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PARAMETRICES AND EXACT PARALINEARISATION

OF SEMI-LINEAR BOUNDARY PROBLEMS

JON JOHNSEN

ABSTRACT. The subject is parametrices for semi-linear problems, based on

parametrices for linear boundary problems and on non-linearities that decompose

into solution-dependent linear operators acting on the solutions. Non-linearities

of product type are shown to admit this via exact paralinearisation. The para-

metrices give regularity properties under weak conditions; improvements in sub-

domains result from pseudo-locality of type 1,1-operators. The framework en-

compasses a broad class of boundary problems in Hölder and Lp -Sobolev spaces

(and also Besov and Lizorkin–Triebel spaces). The Besov analyses of homoge-

neous distributions, tensor products and halfspace extensions have been revised.

Examples include the von Karman equation.

1. INTRODUCTION

This article presents a parametrix construction for semi-linear boundary prob-
lems as well as the resulting regularity properties in Lp-Sobolev spaces. The work
is based on investigations of pseudo-differential boundary operators, paramulti-
plication and function spaces of J.-M. Bony, G. Grubb, V. Rychkov and the au-
thor [Bon81, Gru95, Ryc99b, Joh95, Joh96]; it is also inspired by joint work with
T. Runst [JR97] on solvability of semi-linear problems.

Assume eg that A is an elliptic differential operator, that {A,T} is a linear el-
liptic boundary problem on a domain Ω ⊂ Rn and that, for a suitable non-linear
operator Q, the function u is a given solution of the problem

Au+Q(u) = f in Ω, Tu = ϕ on ∂Ω. (1.1)

It is then a main point to establish a family of parametrices P
(N)
u , N ∈ N, that are

linear operators yielding the following new formula for u:

u = P
(N)
u (R f +Kϕ +Ru)+(RLu)Nu. (1.2)

Here (R K ) is a left-parametrix of the linear problem, ie (R K )( AT ) = I−R where

R has range in C∞(Ω), while Lu is an exact paralinearisation of Q(u). In (1.2),

P
(N)
u has order zero and can roughly be seen as a modifier of data’s contribution
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2 JON JOHNSEN

to u, while (RLu)N is an error term analogous to the negligible errors in pseudo-
differential calculi; it can have any finite degree of smoothness by choosing N large
enough. Precise assumptions on {A,T} and especially Q will follow further below.

The motivation was partly to provide an alternative to boot-strap arguments, for
in the general Lp-setting these can require somewhat lengthy descriptions, even
though the strategy is clear. It was also hoped to find purely analytical proofs,
without iteration, of the regularity properties.

These goals are achieved with the parametrix formula (1.2), for the regularity
of u can be read off in a simple way from the right hand side, as explained below.
And along with stronger a priori regularity of the solution, the parametrices allow
increasingly weaker assumptions on the data. Moreover, the formula (1.2) clearly
gives a structural information, that here is utilised to prove that additional regularity
properties in subregions also carry over to the solutions.

Furthermore, as a gratis consequence of the method, the parametrix formulae
may, depending on the problem and its data, yield that the solution belongs to
spaces, on which the non-linear terms are of higher order than the linear terms, or
are ill-defined. (Such results can often also be obtained with iteration, if the a priori
information of the solution is used in each step.)

Compared to results derived from the paradifferential calculus of J.-M. Bony
[Bon81], the set-up is restricted here to non-linearities of product type, as defined
below, but in the present work the regularity of non-zero boundary data ϕ is taken
fully into account via the term Kϕ (this was undiscussed in [Bon81]). Non-linear
boundary conditions can also be covered with the present methods, but this will be
a straightforward extension, and therefore left out.

As usual, the differential operator Au+Q(u) is called semi-linear when it de-
pends linearly on the highest order derivatives of u. For such operators, it could be
natural to introduce (as below) four parameter domains Dκ , D(Q), D(A,Q) and
Du . Whilst the first two describe {A,T} (κ is the class of T ) and Q, the others
account for spaces on which (1.1) has regularity properties resp. parametrices as
expected for a semi-linear problem.

Notation and preliminaries are settled in Section 2. In a general framework the
main result follows in Section 3. Some needed facts on paramultiplication are given
in Section 4. In Section 5 the exact paralinearisation of non-linearities of product
type is studied. Section 6 presents the consequences for the stationary von Karman
problem, and the weak solutions are carried over to general Lp-Sobolev spaces.
The subject of Section 7 is the parametrix and regularity results obtained for gen-
eral systems of semi-linear elliptic boundary problems in vector bundles; this set-
up should be natural in view of the von Karman problem treated in Section 6.
Concluding remarks follow in Section 8.

1.1. The model problem. Throughout Ω ⊂ Rn is an open set with C∞-boundary
Γ := ∂Ω; n≥ 2. It is an essential, standing assumption that Ω is bounded. The sub-
ject is exemplified in the rest of the introduction by the following model problem,
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where ∆ = ∂ 2
x1

+ · · ·+∂ 2
xn
is the Laplacian, γ0u = u|Γ the trace,

−∆u+u ·∂x1u = f in Ω,

γ0u = ϕ on Γ.
(1.3)

In relation to the parametrices, (1.3) has much in common with the stationary
Navier–Stokes equation, but it is not a system, so it is simpler to present.

