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SUMMARY

The prehepatic insulin secretion rate of the pancreatic (3-cells is not directly measurable, since
part of the secreted insulin is absorbed by the liver prior to entering the blood stream. However,
C-peptide is co-secreted equimolarly and is not absorbed by the liver, allowing for the estimation
of the prehepatic insulin secretion rate. We consider a stochastic differential equation model that
combines both insulin and C-peptide concentrations in plasma to estimate the prehepatic insulin
secretion rate. Previously this model has been analysed in an iterative deterministic set-up, where
the time courses of insulin and C-peptide subsequently are used as known forcing functions. In this
work we adopt a Bayesian graphical model to describe the unified model simultaneously. We develop
a model that also accounts for both measurement error and process variability. The parameters are
estimated by a Bayesian approach where efficient posterior sampling is made available through the
use of Markov chain Monte Carlo methods. Hereby the ill-posed estimation problem inherited in
the coupled differential equation model is regularized by the use of prior knowledge. The method is
demonstrated on experimental data from an IntraVenous Glucose Tolerance Test (IVGTT) performed
on six normal glucose-tolerant individuals.

Keywords: Bayesian graphical model; Markov chain Monte Carlo methods; Stochastic differential
equation model; Insulin secretion rate, Insulin and C-peptide kinetics.

1 INTRODUCTION

Insulin resistance and failure of insulin secretion from the pancreatic 3-cells are both major
characteristics of type II diabetes, arguing that estimation of the pancreatic insulin secretion
rate is of vital importance for a better understanding of the pathogenesis of type II diabetes.
A gained knowledge about the pancreatic insulin secretion can be used in the development of
a synthetic insulin for type II diabetes, where assessment of the endogenous insulin produced
by the patients themselves is necessary to assess the therapeutic effect of the drug. In an artifi-
cial pancreas quantitative assessment of the true pancreatic insulin secretion is also required to
emulate the human pancreas.

The insulin is secreted by the pancreatic (-cells, but prior to entering the blood stream, the
insulin undergoes a large and variable liver extraction, whereby the prehepatic insulin secretion
is not directly measurable in plasma. Fortunately, with the insulin, the hormone C-peptide is
co-secreted equimolarly and is, in contrast to insulin, not significantly extracted by the liver.
Thus the prehepatic insulin secretion rate may be estimated from C-peptide concentrations in
plasma obtained from any glucose tolerance test, e.g. an IntraVenous Glucose Tolerance Test
(IVGTT).

In an IVGTT study a bolus of glucose is administered intravenously into the blood stream
and subsequently glucose, insulin and C-peptide concentrations in plasma are measured at pre-
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specified time points. Estimation of prehepatic insulin secretion is then performed on the ba-
sis of the C-peptide concentrations traditionally by deconvolution as described in Eaton et al.
(1980), where additional knowledge about the C-peptide kinetics is required. This is obtained
from an initial same-day experiment, where plasma C-peptide concentrations are measured
after a bolus of biosynthetic C-peptide. To avoid multiple experimental protocols Hovorka
et al. (1994) propose using population C-peptide kinetics parameters adjusted for gender, age,
height, weight and clinical status (normal, obese or Type II diabetic) obtained from an earlier
study based on 250 patients. This approach has been implemented in the computer program
ISEC (Hovorka, 1993; Hovorka et al., 1996), which is the most commonly used approach to
estimate the prehepatic insulin secretion rate. However, these approaches solely use C-peptide
concentrations in the estimation of the secretion rate, and do not take the insulin concentrations,
which also contains valuable information about the quantity of interest, into considerations. Fur-
thermore, deconvolution problems are often severely ill-posed implying that even small pertur-
bations in data may result in unacceptably large distortions of the estimated solution (Hadamard,
1923). Therefore proper regularization within the reconstruction of the deconvolution problem
is necessary, which has been addressed in Hovorka et al. (1996).

However, besides measuring the C-peptide concentrations in plasma the corresponding in-
sulin concentrations are also obtained from the IVGTT study. Together these provide two
sources of very useful information regarding the insulin secretion profile from only one sin-
gle experimental protocol. Vglund et al. (1987) and Watanabe et al. (1989) present a combined
model where both plasma insulin and C-peptide are used to derive estimates of the prehep-
atic insulin secretion. In this approach the plasma C-peptide kinetics is modelled by a single-
compartmental model in order to minimize the number of parameters. However, as reported
in Faber et al. (1978), the nature of C-peptide kinetics is two-compartmental, and the one-
compartmental approximation only seems to hold under relative slow changes in the secretion
rate. To comply with rapid fluctuations Watanabe et al. (1998) and Watanabe and Bergman
(2000) extend the combined model to include a two-compartmental structure of the C-peptide
kinetics without the need for an extra initial quantification of the C-peptide kinetics. The C-
peptide kinetics parameters are estimated iteratively by considering the insulin and C-peptide
successively as known, and then subsequently use them as forcing functions to estimate the
prehepatic insulin secretion rate, modelled as a piecewise constant step function. Considering
the insulin and C-peptide as known demands accurate data, or alternatively, a dense sampling
scheme. A comprehensive review and comparison of the four approaches can be found in Kjems
et al. (2001).

