eq. (4) with the
following expression which is mathematically tractable,

d (ξi) ≈ ξi
ξi + 1

. (7)

Interestingly, d(ξi) is the expression for the single-channel
Wiener filter [1]. This approximation together with the origi-
nal intermediate intelligibility, as defined in Eq. (4), is shown in
Figure 1. Moreover, the function d(α2

i ξi) is concave in its ar-
gument as illustrated in Figure 2. Hence, the weighted average
of these concave functions, as in Eq. (5), is also concave. We
obtain convexity by negation and characterize the problem by
the following Lagrangian cost-function,

J = −
∑
i

γi
α2
i ξi

α2
i ξi + 1

+ν

(∑
i

α2
iσ

2
Xi
− r

)
+

∑
i

λi

(−α2
iσ

2
Xi

)
,

(8)
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Figure 3: Auditory band spectra (top row), SNRs (middle row) and filter gains (bottom row) for the proposed processing method for six
artificially generated noise types (from left to right: speech-shaped, white, low-pass, high-pass, bandpass and bandstop). Red-dashed
lines denote noise spectra and blue dot-dashed lines denote unprocessed frequency-dependent SNRs. Used speech spectrum is the same
as the speech-shaped noise spectrum depicted by the red line in the top-left plot. Six different global SNRs are used (-20, -15, -10, -5,
0 and 5 dB), where the thickest and thinnest line denote -20 and 5 dB SNR, respectively.

where r =
∑
i

σ2
Xi
and ν and λi are Lagrangian multipliers

related to the energy constraint and inequality constraints in
Eq. (6), respectively. Since our problem is convex and differ-
entiable, any point that satisfies the following Karush-Kuhn-
Tucker (KKT) conditions,

∑
i

α2
iσ

2
Xi

= r

α2
iσ

2
Xi

≥ 0 , ∀i
λi ≥ 0 , ∀i

λiα
2
iσ

2
Xi

= 0 , ∀i
−2γiξiαi

(ξiαi
2+1)2

+ 2ναiσ
2
Xi
− 2λiαi = 0 , ∀i

, (9)

is optimal [19, Ch. 5.5.3, p. 243]. Solving gives,

α2
iσ

2
Xi

= max

(
σEi
√
γi√

ν
− σ2

Ei
, 0

)
, ∀i, (10)

where ν is chosen such that the energy constraint is satisfied,

1√
ν
=

r +
∑

i∈M

σ2
Ei∑

i∈M

√
γiσEi

, (11)

and whereM =
{
i ∈ {1, . . . , n} : α2

i > 0
}
denotes the set of

critical band indices for which the optimal α2
i is positive. Since

the setM depends on α2
i , the Lagrange multiplier ν is also de-

pendent on α2
i . In order to cope with this recursive dependency,

the optimal value of ν may be found by evaluating Eq. (10)
for a range of ν-values or, e.g., using a bi-section method [19,
Ch. 4.2.5, p. 146] such that the energy constraint is satisfied.

3. Filter Analysis

The behavior of the proposed method is investigated for six
artificially generated stationary noise types including speech
shaped noise (SSN), white noise, noise with a low-pass and
high-pass characteristic and speech with a band-pass and band-
reject type of spectrum. The six noise spectra are shown in
the the top row of plots in Figure 3 by the red-dashed lines.
The long-term speech spectrum is the same as the spectrum
of SNN as depicted in the top-left plot. Results are analyzed
for six different global SNRs (-20, -15, -10, -5, 0 and 5 dB).
Each global SNR is indicated by a line differing in thickness
and darkness, where the thickest and lightest line shows results
for -20 dB SNR and the thinnest and darkest line is related to 5
dB SNR. The top-row plots show the modified speech spectra,
the middle-row plots the frequency dependent long-term SNRs
and the bottom-row plots the magnitude response of the applied
filter. Note, that all plots show critical-band spectra as in Eq. (1).

Regarding the processed spectra as observed in the top-row
plots in Figure 3 it is clear that the shape of the spectrum does
not only depend on the noise type, but also on the global SNR.
This is an important difference with many other approaches
where the shape of the speech spectrum is typically indepen-
dent of global SNR, e.g., [5, 6, 20, 10]. It can be observed that
for higher global SNRs, the processed speech spectrum tends
to shape like the noise. Shaping the speech as the noise was
also proposed in, e.g., [3, 20], however, this is not optimal for
lower global SNRs according to our cost function, Eq. (7). This
approach would also result in an equal SNR as a function of
frequency, which is clearly not the case when observing the
middle-row plots in Figure 3. Moreover, making the speech
spectrum constant as in [5], seems only appropriate in the case
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of white noise for the highest global SNRs (5 dB SNR).
Another property of the proposed method which is revealed

from the Figures, is the fact that certain frequency bands are
set to zero when lowering the global SNRs. This makes sense,
since the SII assumes that all bands with SNR below -15 dB
do not contribute to intelligibility anymore and can therefore
be discarded. Indeed, observing the distributions of the SNRs
over frequency in the second row in Figure 3 do not show any
SNRs below -15 dB. This explains why our method will typ-
ically improve over other state-of-the-art methods mainly for
lower global SNRs [12].