Denoting the inverse of
(−∆

γ0

)
by (RD KD ), where the subscript D refers to the

Dirichlét problem for −∆, the formula (1.2) amounts to the following, when ap-
plied to a given solution u,

u = P
(N)
u (RD f +KDϕ)+(RDLu)Nu. (1.4)

This expression should be new even when data and solutions are given in the
Sobolev spaces Hs . But the usefulness of parametrices gets an extra dimension
when the Lp-theory is discussed, so it will be natural to consider at least Sobolev

spaces Hs
p(Ω) and Hölder–Zygmund classes Cs∗(Ω).

However, these are special cases of Besov spaces Bs
p,q(Ω) and Lizorkin–Triebel

spaces Fs
p,q(Ω) (the definition is recalled in (2.5)–(2.6) below), since

Hs
p = Fs

p,2 for 1 < p < ∞ and s ∈ R, (1.5)

Cs
∗ = Bs

∞,∞ for s ∈ R. (1.6)

For the well-knownW s
p spaces,W

s
p = Bs

p,p for non-integer s> 0 andWm
p = Fm

p,2 for

m ∈N, 1 < p < ∞. To avoid formulations with many scales, the exposition will be
based on the Bs

p,q and Fs
p,q spaces, and for brevity Es

p,q will denote a space that is
either Bs

p,q or F
s
p,q (in every occurrence within, say the same formula or theorem).

Moreover, Bs
p,q(Ω) and Fs

p,q(Ω) are defined for p, q∈ ]0,∞] (p< ∞ for Fs
p,q) and

s ∈ R, where the incorporation of p, q < 1 is convenient for non-linear problems,
for as non-linear maps often have natural co-domains with p < 1, the Hs- and Hs

p-
scales would be too tight frameworks. The price one pays for this roughly equals
the burdening of the exposition that would result from a limitation to p, q≥ 1.

Furthermore, Fm
p,1 , 1 ≤ p < ∞ was in [Joh04, Joh05] shown to be maximal do-

mains for type 1,1-operators, ie pseudo-differential operators in OP(Sm1,1); cf Sec-
tion 5.4 below. Such operators show up in the linearisations, so the F -scale is
likely to appear anyway in connection with the parametrices.

If desired, the reader can of course specialise to, say Hs
p by setting q = 2 in the

F -scale, cf (1.5). The main part of the paper deals with the parametrix construc-
tion and its consequences, and it does not rely on a specific choice of Lp-Sobolev
spaces.

For simplicity, (1.3) will in the introduction be discussed in the Besov scale
Bs
p,q . As a basic requirement the spaces should fulfil the following two inequalities,

where for brevity t+ = max(0, t) stands for the positive part of t ,

s > 1
p +(n−1)( 1p −1)+ (1.7a)

s > 1
2 +n( 1p − 1

2)+. (1.7b)
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It is known how these allow one to make sense of the trace and the product, respec-
tively. Working under such conditions, a main question for (1.3) is the following
inverse regularity problem:

(IR)

given a solution u in one Besov space Bs
p,q(Ω),

for data f in Bt−2
r,o (Ω) and ϕ in B

t− 1
r

r,o (Γ),

will u be in Bt
r,o(Ω) too?

Consider eg a solution u in H1(Ω) for data f ∈Cα(Ω), ϕ ∈C2+α(Γ), 0 < α < 1.

(For ϕ = 0 and ‘small’ f ∈ H−1 solutions exist in H1
0 for n = 3 by the below

Proposition 3.3.) The question is then whether u also belongs to C2+α(Ω). The

latter space equals B2+α
∞,∞ (Ω) while H1 = B1

2,2 , so problem (IR) clearly contains a

classical issue; actually (IR) is somewhat sharper because of the third parameter.
In comparison with (IR), direct regularity properties are used for the collection

of mapping properties of eg u 7→ u∂1u or −∆u+u∂1u. An account of these clearly
constitutes another regularity problem (often addressed before (IR) is solved), so it
is proposed to distinguish this from (IR) by using the terms direct/inverse.

In connection with (IR), one purpose of this paper is to test how weak condi-
tions one can impose in addition to (1.7). Along with this, it is described how the
parametrix formula in (1.4) (cf also (1.19) and Theorems 3.2 and 7.6 below) yields
the expected regularity properties. The result is a flexible framework implying that
u ∈ Bt

r,o , also in certain cases when the map u 7→ u∂1u has higher order than −∆

on the target space Bt
r,o , or when u∂1u is ill-defined on Bt

r,o . Examples of this are
given in Theorem 8.1; cf Remark 8.2.

Briefly stated, the above results and their generalisations are deduced from an
exact paralinearisation Lu of u∂1u together with the parametrix (RD KD ) of

(−∆
γ0

)
,

belonging to the Boutet de Monvel calculus of pseudo-differential boundary oper-

ators. When combined with a Neumann series, these ingredients yield P
(N)
u and

the parametrix formula (1.4). This resembles the usual elliptic theory at the place
where non-principal terms are included, but for one thing a finite series suffices
here, as in [Bon81], since the error term (RDLu)Nu in (1.4) only needs to belong to
Bt
r,o ; secondly, it is less simple in the present context to keep track of the spaces on

which the various steps are meaningful.
As another consequence of (1.4), if in an open subregion Ξ ⋐ Ω (ie Ξ has com-

pact closure in Ω, hence positive distance to the boundary) data locally have ad-
ditional properties such as f ∈ Bt1−2

r1,o1(Ξ, loc), then u ∈ Bt1
r1,o1(Ξ, loc) also holds.