In this paper we consider the extended combined model of both insulin and two-compart-
mental C-peptide. We model both insulin and C-peptide as random variables to utilize the
two sources of information simultaneously and allowing for error terms on the observations.
The differential equations inherited in the model describing the C-peptide and insulin kinetics
may not comply with the actual processes taking place inside the body, so we propose recast-
ing the model in a stochastic setting, where error terms is imposed on the process increments
(besides the error terms on the observations). This implies a far more complex and compu-
tationally intractable model though much more physiologically sound. However, by adopting
a Bayesian graphical model (Lauritzen, 1996) the model can be analysed in a fully Bayesian
approach based upon Markov chain Monte Carlo (MCMC) methods (Brooks, 1998; Robert and
Casella, 1999). We hereby regularize the ill-posed estimation problem by using suitable prior
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knowledge about the parameters. To be able to perform inference, distributional assumptions
are needed for the secretion rate. We model this as a superposition of scaled gamma densities
and develop a method for providing posterior inference of the prehepatic insulin secretion rate
together with corresponding credible intervals. The method is validated via a simulation study
and we demonstrate it afterwards on experimental IVGTT data from six normal-glucose toler-
ant individuals, concluding that the methodology for assessing the secretory rate presented here
appears to be efficient and reliable.

We begin in Section 2 with a presentation of the data and the extended combined model
of insulin and C-peptide. In Section 3 we construct the model as a Bayesian graphical model
and in Section 4 we provide details of the statistical methodology used, together with a simu-
lation study to demonstrate the utility and robustness of the proposed method. We present our
results on experimental data in Section 5 and a discussion of the achieved results are provided
in Section 6.

2 DATA AND MODEL

In an IVGTT study a bolus of glucose is administered intravenously to individuals for the
purpose of recording the responding glucose, insulin and C-peptide concentrations in plasma
over a pre-specified time period, normally 240 minutes. Corresponding basal glucose, insulin
and C-peptide concentrations prior to the bolus are also recorded, traditionally for 60 minutes.
Experimental data for a normal glucose tolerant individual are depicted in Figure 1.
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C-peptide concentration (pmol/ml) Insulin concentration (pmol/ml)  Glucose concentration (pmol/ml)
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Figure 1: Glucose, insulin and C-peptide concentrations in plasma frequently sampled over 240
minutes after an intravenous glucose injection given to a normal glucose tolerant individual.
Shown is also observations recorded 60 minutes prior to administration of glucose.
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It is apparent that the injected glucose load immediately elevates the glucose concentration
in plasma initiating an equimolar secretion of insulin and C-peptide from the pancreatic (3-
cells. Prior to entering the blood stream the insulin undergoes a large liver extraction, whereas
C-peptide is not extracted significantly. The provoked hyperglycemia in plasma induces a peak
of both insulin and C-peptide concentrations in plasma, and the increased insulin level raises
the glucose uptake in muscles, liver and adipose tissue. This lowers the glucose concentration
in plasma, affecting the [3-cells to secrete less insulin, whereby a feedback effect arises. By
approximately 2 hours, the glucose concentration is normalized, and in the following hour a
moderate undershoot is observed. After approximately 3 hours, it is usually found that the
perturbed concentrations essentially have returned to normal. Depending upon the state of the
tested individual, the glucose, insulin and C-peptide concentrations may vary considerably from
the response shown in Figure 1. Note that we, in this work, do not not utilize the corresponding
glucose concentrations, even though it also indirectly contains valuable information about the
secretion rate.

The extended combined model proposed in Watanabe et al. (1998) describes the kinetics of
both insulin and C-peptide during the single experiment of an IVGTT study. The model is based
upon the assumptions that the prehepatic secretion of both insulin and C-peptide is equimolar
and that the fraction of insulin extracted by the liver is constant during the experiment. The
model can be represented by the compartmental system illustrated in Figure 2, where a sin-
gle compartment is sufficient for the insulin, in contrast to the C-peptide, where an additional
extravascular compartment is required as stated by Faber et al. (1978).

Pancreas

Figure 2: The extended combined model describing the insulin and C-peptide kinetics during
an intravenous glucose tolerance test.

To time t let the concentration in the plasma insulin compartment be denoted by ()
[pmol/ml], the plasma C-peptide compartment by C(t) [pmol/ml] and the extravascular C-
peptide compartment by Ca(t) [pmol/ml]. Furthermore, let R(¢) [pmol/min] denote the equi-
molar insulin and C-peptide secretion rate performed by the G-cells and assume that the con-
stant fraction of insulin extracted by the liver is 1 — F', whereby F' - R(t) represents the rate by
which the insulin surviving liver extraction is distributed into the blood circulating system. For
C-peptide the rate R(t) remains unchanged during the transportation through the liver.
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The kinetics of the system can then be described by the following set of inhomogeneous
linearly coupled differential equations

ViI(t) = FR(t) — K{I(t)V7, 1(0) = 1°,
Ve, Ci(t) = R(t) — (K12 + Ko)C1(t) Ve, + Ko Ca(t)Ve,, C1(0) = C?, (2.1)
chcg(t) = Klzcl(t)VCl — Kzlcg(t)VCQ, CQ(O) = CS,

where Vi, Vo, and Vo, are the distribution volumes of the plasma insulin, the plasma C-
peptide and the extravascular C-peptide, respectively, and the initial concentrations in the three
compartments are equal to their respective base levels, i.e. I°, C? and C5. The parameters K12
and Ko, are the transfer rates between the two C-peptide compartments, and K and K¢ are the
elimination rates from the plasma compartments of insulin and C-peptide, respectively. The se-
cretion rate per unit distribution volume of C-peptide in plasma is defined as r(t) = R(t)/Vey,,
which is actually the quantity of interest. Introducing f = F - Vo, /V as the prehepatic tran-
sition fraction normalized according to the ratio of the plasma C-peptide and plasma insulin
distribution volumes and Vi5 = Vo, / Vi, as the fraction of the two C-peptide distribution vol-
umes the differential equations becomes