In the bottom-row plots the filter gains are shown, i.e., αi.
It is clear that most of the filters have a high-pass characteristic,
however, typically low frequencies are also preserved. A real
high-pass filter is only observed for certain noise types at very
low SNRs, e.g., low-pass noise at a global SNR of -10 dB and
lower. These filter shapes are in line with the results observed
in [7] where a high-pass filter and a format-equalization filter
also have a positive effect on speech intelligibility. Only for the
high-pass filter noise, the filter shows a low-pass characteristic
for lower global SNRs. The fact that this type of filter was never
proposed in literature is probably due to the fact that a high-pass
shape of the noise is very unnatural and typically not used for
evaluation.

4. Experimental Evaluation
The listening experiment is performed within the Hurricane
Challenge which included 20 different algorithms [15, 14]. A
brief summary of the experimental setup and results only for
our method will be given. In total, 127 native English speak-
ing subjects listened to sentences from the Harvard corpus [21].
The Harvard corpus contains sentences such as “the salt breeze
came across from the sea”, spoken by a male British English
talker. Two noise types were used at 3 different SNRs including
stationary SSN and a highly non-stationary competing female
speaker (CS). The SNRs for SSN and CS were [-9, -4, 1] and
[-21, -14, -7] dB, respectively. In total, each listener evaluated 9
sentences for each of the 20 algorithms (including the proposed
method), which gives a total of 180 sentences per participant.
SNRs and noise types are balanced over all listeners (see [14]
for more details).

In addition to the listening test, SII scores were also ob-
tained for the same set of conditions as used in the listening
test. The long-term average speech and noise spectra were es-
timated based on 180 Harvard sentences [21]. The SII-scores
were calculated as in Eq. (5).

5. Results
Listening test results are shown in the top row plots of Figure 4.
The bottom two plots show the predictions of the SII.

Both listening test results and SII predictions show an im-
provement in speech intelligibility for SSN for all three SNRs.
The largest benefit was measured with the lowest SNR for SSN,
where intelligibility improved from 17.3% to 50.6% words cor-
rect. For the highest SNR the improvement is smaller, which is
probably caused by ceiling effects, i.e., the fact that speech in-
telligibility is upper bounded by 100%. Since SII-scores are not
close to 1 yet, this ceiling effect is not observed with the objec-
tive scores. These scores are in line with the results from [12],
where large improvements were found with a female speaker
rather than a male speaker.

The difference between SII-predictions and listening exper-
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Figure 4: Listening test results (top) and SII predictions (bot-
tom) for speech shaped noise (SSN) (left) and a competing
speaker (CS) (right).

iment results for the competing speaker is somewhat remark-
able. Although it is known that the SII is not reliable for fluc-
tuating noise sources [16], it actually turns out that improving
the SII for these non-stationary cases may even decrease intel-
ligibility. Overall the decrease in intelligibility is the largest for
the lowest SNR conditions where scores dropped from 24.8%
to 10.2%. To overcome this, the proposed method may be mod-
ified by optimizing for the extended SII as proposed in [16].
Here the SII is calculated in short-time frames rather than on
long-term average spectra which improves prediction results for
non-stationary noise. The mathematical framework presented in
this paper still holds when deriving an optimal filter for such a
time-varying SII.

In addition to use a time-varying filter, results may be
further improvement by combining the proposed method with
other types of processing, e.g., dynamic range compression
[22].

6. Conclusions
A linear time-invariant filter was proposed to optimize the in-
telligibility of speech in noise for the near-end listener with-
out affecting the global SNR. This was accomplished by redis-
tributing the speech energy over frequency such that an approx-
imation of the speech intelligibility index (SII) was maximized.
The resulting filter is dependent both on noise spectrum, speech
spectrum and global SNR and, in general, has a high-pass char-
acteristic. In contrast to existing methods, the proposed filter
sets certain frequency bands to zero when the per-band SNRs
are so low that they do not contribute to intelligibility anymore.
Intelligibility test results and SII predictions show a large in-
telligibility improvement for speech mixed with speech-shaped
noise. However, despite improved SII predictions it was also
found that the method does not increase intelligibility when
speech is corrupted by a competing speaker. This is caused
by the fact that the SII is not a reliable intelligibility predic-
tor for fluctuating noise sources. MATLAB code is provided at
http://www.ceestaal.nl/.
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