These local improvements are deduced from the pseudo-local property of type 1,1-
operators, which was proved recently by the author in [Joh08]; cf Section 5.4.

1.2. On the parametrices. It is perhaps instructive first to review the correspond-
ing linear problem, with u, f and ϕ as in (IR):(−∆

γ0

)
u =

(
f

ϕ

)
. (1.8)
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For the proof that u ∈ Bt
r,o(Ω), there is a straightforward method introduced by

G. Grubb in [Gru90, Thm. 5.4] in a context of Hs
p and classical Besov spaces with

1 < p < ∞.
The argument uses that

(−∆
γ0

)
is an elliptic Green operator belonging to the cal-

culus of L. Boutet de Monvel [BdM71], hence has a parametrix (RD KD ) there (this
calculus is used throughout, not just for (1.8) but also for the semi-linear prob-
lems, cf Section 7 below). As shown in [Gru90, Ex. 3.15], it is possible to take the

singular Green operator part of RD such that the class1 of RD equals

class(γ0)−order(−∆) = 1−2 =−1. (1.9)

With this choice, (RD KD ) has continuity properties in Hs
p spaces as accounted for

in [Gru90, Thm. 5.4]; under the assumptions in (1.7a), continuity from Bt−2
r,o (Ω)⊕

B
t− 1

r
r,o (Γ) to Bt

r,o(Ω) follows from [Joh96, Thm. 5.5].

Being a parametrix, (RD KD )
(−∆

γ0

)
= I−R for some regularising operator R

with range inC∞(Ω), and class 1 (although
(−∆

γ0

)
is invertible, R has been retained

here for easier comparison with the general case). So, using the just mentioned
continuity, an application of (RD KD ) to both sides of (1.8) gives that

u = RD f +KDϕ +Ru belongs to Bt
r,o(Ω). (1.10)

This only requires the mapping properties of
(−∆

γ0

)
and (RD KD ), that are as stated

whenever (s, p,q) and (t,r,o) both satisfy (1.7a).

In the parametrix construction the first step is this: given a solution u of (1.3),
find a linear, u-dependent operator Lu such that, with a sign convention,

Luu =−u∂1u. (1.11)

Here it seems decisive to utilise paralinearisation. On Rn this departs from para-
multiplication, that yields a decomposition of the usual ‘pointwise’ product

v ·w = π1(v,w)+π2(v,w)+π3(v,w), (1.12)

where the π j are paraproducts (cf (4.8) below). In the notation of J.-M. Bony
[Bon81], paramultiplication by v is written Tvw instead of π1(v,w), and π3(v,w) =
Twv = π1(w,v), whilst R(v,w) = vw−Tvw−Twv = π2(v,w) is the remainder.

More specifically, the linearisation Lu has the following form for Ω = Rn ,

−Lug = π1(u,∂1g)+π2(u,∂1g)+π3(g,∂1u)

= Tu(∂1g)+R(u,∂1g)+T∂1u(g).
(1.13)

Here the last line should emphasise how u and g enter. As a comparison g 7→ u∂1g
can be written Tu(∂1·) +R(u,∂1·) + T∂1(·)(u); otherwise this notation will not be
used.

In the usual paralinearisation, the π2-term is omitted since it is of higher reg-
ularity (leading to the famous formula F(u(x)) = π1(F ′(u(x)),u(x)) + smoother
terms). But π2(u,∂1·) is first of all not regularising in the present context, where
u may be given in Bs

p,q or Fs
p,q also for s < n

p (this is possible by (1.7b)), thus

1The class is the minimal r ∈ Z∪{±∞} with continuity Hr→D ′ of the operator.
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allowing u to be unbounded. Secondly, (1.7b) is the only ‘non-linear’ limitation
within the theory, and this arises because π2(u,∂1g) may or may not be defined; by
incorporation of this term into Lu as in (1.13), the resulting limitation is whether
or not Lu itself is defined on g.

In view of this, Lu in (1.13) is throughout referred to as an exact paralinearisation
of u∂1u. As explained in Section 5.4 below, linearisation at u ∈ Bs0

p0,q0 leads to a

pseudo-differential operator in OP(Sω
1,1) for ω = 1+( n

p0
− s0)+ + ε . Besides the

number 1 coming from ∂x1 , the term ( n
p0
− s0)+ + ε appears because u(x) may be

unbounded on Ω (ε ≥ 0, non-trivial only for s0 = n
p0
).

As accounted for in Section 5 below, Lu has this order on all spaces Bs
p,q where

it is shown to be defined; the collection of these spaces will from Section 1.3 on-
wards be referred to as the parameter domain of Lu , denoted by D(Lu). Moreover,
the order is the same as that of Q(u) := u∂1u on Bs0

p0,q0 . Therefore the Exact Para-
linearisation Theorem (Theorem 5.7) can be summed up thus:

Theorem 1.1. On every space in D(Lu), the exact paralinearisation g 7→ Lu(g) is
of the same order as the non-linear map Q on the space Bs0

p0,q0 ∋ u.