I(t) = fr(t) — K11(t), 1(0) = 1Y,
Ci(t) =r(t) — (K2 + Kc)Ci(t) + Ko1/Vi2Ca(t), C1(0) = C¥, 2.2)
Cy(t) = K12Vi201(t) — Ko1Ca(t), Cy(0) = C8,

Note that by considering the model (2.2) in steady state we easily obtain the following three
parameter dependencies
KI*
KoCh

K
and CSZ 12V12C{’,

’I“b:KCC%, f: K_21

where 7 denotes the basal insulin secretion rate. In order to ascertain a model consistent within
its parameterization we thus represent the basal levels 7 and C’S and the prehepatic transition
factor f by the remaining model parameters.

The assumption that the insulin and the C-peptide are co-secreted equimolarly implies that
the insulin secretion rate, r(¢), in the above equations can be factored out. Watanabe et al.
(1998) exploits this, to obtain a set of equations that relates the plasma insulin and plasma
C-peptide without the need for the actual secretion rate. The kinetics parameters are then es-
timated iteratively assuming successively that the insulin and C-peptide are known as forcing
functions. Afterwards the insulin secretion rate is estimated by deconvolution on the basis of
these parameters. Hereby the identification of the secretion rate is purely data-driven without
error terms on the observations. Besides, it does not consider the whole system as an integrated
system of both insulin and C-peptide, which it is by nature. Due to expected fluctuations from
the underlying processes inside the body we believe that the model also should be regarded as
a stochastic differential equation model to mimic this.

However, solving the three coupled differential equations in (2.2) simultaneously (deter-
ministic or stochastic) still remains a highly ill-posed estimation problem, i.e. even small per-
turbations in the observations of the insulin and C-peptide may result in unacceptably large
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distortions of the estimated solution. Therefore proper regularization in the reconstruction of
the insulin secretion rate is called for. Regularization is often done by imposing certain regu-
larity conditions on the solution space, which in a likelihood approach is equivalent to using
a penalized likelihood function, where the solution space is reduced by introducing a penalty
function for implausible solutions. In a Bayesian approach it is tackled by using a prior distri-
bution on the parameters, whereby the implausible parameters automatically are penalized. The
Bayesian approach inherits other advantages, e.g. the availability of computational tools such
as MCMC methods which allow for the construction and analysis of suitable complex models
without the need for simplifying assumptions. We utilize this ability by adopting a Bayesian
graphical model to illustrate the complicated relationship among the parameters in the stochas-
tic differential equation model defined by (2.2). The Bayesian graphical model is derived in the
following section.

3 THE INSULIN AND C-PEPTIDE MODEL AS A BAYESIAN GRAPHICAL MODEL

The deterministic differential equation model defined in (2.2) may not comply with the
actual insulin and C-peptide processes inside the body. By introducing Brownian motion fluc-
tuations, say B, B¢1 and B2, we can model such possible deviations, whereby a stochastic
version of the model is expressed as

dI(t) = (fr(t)— K I(8))dt +r /2dB (1),
dCy(t) = (r(t) — (Ko + Kc)CO1(8) + Ka1 /ViaCalt))dt + 75,/ 2dB (1),
dCQ(t) = (K12V1201 (t) — Kglcg(t))dt + TC_;/QdBO2 (t),

where 77, 7¢, and 7¢, denote the reciprocal variances (precisions) of the introduced Brownian
motions. This differential form of the stochastic model can by simple integration be reformu-
lated as an equivalent set of integral equations, e.g. for the insulin process, as

173

I(tg) — I(ti-1) = / (fr(t) = KrI@)dt + (B! (1) = B (t4-1)),
th—1

where ¢, —t;_1 > 0 is a suitably small time span. The involved unknown integral can be

approximated by the product between its width and its left end point, i.e.

I(tg) = I(tp—1) + (tr — tp—1) (fr(tecr) — K1 (tg—1)) + €' (tr — teor),

where the random process € (t;, — tj_1) = 7;1/2(Bl(tk) — B(t;,_1)) is well-known to de-
pend only on the time interval t;, — t;_; following a normal distribution with mean zero and
variance T;l(tk —tg_1).