This is shown for arbitrary product type operators in Theorem 5.7, and in a
vector bundle set-up in Theorem 7.5 below. For composition operators F(u(x)) it
is known that the theorem holds if s0 > n

p0
since then Lu ∈ OP(S01,1).

On an open set Ω⊂Rn one can combine the linearisation in (1.13) with prolon-
gation and restriction. When rΩ denotes restriction from Rn to Ω, prolongation ℓΩ

is as usual a continuous linear map

ℓΩ : Es
p,q(Ω)→ Es

p,q(Rn); rΩ ◦ ℓΩ = I. (1.14)

In [Tri83, Tri92] there was given a construction, for each N , of ℓΩ such that (1.14)
holds for |s|< N , p,q> 1/N . While it would be possible to work with this here, it
is a more convenient result of V. Rychkov [Ryc99b, Ryc99a] that ℓΩ can be so con-
structed that (1.14) holds for all s ∈ R and all p, q ∈ ]0,∞] (p < ∞ in the F -case),
a so-called universal extension operator. This construction was made for bounded
Lipschitz domains. Briefly stated, the basic step is to apply a fine version of the
Calderon reproducing formula u= ∑ϕν ∗(ψν ∗u) near a boundary point, where the
convolution ψν ∗u (is defined when both u and ψ are supported in a cone and) has
a meningful extension by 0 to Rn \Ω since it is a function; whereafter the convolu-
tion by ϕν gives a smooth function on Rn ; the whole process is controlled in Bs

p,q-
and Fs

p,q-spaces via equivalent norms involving maximal functions, established for
this purpose in [Ryc99b].

Using this, the operator Lu in (1.11) is for the boundary problem (1.3) taken as

Lug =−rΩπ1(ℓΩu,∂1ℓΩg)− rΩπ2(ℓΩu,∂1ℓΩg)− rΩπ3(ℓΩg,∂1ℓΩu). (1.15)

As a convenient abuse, this is also called the exact paralinearisation of u∂1u. It is
not surprising that the mapping properties given in and before Theorem 1.1 carry
over to Lu on Ω, and this turns out to be decisive for the construction.
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To focus on the simple algebra behind the parametrix formula, precise assump-
tions on the spaces will be suppressed until Section 1.3. First it is noted that equa-
tion (1.3), by application of (RD KD ) and insertion of (1.11), will entail that

u−RDLuu = RD f +KDϕ +Ru. (1.16)

The idea is now to apply the finite Neumann series

P
(N)
u := I+RDLu + · · ·+(RDLu)N−1. (1.17)

This will constitute the desired parametrix. Because (RDLu) j is linear

P
(N)
u (I−RDLu) = I− (RDLu)N , (1.18)

hence the resulting parametrix formula is

u = P
(N)
u (RD f +KDϕ +Ru)+(RDLu)N(u). (1.19)

Note that in comparison with (1.10), there are two extra ingredients here, namely

P
(N)
u and (RDLu)Nu, that describe the effects of the non-linear terms.
As a main application of (1.19), one can read off the regularity of a given solu-

tion u ∈ Bs
p,q(Ω) in the following way: An uncomplicated analysis given in Theo-

rem 3.2 below shows two new fundamental results, namely

∃N : Bs
p,q(Ω)

(RDLu)N−−−−−→ Bt
r,o(Ω) (1.20)

∀N : Bt
r,o(Ω) P

(N)
u−−−→ Bt

r,o(Ω). (1.21)

Since RD f +KDϕ +Ru is in Bt
r,o(Ω) by the linear theory, it is therefore clear that

all terms on the right hand side of (1.19) belong to Bt
r,o , as desired, provided N is

chosen as in (1.20).

The possibility of picking P
(N)
u sufficiently regularising resembles the Hadamard

parametrices, cf the description in [Hör85, 17.4]. It is not intended to give a

symbolic calculus containing P
(N)
u (the difficulties in this are elucidated in Re-

mark 5.17); it is rather a point that the parametrices and resulting regularity prop-
erties may be obtained by simpler means.

Seemingly (1.19)–(1.21) have not been crystallised before in connection with
boundary problems. This might be a little surprising, since in a sense they boil
down to the fact that RDLu is of negative order. Along with the algebra above,
it is of course all-important to account for the spaces on which the various steps
are both meaningful and give the conclusions (1.19)–(1.21). However, first some
terminology is settled.

1.3. Maps, orders and parameter domains. A (possibly) non-linear operator T
is said to have order ω on Es

p,q if T maps this space into Es−ω
p,q and ‖T ( f ) |Es−ω

p,q ‖≤
c‖ f |Es

p,q‖ for some constant c. In general this leads to a function ω(s, p,q), for
typically T is given along with a natural range of parameters (s, p,q) for which it
makes sense on Es

p,q ; then the set of such (s, p,q) is denoted by D(T ) and is called
the parameter domain of T .
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The order is differently defined if Es
p,q and Es−ω

p,q are considered over manifolds
of unequal dimensions. But here it suffices to note that for the outward normal

derivative of order k−1 at Γ, ie for γk−1 f := (( ∂
∂~n)

k−1 f )|Γ , there is a well-known
parameter domain Dk given by

Dk =
{

(s, p,q)
∣∣ s > k+ 1

p −1+(n−1)( 1
p −1)+

}
. (1.22)

For if (s, p,q)∈Dk there is continuity of the trace γk : B
s
p,q(Ω)→B

s−k− 1
p

p,q (Γ) and of

γk : F
s
p,q(Ω)→ B

s−k− 1
p

p,p (Γ). The kth domain Dk is also the usual choice for elliptic
boundary problems of class k ∈ Z.

The notion of parameter domains (that was introduced jointly with T. Runst
[JR97]) will be convenient throughout. Indeed, despite its simple nature, the model
problem (1.3) requires four different parameter domains for the analysis of (IR);
further below these will be introduced as D(A ), D(Q), D(A ,Q) and D(Lu) along
with their general analogues.

To characterise the properties leading to parametrices, let N be a non-linear
operator defined on Es

p,q for (s, p,q) running in a parameter domain D(N ). When

compared to a linear operator A having order dA on a domain D(A), then N is
said to be A-moderate on Es

p,q in D(A)∩D(N ) if N is a map Es
p,q→ Es−σ

p,q for
some σ < dA . For short N is simply called A-moderate if such a σ exists on
every space in D(A)∩D(N ).

To generalise this notion, a linear operator Lu will be called a linearisation of
N if for every u ∈ Es

p,q with (s, p,q) in D(N ),

N (u) =−Lu(u). (1.23)

Here Lu should be a meaningful linear operator parametrised by the u (running
through the spaces) in D(N ), or possibly for u in a larger parameter domain
D(L ).

It will be required that, for u ∈ Es0
p0,q0 fixed, g 7→ Lu(g) should be of order

ω(s, p,q), ie be a map Es
p,q → E

s−ω(s,p,q)
p,q , on every Es

p,q in a parameter domain

denoted D(Lu). (It will be seen in Theorem 5.7, ie the full version of the Exact

Paralinearisation Theorem, that D(L ) = R× ]0,∞]2 because the operator Lu is a
meaningful object for all u; but once u is fixed, the parameter domain of g 7→ Lu(g)
is much smaller, and its determination is a main point in Theorem 5.7.) Although
ω is a function ω(s, p,q,s0, p0,q0), the arguments s0, p0,q0 are often left out, since
u is fixed in Es0

p0,q0 ; but for generality’s sake (s, p,q) is kept though ω often is a
constant in this paper.

Definition 1.2. A linearisation Lu with parameter domain D(Lu)⊃ D(N ) is said
to be moderate if, for every linearisation point u in an arbitrary Es0

p0,q0 in D(N ),

ωmax := sup
D(Lu)×D(N )

ω(s, p,q,s0, p0,q0) < ∞. (1.24)

In case there is some (s0, p0,q0) in D(N ) such that sup(s,p,q)∈D(Lu) ω(s, p,q) < ∞,

then Lu is said to be moderate on Es0
p0,q0 . And Lu is said to be A-moderate on



PARAMETRICES OF SEMI-LINEAR PROBLEMS 9

Es0
p0,q0 ∋ u if (s, p,q) ∈ D(A)∩D(Lu) implies

ω(s, p,q,s0, p0,q0) < dA. (1.25)

Moderate linearisations are therefore those that, regardless of the linearisation
point u, have uniformly bounded orders on their entire parameter domains. Clearly
N is A-moderate on Es0

p0,q0 (in D(N )) if Lu is so, for since −Luu = N (u) holds

at (s0, p0,q0) it is trivial that N is a map Es0
p0,q0 → E

s0−ω(s0,p0,q0)
p0,q0 ⊂ Es0−dA

p0,q0 .

Remark 1.3. With the third term of (1.11) equal to rΩπ3(ℓΩ·,∂1ℓΩu), the regularity
of Lug is known to depend mainly on g. Indeed, if u ∈ Bs0

p0,q0(Ω), then Lug has in

general only ( n
p0
− s0)+ +1+ε derivatives less than g; cf Theorem 1.1. This value

is a constant independent of g and n
p0
− s0 < n

2 holds by (1.7b), so ωmax < ∞ and

Lu is moderate; and ∆-moderate if eg s0 ≥ n
p0
.

The linearisation g 7→ u∂1g might look natural, but since u∂1g ∈ Bs
p,q can be

shown to hold if s ≤ s0 , it is of non-constant order ω(t,r,o) ≥ t− s0 on Bt
r,o ∋ g,

hence not moderate because ωmax ≥ supt t− s0 = ∞. Moreover, this order is larger
than that of −∆ when t > s0 +2, so in this region it is not ∆-moderate.

Before justifying the formal steps in (1.16)–(1.19), it is convenient to present
the parameter domains for problem (IR) first. This is done by merely stating the
consequences of the following sections, with reference to the general results.