Similarly the differential equations for the C-peptide processes can be reformulated, and
using t as subscript the joint stochastic model of both insulin and C-peptide can be expressed as

Iy, = hI(Itk717Ttk71) + El(tk —tp_1),
Cltk = Ko (lekﬂ ’ 02%71 (T y) + et (tr — tp—1),
Cth' = K (Cltk—l ) 02%—1 Ttor) € (th — th—1),

6



with

hI(Itk—NTtk—l):Itk—l + (tk - tk—l)(frtk—l - Kf]tk—l)v
hCy,, Co, e )=C1, A (te—tho1)(ry,_,— (K12t Ko)Cr, 4+ K21 /ViaCo, ),
h(Ch,, 2 Cayy o7ty ) =Cl,  +(ti—th1)(K12V12Ch,, | — K21Ca,, ),

where the functional dependencies of the parameters f, K;, Ko K2, K91 and Vio are sup-
pressed.
The conditional distributions for the processes Iy, , Cq ., and Cztk are hereby given as

Itk|Itk 1 Tt 17TINN( I(Itk 1 Tt 1) Tl_l(tk*tk 1))
Cltk |Cltk 1’C2tk lv/rtk 17 NN(hCI(Cltk I’Cth lartk 1) TCI (tk:_tk l)) (3 1)
Co, |Chy s Coy 3Tty Toy ~ N(K(Ch,,Coy ) e (b — the1))

We can see that there is a relationship between the insulin/C-peptide processes and the pro-
cess underlying the secretion rate. Therefore distributional assumptions for r;, is necessary to
perform fully Bayesian inference. In Watanabe et al. (1998) the secretion rate is modelled by
a stepwise constant function with variable step length depending upon the applied sampling
scheme, i.e. it is impossible for the secretion rate to vary between any two successive sample
points.

Let r? > 0 denote the basal insulin secretion rate. Then we propose modelling the deviation
from basal insulin secretion level by imposing a scaled sum of weighted gamma densities, i.e.
we represent the mean structure of r(¢) by

O‘k

W) =r +f<;Zwk )tak LeBkt ¢ > 0.

Prior to administering the bolus, ¢ < 0, we let h,.(t) = r°. Let ¥ = (k, o, 3, w) with & > 0,
a = (ag,...,ag),a > 1, 6 = (01,...,0K),0c > 0and w = (wy,...,wg),wr € R
subject to the condition Zszl wyg = 1. Note that the weights themselves are not confined to be
strictly positive allowing the insulin secretion rate to fall beneath the basal level r°. Hereby the
conditional distribution for the secretion process 7, is modelled as

Tty | ties 7o ~ N(R7 (L), ). (3.2)

where the functional dependency on the parameters 7* and Y have been suppressed for nota-
tional convenience.

The conditional distributions in (3.1) and (3.2), defining the model, can be interpreted as
parent-child distributions in a directed graphical model. In a directed graphical model the quan-
tities of a model are represented by vertices and a direct influence from one quantity to another
is illustrated by a directed edge. Hereby the model in (3.1) and (3.2) can be illustrated by the
graphical model provided in Figure 3. In the graph we have omitted the parameter vertices due
to the complexity of the graph, but added the vertices I}, and C’1 to represent the random vari-
ables corresponding to the observations of the plasma 1nsu11n and C- peptide for specific time
points . A general treatment of graphical models can be found in Lauritzen (1996).
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Figure 3: Directed acyclic graph illustrating the statistical dependencies for the latent pro-
cesses, I, C'1, Cy and r, and the observed processes I and C7. The observed quantities are
illustrated by rectangles and the unobserved quantities are illustrated by circles. Parameter de-
pendencies are not shown due to the complexity of the graph.

The measurement error on the observation processes Iy and C7, is known to increase with
the mean. Consequently we model the measurement error on log Iy’ and log C7, by two inde-
pendent random white noise processes; €/ and €“7 with precisions 770 and Tcy, respectively.
Consequently the distributional assumptions for I; and C’ftk are

log IY | Iy, 1o ~ N(log[tk,Tfol),
log C7, | Ch, ooy~ N(log Cltk,Tafl).

1

(3.3)

Note that the model is constructed such that the mean structures of the observations depend on
the underlying non-observable latent system processes of I, , Cltk , Cgtk and r;, definedin (3.1)
and (3.2), respectively.

The unobserved quantities of the model is collected into two subsets; the parameters

b b
Q= (T, K, Ko, K2, Ko1, Vig, 17, C, T1, 70y s TCy s Ty TIo, TCY)
and the four latent processes

U = {Itka Cltk 5 Cth 5 Ttk}tkEAv
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where A denotes the time points chosen for approximating the underlying processes. Recall
that 7%, C% and f are functions of 2 and thus need no further considerations.

The observations are represented by & = {I7 | Clotk Hee, where 7 C A denotes the set
of actual observation times. The posterior distribution of the unobserved quantities given the
observed quantities can then up to a constant be expressed as

p(Q, V| D) x p(@|Q,V)p(¥|Q)p(Q), (3.4

where p(€2) represents our beliefs about the parameters before having observed any data, i.e. the
prior distribution, and p(W¥ | ©2) and p(® | 2, ¥) form the likelihood determined by (3.1) — (3.3).

Using the recursive factorization property of a directed graphical model it can easily be
derived that

p(\IJ | Q) = H [p(Itk | Itk;_l y 15 Tl)p(cltk | Cltk71 ’ Cth71 ) Ttk_lﬂ'cl)

trEA

X p(Cth | Cltk_l ) Cth_l Tt TC)P(Tty, [ Tt Tr)
o< (70, 70,7 ) VP exp{ =V (¥, Q)}, 3.5)

where N = |A| denotes the number of elements in A and the posterior potential V' is given by

ICXOEEDY {

trEA

71Ty —hi,)? + 70, (Ch,, —hi)? + 70, (Co,, —hi?)?

g — g1

+T7‘(’rtk7h:k)2 }7

. C C
with hgk:hl(‘[tkfl Tt )s htkl =h4 (Cltk,l ) Cth,l S Tte1)s ht: =h® (Cltk,l ) CZtk,l (Tt 1)
and hy =h"(ry,_,).
Similarly, for the random variables corresponding to the observations of insulin and C-
peptide it is easily seen that

(I) | Q, \I’ H p tk |Itk’7_f") (Clotk |Cltk,’7—01o)
treT

X (7—107-010)”[/2 exp{—W(@,Q,\Il)}, (36)

where M = |7| denotes the number of observations and

1
W(,Q0) =7 > mre(log I, —log I,)* + 76,0 (log Cf, —1log Ch,,)*.
treT

For the parameters in {2 we assume that they are independent a priori and that each of the
system parameters K7, K¢, K12, K21, V12, b and Ci’ are normally distributed and that the pos-
itive precisions 77, T¢y, T¢y, Tr, Tro and Tco each has a Gamma prior. However, the parameter
vector T representing the secretion rate also needs prior specification. Thus we let

K
E={Y|k>0,0p > 1,5 >0fork=1,...,K,> wy=1andh"(t) > 0fort >0}
k=1



denote the set of allowable insulin secretion configurations. For T we assume that the prior
distribution p on = has a density which satisfies

K
p(1) o< pir(1=p1)* 'p() Y € E) [] p(wr)p(an/Bk)p(c/57)
k=1

where p; is a user specified parameter denoting the probability that K = 1 and 1 denotes
the indicator function. Here p(wy), p(cou/Bk) and p(ay/B7) denote simple uniform priors
on the weights, means and variances used for the description of r(¢). Note that a geometric
prior is imposed on the number of gamma densities in 7(¢) conveniently allowing us to control
the degree of fit via e.g. the Akaike information criterion (AIC) or the Bayesian information
criterion (BIC), see Poland and Shachter (1994) for details. Consequently the prior distribution
of all the unknown parameters €2 can be found as the product of p(Y) and normal and gamma
densities as

p(Q) = p(T)p(K1)p(Kc)p(K12)p(Ka1 )p(Viz)p(I°)p(CY)
x p(rr)p(7c,)p(Tey )p(7)p(T10 )P(TC09)

4 SIMULATION BASED INFERENCE

Having specified the posterior distribution p(£2, ¥ |®) in (3.4) by means of the a priori
beliefs and the actual observed data we need an efficient and reliable technique to facilitate pos-
terior inference about the parameters of interest. We propose using MCMC methods which
provide an alternative integration technique whereby e.g. posterior means are estimated by
constructing an irreducible Markov chain {(€Q;, ¥1), (22, ¥2), ...} with stationary distribu-
tion p(Q, U | D).

In order to efficiently investigate the state space we propose using different transition types
allowing for within model moves and between model moves. The within model moves leave
the number of used scaled gamma densities, K, invariant and are thus concerned with simple
Metropolis—Hastings random walk updates. However, the between model moves alters K and
thus the trans dimensional MCMC transition methodology (Green, 1995) is required to allow
for jumps between models.

The construction of the proposed within model and between model updating mechanisms
proposed for assessment of the insulin secretion rate are obviously of crucial importance. In
particular, the updating of the parameters v and (3 is expected to be troublesome due to high
within and between correlations. In order to obtain a Markov chain with adequate properties we
propose reparameterizing the insulin secretion model in terms of the means and variances in the
entering gamma densities. Thus we update the mean my, = « /0 leaving the variance vy, =
/B2 invariant and vice versa. Consequently the model for r(¢) in terms of (my,...,mk)
and (v1, ..., vr) becomes

mk/vk)mz/”k

o
B (t) =1t + K w
D« FEIN

tmi/kalefmk/vk,t.

Implementational details on the proposed transitions are provided below.
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4.1 WITHIN MODEL MOVES

We propose using a series of within model moves in which single parts of the entire state
vector () is updated. Thus a candidate Q; is proposed from a symmetric proposal distribu-
tion q(£2; Q;) However, there is a strong natural inter-relationship between the parameters €2
and the processes ¥ and it was found that an adequately blocked Metropolis—Hastings updat-
ing mechanism was required to ensure a Markov chain with good mixing properties. Conse-
quently W’ is proposed from p(¥; | €2}) and subsequently this joint proposal (£}, V) is ac-
cepted with probability

O QL U )p(T | )p(Y,
(@]9, 9;)p(%; [2;)p(%))

4.2 BETWEEN MODEL MOVES

Suppose a between model move is attempted and that the number of entering gamma den-
sities in r(¢) is K. A transition of this type requires a reversible jump MCMC update which
we implement as follows. First we select a new model to jump to, i.e. we choose with equal
probability between the introduction of a new contribution (wg 41, Mg 11, VK +1) to r(t) or the
removal of one of the K existing (wy, myg, vx) contributions. Thus the proposal Q; is generated
from a deterministic injective function g(€2;, w), where w is a continuous random vector with
density g(u). The acceptance probability for a reversible jump transition of this type is given
by

Al U V. W) — min p(‘I) ’ Q;v\IJj/)p(\Ij], | Q;)p(Q;)Tm/(Q;) ag(Qj,u)
o %) = {l’p@mj,%)p(wj|Qj>p<ﬂj>rm<ﬂj>q<u>' o |fr @

where 7., (€;) and 7,,,/(€2;) denotes the probability of choosing trans dimensional move type
m when in state € and the reverse move to m’ when in €, respectively. Note that the final term
in the above ratio is the Jacobian arising from the change of variables associated with moving
from one space to the other.