Departing from the linear part of (1.3), the Dirichlét condition leads to (1.7a),
and since the problem has class 1, one can reformulate this using (1.22), by intro-
duction of the parameter domain of A =

(−∆
γ0

)
as

D(A ) = D1 = {(s, p,q) | s > 1
p +(n−1)( 1

p −1)+ }. (1.26)

For the quadratic operator Q(u) := u∂1u one should have a parameter domain
D(Q) such that Q is well defined on all Bs

p,q and Fs
p,q in this domain. This question

is treated in Proposition 5.5 below, in a context of product type operators studied in
Section 5.1. This yields precisely the condition (1.7b), cf (5.9) and Figure 2 there;
this amounts to the quadratic standard domain of Q,

D(Q) = {(s, p,q) | s > 1
2 +( n

p − n
2)+ }. (1.27)

In the important determination of the spaces on which Q is ∆-moderate, one can
depart from the conclusion of Proposition 5.5 below that Q is of order σ(s, p,q) =
1+( n

p − s)+ + ε , with an ε ≥ 0 nontrivial only for s = n
p . Ie Q is a bounded map

Q : Bs
p,q→ B

s−σ(s,p,q)
p,q . (1.28)

(More precisely, one should instead of Q consider
(
Q
0

)
and check where it is A -

moderate, but it is a convenient abuse to focus on Q and ∆ instead.)
In principle one can now introduce a parameter domain of ∆-moderacy for Q by

solving the inequality σ(s, p,q) < 2 on D(A )∩D(Q), cf (1.25); this leads to

D(A ,Q) := D(A )∩{
(s, p,q) ∈ D(Q)

∣∣ σ(s, p,q) < 2
}
. (1.29)
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However, this calculation is made for a general semi-linear problem with the result
summed up in Corollary 5.9 below. If n ≥ 3 for simplicity, one finds from this
result and the obvious inclusion D(A ) = D1 ⊂ D(Q) that

D(A ,Q) =
{

(s, p,q)
∣∣ s > 1

2 +( n
p − 3

2)+
}
. (n≥ 3) (1.30)

So far the considerations are classical in nature (even if formulated for the Bs
p,q-

spaces). But the use of parameter domains and the concise D-notation will be
particularly useful for the next remarks, that also explain how general regularity
results the present methods can give.

Using the exact paralinearisation, Q(u) =−Lu(u) holds on the entire quadratic
standard domain D(Q), as verified in Lemma 5.4 below. But as a new observation,
g 7→ Lu(g) is for a fixed u ∈ Bs0

p0,q0 defined on every space in

D(Lu) = {(s, p,q) | s > 1− s0 +( n
p + n

p0
−n)+ }. (1.31)

This is part of the content of the Exact Paralinearisation Theorem in Section 5.2
below.

It is not difficult to infer that D(Lu) ⊃ D(Q) holds for (s0, p0,q0) ∈ D(Q), in
general with a considerable gap— for the borderline of D(Q) is obtained from
D(Lu) by setting (s, p,q) and (s0, p0,q0) equal, so when (s0, p0,q0) ∈ D(Q), then
(s, p,q) can lie an exterior part of D(Q) without violating the inequality in (1.31).
It is also clear that D(Lu) increases with improving a priori regularity of u, ie with
increasing s0 or p0 .

Moreover, given a solution u in some Bs0
p0,q0 in D(A ,Q), the parametrices and

the resulting inverse regularity properties are established in the domain

Du = D1∩D(Lu). (1.32)

This is larger than D(A ,Q), for (1.29) gives D(A ,Q)⊂D1∩D(Q)⊂D1∩D(Lu).
It is now possible to sketch a proof of the parametrix formula (1.19) and the

crucial properties in (1.21)–(1.20). Given a solution u of (1.3) in, say Bs0
p0,q0 with

(s0, p0,q0) in D(A ,Q), Theorem 1.1 shows that Lu has order σ(s0, p0,q0) < 2
on all spaces in D(Lu). Therefore RDLu is defined and has order −δ , for some
δ > 0, on all spaces Bs

p,q in Du . Since Du is upwards unbounded, the composite

(RDLu)N is defined and has order −Nδ on Du . So via embeddings, (RDLu)N maps

any Bs
p,q in Du to Ck(Ω) for all sufficiently large N , hence it fulfills (1.20). (This

breaks down for the other linearisations in Remark 1.3, since they are not moder-

ate.) Clearly (RDLu)N is then also of order 0 on every space in Du , so since P
(N)
u is

a sum of such powers, it satisfies (1.21). Then (1.16)–(1.19) follow as identities in
Bs0
p0,q0 , since this space is in D(A ,Q)⊂Du , in particular the parametrix formula is

obtained. As seen after (1.21) this also gives the desired regularity u∈ Bt
r,o at once.

The deduction of the parametrix formula after (1.32) is of course rather straight-
forward. However, this is partly because a few commutative diagrams have been
suppressed in the explanation. Moreover, it is easy to envisage that the arguments
extend to a whole range of eg semi-linear elliptic problems, and perhaps it is most
natural to comment on the generalisations first.
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For other problems the domain D(A ,Q) of A -moderacy will generally be more
complicated than the polygon in (1.30). Eg it may be non-convex and operators cor-
responding to (RDLu)N can have orders bounded with respect to N (unlike −Nδ ).
This is the case for composition type problems with Q(u) = F ◦ u in [JR97]; cf
Figure 1 there. Furthermore, the parameter domains can be ‘tight’ in the sense that
they (unlike the above examples) need not be upwards unbounded; here parabolic
initial and boundary value problems could be mentioned, for if the given data only
fulfill finitely many compatibility conditions, then solutions can only exist in Bs

p,q

for s below a certain limit. Cf [Gru95] for the determination of specific compati-
bility conditions for fully inhomogeneous problems.