Introducing a new contribution completely at random or removing one of the existing con-
tributions performs poorly and resulted in extremely small acceptance probabilities and thus
a more sophisticated between model transition was needed. As an alternative to the birth and
death move types we instead propose split and merge move types. Assume that we have de-
cided to attempt a split model move type. We do this by picking one contribution (wg, mg, vy)
uniformly between the K existing contributions. Denote this probability by ric = 1/K. This
contribution is split into two new contributions according to the injective map

g ¢ (Wg, My, vg) — (Wk — W41, Mg — ME41, Ve — VE41)
y M, (WK1, MK +1, VK +1),

where the random vector u = (Wx 41, MK +1, Vi+1) denotes the new contribution to r(¢). We
will assume that « comes from a uniform distribution g(w) on the product space [—ly, L] X
[0, 1] % [0,1,], i.e. g(w) = 1/(121,ul,). Note that the probability for performing the reverse
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MOVe is Tmerge = 2/(K (K 41)). The Jacobian term |0g(£2, u)/d(2, w)| in (4.1) is simply one,
hence the acceptance probability for performing a split operation becomes

p(® [ €, W5)p(W) | 25)p($%) 202 Lyl }

Odspht( gy =15 j) mln{ 7p(®|Q],\Ij])p(\II]|Q])p(Q]) K+1

The death of a contribution is performed similarly, with any two of the K contributions
being proposed for merging. A move which is subsequently accepted with probability

p(® |5, Wi)p(W5 | 25)p(Y)) K
(R, Uy)p(W5 [ Q)p(y) 203 Il |

amerge(Qja \I]jQ sz \I’;) = min {1

Evidently the between model moves are the minimum requirement for traversing the en-
tire state space. However, supplementing the between model moves with within model moves
allows for a more rapid exploration of the state space.

4.3 FINE TUNING

To guarantee satisfactory performance of the proposed MCMC scheme a fine tuning via
an initial pilot simulation procedure is required. For each parameter in the model we readjust
the current proposal scales by iteratively running the simulations algorithm for an initial N
iterations and then calculating the mean acceptance ratio for the updates. For any parameter
with a mean acceptance ratio less than 0.1, we halve the current proposal standard deviation
while for any parameter with a mean acceptance probability between 0.1 and 0.2 we scale
the current proposal standard deviation with a factor 0.75. For any parameter with a mean
acceptance ratio between 0.4 and 0.5 we multiply the current proposal standard deviation by
1.25 and, finally, if the mean acceptance probability is greater than 0.5, we multiply the current
proposal standard deviation by 1.5. This process is continued until three successive pilot runs
have all mean acceptance ratios within (0.2;0.4), see Gelman et al. (1996). Note that the last
visited state serves as initial state for the next pilot run. For each of these pilot simulations, a
value of N = 1000 iterations appears to perform well.

4.4 SIMULATION STUDY

In order to employ the proposed Bayesian approach to assessment of the insulin secretion
rate we conduct a brief simulation study in which several simulated data sets are analysed and
the estimated insulin secretion rate compared to the known true rate. Thus we construct various
artificial data sets with both varying number of gamma densities used in the representation of
the insulin secretion rate and model parameters. In order to initiate the simulation study we need
adequate prior and proposal distributions. The priors are specified according to Section 3 using
prior knowledge from Watanabe et al. (1998) (see Table 1 for further details). The iterative
way of both finding good starting values and achieving adequate proposal variances described
above was conducted for each set of simulated data. Having obtained good proposal variances
a final run of 50 000 iterations was performed. For all data sets we found very good agreement
between the estimated insulin secretion rate and the true rate. Parameter estimates were also
consistent and rather accurate.
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PARAMETER DISTRIBUTION

K Geom(0.95)
K U(0, 100)
my, (0, 1000)
Vg 4(0,10000)
Wi U(—100,100)
Ky N(0.2,1/100)
Kc N(0.1,1/100)
Ki2 N(0.12,1/100)
Ko1 N(0.03,1/100)
Via N(1,1)

I N(0.03,1/100)
ct N(0.5,1/16)
T 1(0.001,0.001)
Ty I'(0.001,0.001)
TCy 1(0.001,0.001)
Tr 1(0.001,0.001)
T0 '(0.05,0.01)
’Tclo F(0.5, 0.01)

Table 1: Prior distributions.

In the next section, we consider the performance of the proposed approach and present the
results of our data analysis, including standard Markov chain convergence diagnostics, param-
eter estimates and the obtained insulin secretion rates.

5 RESULTS

The insulin secretion rate reconstruction method is applied to IVGTT data recorded from
six healthy young subjects. Following an overnight fast, a glucose bolus were administered
at time zero. For determination of basal levels of insulin, c-peptide and glucose in the blood
plasma, blood samples were collected at times —60, —45, —30 and —15 minutes prior to the
bolus. Subsequently blood samples were taken at 0, 1, 3, 5, 7, 9, 12, 15, 20, 25, 30, 45, 60, 75,
90, 105, 120, 140, 160, 180, 200, 220 and 240 minutes for measurement of insulin, c-peptide
and glucose concentrations in blood plasma. These observation times constitutes 7. Regarding
the resolution of process ¥ we let

A=1{0,05,1,15,...,20,21,22,...,110,112,114, ...,240}.

Consequently the discretisation becomes gradually more and more coarse and need not neces-
sarily to be equidistant. The data recorded for subject 1 is displayed in Figure 1, whereas data
for all six subjects are shown in Figure 6.

Following the method outlined in Section 4; we (1) find good proposal distributions for
each subject by repeatedly running a trial run for 1000 iterations until all quantities needing
updating obtained acceptance probabilities between (0.2;0.4); and (2) run a final Markov chain
for 200 000 iterations. Note that the applied proposal distributions are allowed to vary between
subjects as we do not impose any population constraints.

It is important to investigate the performance of the developed MCMC simulation algorithm
to ensure that the obtained chain have settled to the posterior distribution and, in addition, that
a sufficiently long sample have been produced allowing for reliable statistical inference. There
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are at least two issues to contemplate here. Firstly, the chain may take some time to reach
its stationary distribution and typically samples from this initial part of the chain is neglected.
Numerous sophisticated techniques for testing the convergence of a Markov chain have been
proposed in the literature and we exploit the spectral method of Geweke (1992) implemented
in the CODA package (Plummer et al., 2005) for R/Splus. Secondly, having converged to its
stationary distribution the chain needs to be run for sufficiently many iterations to allow for
adequate statistical inference. To ensure this we propose the Heidelberger and Welch’s conver-
gence criteria (Heidelberger and Welch, 1981). See Brooks and Gelman (1998) and Brooks and
Guidici (2000) for a general review of diagnostic techniques for MCMC simulation.

The output from the six MCMC simulation algorithms consist of samples from the model
parameters €2 and the latent process W. These subject dependent samples were all closely in-
spected for convergence with the spectral method of Geweke and it was found, as expected,
that each of the six chains has reached burn-in at the very beginning. Consequently we assume
that the final six Markov chains all have been initiated in their stationary distributions and use
all 200 000 iterations for statistical inference. Figure 4 displays output details for some of the
parameters concerning subject 1 and from here we conclude that the Markov chain appear to
exhibit excellent mixing properties. Output from the remaining five subjects exhibit similar
behaviour. In addition, each of the parameters of interest was also examined with the method
of Heidelberg and Welch to ensure that each of the six chains have run long enough to obtain
reliable inference.
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Figure 4: Trace plots for subject 1: (a) the precisions 770; (b) the rate F'; (c) the sum of the
posterior potentials V' (U, Q) + W (P, 2, ¥); and (d) the insulin secretion rate at time ¢ = 10
minutes.

Note that Figure 4(b) displays F, which can be computed from F = f - V;/Vo, =
K I°V; /(KcCYVe, ), whenever the distribution volumes are known. Unfortunately these quan-
tities are unidentifiable from this experiment, however, they may be estimated on the basis of
the subject’s body characteristics. Following Watanabe et al. (1998) we estimate the distribu-
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tion volume for C; by Vi, = 0.0602 - body weight, whereas Campioni et al. (2004) provides
a method for estimating the insulin distribution volume as V; = exp(0.5358 - BSA + 1), where
BSA denotes the subject’s body surface area. However, the body surface area has not been
recorded and is subsequently estimated by the Mosteller formula (Mosteller, 1987) as

BSA = y/height - weight/60.

From these estimates of V, and V; we may infer on F' and obtain results indicating that ap-
proximately 80 — 85 per cent of the secreted insulin is absorbed by the liver. See Table 2 for
further details.

Parameter Subject

1 2 3 4 5 6
K 2 4 2 2 3 2
Kp 0.159(0.110;0.227) 0-116(0.078;0.152) 0-137(0.052;0.317) 0-198(0.101;0.320) 0-207(0.108;0.354) 0-181(0.097;0.307)
Ko 0.045(0.033;0.065) 0-023(0.020;0.026) 0-071(0.032;0.170) 0-056(0.035;0.088) 0-093(0.048;0.169) 0-062(0.036;0.104)
K2 0.052(0.001;0.162) 0-018(0.010;0.025) 0-062(0.001;0.196) 0-096(0.015;0.219) 0-104(0.008;0.244) 0-081(0.003;0.223)
K2 0.219(0.083;0.375) 0-001(0.000;0.002) 0-188(0.057;0.359) 0-172(0.056;0.318) 0-155(0.032;0.320) 0-201(0.077;0.353)
Via 1.006(0.809;1.203) 0-952(0.794;1.116) 0-910(0.751;1.004) 1.101(0.906;1.203) 1.050(0.856;1.244) 0-970(0.776;1.165)
Iy 0.016(0.015;0.018) 0-028(0.026;0.030) 0-066(0.065;0.066) 0-029(0.026;0.032) 0-080(0.074;0.086) 0-031(0.031;0.031)
Cyp 0.222(9.209;0.235) 0-401(0.375;0.428) 0-530(0.529;0.531) 0-403(0.383;0.424) 0-596(0.554;0.637) 0-310(0.309;0.310)
F 0.151(0.104;0.209) 0-208(0.164;0.262) 0-139(0.086;0.220) 0-136(0.074;0.220) 0-198(0.124;0.208) 0.175(0.106;0.275)
TI 72532(61254;83811) 82039(70684;93399) 86180(74169;98175) 68241 (56218;80253) 62159(50117;74173) 60556(49382;71717)
TCy 9948(8373;11532)  9860(3080;11629)  4886(2433;7249) 10491(8392;12612) 6471(5479;7466) 9669 (7851;11478)
TOy  54691(48150;61209) 43095(35437;50734) 62341 (57946;66741) 60376(53662;67092) 53710(49375;58088) 64515(57271;71704)
Tr 19151 (15113;21171) 12124(10299;13921) 21811(20461;23150) 19039(15991;22063) 25881(24221;27553) 22528(21199;23850)
Tro 22.3(12.7,39.1) 62.2(32.0,106.0) 25.1(11.6;44.3) 17.6(8.0;31.4) 49.9(20.8;95.7) 19.1(9.0,33.4)
oy 12.6(4.9;23.3) 82.1(35.2;144.9) 89.2(39.7;161.4)  206.4(93.5;364.5)  95-1(39.6;179.9)  147-3(63.9;266.6)

Table 2: The achieved posterior mean estimates together with 95 per cent credible intervals for
the six subjects.