In view of this, it seems practical to assume only that the parameter domain
Du is connected. Under this hypothesis it is possible to prove the existence of the
desired N in (1.20) by continuous induction along an arbitrary curve from ( n

p ,s)
to ( nr , t), running inside the parameter domain Du .

These techniques are presented in Section 3, where the brief argument after
(1.32) is replaced by an analytical proof of the parametrix formula. In fact the set-
up in Section 3 is both axiomatic and general, allowing also parabolic problems
and linearisations of non-constant order. The last aspect might be important for
problems with linearisations of F(u(x)) at unbounded solutions u.

However, this paper mainly focuses on non-linearities with a product structure,
as there are ample examples of such problems, and because more general classes
would burden the exposition with more technicalities, or even atypical phenomena.
Therefore generalised multiplication is reviewed in Section 4, and a class of non-
linearites of product type has been introduced in Section 5; these are of the form
P2(P0u ·P1u) for linear differential operators Pj with constant coefficients. As an
example the von Karman equation is treated in Section 6. The abstract results of
Section 3 are exploited systematically in Section 7 on general systems of semi-
linear elliptic boundary problems of product type.

2. PRELIMINARIES

2.1. Notation. For simplicity t± :=max(0,±t) for t ∈R. The bracket [[[[[[A]]]]]] stands
for 1 and 0 when the assertion A is true resp. false. When α ∈Nn

0 is a multiindex,

Dα := (− i)|α|∂ α1
x1

. . .∂ αn
xn

where |α |= α1 + · · ·+αn .

The space of smooth functions with compact support is denoted by C∞
0 (Ω) or

D(Ω), when Ω⊂Rn is open; D ′(Ω) is the dual space of distributions on Ω. 〈u,ϕ〉
denotes the action of u ∈ D ′(Ω) on ϕ ∈ C∞

0 (Ω). The restriction rΩ : D ′(Rn)→
D ′(Ω) is the transpose of the extension by 0 outside of Ω, denoted eΩ : C∞

0 (Ω)→
C∞
0 (Rn). Using this, C∞(Ω) = rΩC

∞(Rn) etc.
The Schwartz space of rapidly decreasingC∞-functions is written S or S (Rn),

while S ′(Rn) stands for the space of tempered distributions. The Fourier transfor-

mation of u is Fu(ξ ) =
∧
u(ξ ) =

∫
Rn e−ix·ξu(x)dx, with inverse F−1v(x) = v̌(x).

The space of slowly increasing functions, ie C∞-functions f fulfilling |Dα f (x)| ≤
cα〈x〉Nα for all mulitindices α is written OM(Rn); hereby 〈x〉= (1+ |x|2)1/2 .
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The singular support of u ∈ D ′ , denoted singsuppu, is the complement of the
largest open set on which u acts a C∞-function. Outside of F := singsuppu, mol-
lification behaves as nicely as one could expect (the following could be folklore):

for ψ ∈C∞
0 (Rn), with ψk(x) = ε−nk ψ(ε−1k x) for 0≤ εk→ 0, one has

ψk ∗u→ c0u in C∞(Rn \F); c0 =
∫

ψ dx. (2.1)

For if K ⋐ Rn with K∩F = /0 and 1= ϕ +η with ϕ ∈C∞
0 (Rn) and suppϕ∩F = /0,

K∩suppη = /0, uniform continuity of Dα(ϕu) gives supK |Dα(ψk ∗ϕu−c0ϕu)|ց
0. And by the theorem of supports, ψk ∗ (ηu) = 0 near K , eventually.

It will later be convenient that this holds more generally for ψ ∈S (Rn), even
though the convolution ψk ∗ (ηu) need not vanish in K :

Lemma 2.1. For u ∈S ′(Rn), ψ ∈S (Rn), the regularising sequence ψk ∗u con-

verges to (
∫

ψ dx) ·u in the C∞-topology on Rn \ singsuppu; ie it fulfills (2.1).
Proof. Continuing the above, one has 0 < dist(K,suppη) ≤ εk〈ε−1k (x− y)〉 for
x ∈ K , y ∈ suppη , and

|〈ηu, Dα
x ψk(x−·)〉| ≤ c sup

y∈Rn, |β |≤N
〈y〉N∣∣Dβ

y (
η(y)

ε
n+|α|
k

Dαψ(
x− y

εk
))

∣∣. (2.2)

Since 〈y〉N ≤ cK〈 x−yεk
〉N for εk < 1, and powers of 〈ε−1k (x−y)〉 may be absorbed in

an S -seminorm on ψ , it follows that supK |Dα(ψk ∗ (ηu))| ≤Cεkց 0. �

Remark 2.2. Lemma 2.1 was called the Regular Convergence Lemma (and Rn \
singsuppu the regular set of u) in [Joh08], where it played a significant role in
investigations of type 1,1-operators and products.