From the samples obtained from the Markov chains the corresponding posterior densities
may also be computed. Figure 5 gives the posterior density for some of the parameters for
subject 1 with the applied priors superimposed. Table 2 provides the obtained subject dependent
parameter characteristics.
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Figure 5: Posterior densities (bold lines) for the parameters I, Cy, K, K¢, K12, K21 and Vo
for subject 1. Superimposed in thin lines are the applied prior densities.
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Note that Figure 4(d) provides the visited states of the insulin secretion rate r(t) at time ¢ =
10 minutes. Here the insulin secretion rate is measured in pmol/(L min) as r(¢) is relative to
the C distribution volume. In order to determine the actual insulin secretion R(t) = Vg, r(t),
we thus need to rescale with V,. However, in order to allow for a comparison across subjects
we consider only r(t), which is assessed by computing the posterior mean and constructing the
corresponding 95 per cent credible intervals for any ¢ € A. See Figure 6 where also posterior
mean curves and 95 per cent credible intervals for I(¢) and C(t) are provided.

From Figure 6 we see that the proposed simulation algorithm provides realistic time-contin-
uous estimates of the insulin secretion rate compared to Watanabe et al. (1998), where () is
considered as piecewise constant. We observe similar patterns for all six subjects as the insulin
secretion is characterized by a pronounced first phase insulin secretion and then followed by a
moderate second phase insulin secretion.

Having obtained an efficient and flexible technique for assessing the insulin secretion rate
we need investigate the influence of the imposed prior distribution. Thus we perform a prior
sensitivity analysis where univariate marginal likelihoods are computed for each subject depen-
dent parameter by simply dividing the posterior distribution by the applied prior distribution.
See Figure 7 for marginal likelihood functions for the parameters reported in Figure 5. It is
apparent that the prior is not being to dominating in the posterior, since the marginal likelihood
functions are non-constant functions of the parameters under investigation. Marginal likelihood
functions for the remaining parameters for the other subjects exhibit similar behaviour. Thus
we conclude that the prior used is not too restrictive and that the information inherent in the
likelihood is properly accounted for.

6 DISCUSSION

In this paper, we develop and discuss a practical Bayesian approach for estimation of the
prehepatic insulin secretion rate. A superposition of gamma densities serves as a flexible model
of the insulin secretory rate in the extended combined two-compartment C-peptide model. Tra-
ditionally this has been modelled as a piecewise constant function, see e.g. Watanabe et al.
(1998). This combined model allows for assessment of the prehepatic insulin secretion rates
from a single experiment, whereas alternative methods rely upon a two-stage experimental pro-
tocol. See e.g. Sparacino and Cobelli (1996) and Andersen and Hgjbjerre (2005b).

The introduction of the two-compartmental C-peptide kinetics in the extended combined
model leads to an ill-posed estimation problem, which previously has been solved by oscil-
lating between using insulin and C-peptide measurements as forcing functions (Sparacino and
Cobelli, 1996). This iterative procedure for identifying the insulin secretory rates and kinet-
ics parameters is not truly simultaneous. We propose an alternative fully Bayesian approach
to analyzing C-peptide and insulin data simultaneously by recasting the differential equations
in the extended combined model as stochastic processes in a complex graphical model. This
unified graphical model representation of the extended combined model relates the C-peptide
data to insulin data via the insulin secretion rate. Furthermore, the graphical model includes
two distinct types of variability; (1) noise on the actual observations and (2) noise on the latent
processes. The latter type of variability allows the current physiological state of the subjects to
influence on the processes.

The application of reversible jump MCMC methodology allows for efficient and reliable
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for subject 1.

posterior inference on the complete kinetic profile of the prehepatic insulin secretory system.
In addition, adequate inference about important physiological characteristics as e.g. the insulin
surviving extraction in liver F’ and the two elimination constants Kj and K¢ has become possi-
ble. Consequently the analysis presented here is the first analysis of C-peptide and insulin data
from a glucose tolerance test to properly account for simultaneous identification.

The model presented is currently being integrated into a population based approach to the
minimal model of glucose and insulin homeostasis (Bergman et al., 1979; Toffolo et al., 1980).
The minimal model relates the glucose and insulin processes via a latent active insulin process,
see e.g. Andersen and Hgjbjerre (2005a) for a recent fully Bayesian analysis of the minimal
model in a population based setting. However, combining the two distinct models into a com-
plete unified graphical model introduces several new quantities to be assessed. Nevertheless,
the available glucose data provide additional information which may be utilized for establishing
an improved characterization of the pathogenesis of non-insulin dependent diabetes mellitus.
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