2.2. Spaces. Norms and quasi-norms are written ‖x |X‖ for x in a vector space X ;
recall that X is quasi-normed if the triangle inequality is replaced by the existence
of c≥ 1 such that all x and y in X fulfil ‖x+y |X‖ ≤ c(‖x |X‖+‖y |X‖) (“quasi-”
will be suppressed when the meaning is settled by the context). Eg Lp(Rn) and

ℓp(N) for p ∈ ]0,∞] are quasi-normed with c = 2( 1
p−1)+ ; this is seen because both

ℓp and Lp for 0 < p≤ 1 satisfy the following, for λ = p,

‖ f +g‖ ≤ (‖ f‖λ +‖g‖λ )1/λ , (2.3)

where on the right Hölder’s inequality applies to the dual exponents 1/p and
1/(1− p).

For brevity ‖ f‖p := ‖ f |Lp‖ for f ∈ Lp(Ω), with Ω⊂ Rn an open set. X1⊕X2

denotes the product space topologised by ‖x1 |X1‖+‖x2 |X2‖. For a bilinear oper-
ator B : X1 ⊕ X2 → Y , continuity is equivalent to boundedness and to existence
of a constant c such that ‖B(x1,x2) |Y‖ ≤ c‖x1 |X1‖‖x2 |X2‖. In the affirma-
tive case, the least possible c is the operator norm ‖B‖ = sup{‖B(x1,x2) |Y‖ |
for j = 1,2 : ‖x j |X j‖ ≤ 1}.

The spaces Bs
p,q(Rn) and Fs

p,q(Rn) are, with conventions as in [Yam86a], defined
as follows: First a Littlewood–Paley decomposition is constructed using a function
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Ψ in C∞(R) for which Ψ ≡ 0 and Ψ ≡ 1 holds for t ≥ 13/10 and t ≤ 11/10,
respectively. Then Ψ j(ξ ) := Ψ(2− j|ξ |) and

Φ j(ξ ) = Ψ j(ξ )−Ψ j−1(ξ ) (Ψ−1 ≡ 0) (2.4)

gives Ψ j = Φ0 + · · ·+ Φ j for every j ∈ N0 , hence 1 ≡ ∑∞
j=0 Φ j on Rn . As a

shorthand ϕ(D) will denote the pseudo-differential operator with symbol ϕ , ie

ϕ(D)u = F−1(ϕ ·Fu), say for ϕ ∈S (Rn).
For a smoothness index s∈R, an integral-exponent p∈ ]0,∞] and sum-exponent

q ∈ ]0,∞], the Besov space Bs
p,q(Rn) and the Lizorkin–Triebel space Fs

p,q(Rn) are
defined as

Bs
p,q(Rn) =

{
u ∈S ′(Rn)

∣∣ ∥∥{2s j ‖Φ j(D)u(·) |Lp‖}∞
j=0

∣∣ℓq∥∥ < ∞
}
, (2.5)

Fs
p,q(Rn) =

{
u ∈S ′(Rn)

∣∣ ∥∥‖{2s jΦ j(D)u}∞
j=0 |ℓq‖(·)

∣∣Lp

∥∥ < ∞
}

. (2.6)

Throughout it will be tacitly understood that p < ∞ whenever Lizorkin–Triebel
spaces are under consideration. Bs

p,q(Rn; loc) etc. denote the spaces of distributions
that locally belong to the above ones.

The spaces are described in eg [RS96, Tri83, Tri92, Yam86a]. They are quasi-
Banach spaces with the quasi-norms given by the finite expressions in (2.5) and
(2.6). Using (2.3) twice, they are seen to fulfill (2.3) for λ = min(1, p,q).

Among the embedding properties of these spaces one has Bs
p,q →֒Bs−ε

p,q for ε > 0,

and if in the second line Ω⊂Rn is open and bounded with Bs
p,q(Ω) := rΩB

s
p,q(Rn)

endowed with the infimum norm,

Bs
p,q →֒ Bt

r,o for s− n

p
= t− n

r
, p > r; o = q, (2.7)

Bs
p,q(Ω) →֒ Bs

r,q(Ω) for p≥ r. (2.8)

The analogous holds for Fs
p,q , except that F

s
p,q →֒ F t

r,o if only s− n
p

= t− n
r
, p > r.

Moreover, Bs
p,q →֒ L∞ holds if and only if s > n/p or both s = n/p and q≤ 1; and

Fs
p,q →֒ L∞ if and only if s > n/p or both s = n/p and p≤ 1.

For the reader’s sake a few lemmas are recalled. They are concerned with con-
vergence of a series ∑∞

j=0 u j fulfilling the dyadic ball condition: for some A > 0

suppFu j ⊂ {ξ ∈ Rn | |ξ | ≤ A2 j }, for j ≥ 0. (2.9)

Lemma 2.3 (The dyadic ball criterion). Let s>max(0, n
p −n) for p,q∈ ]0,∞] and

suppose u j ∈S ′(Rn) fulfil (2.9) and

B := (
∞

∑
j=0

2s jq‖u j‖qp)
1
q < ∞. (2.10)

Then ∑∞
j=0 u j converges in S ′(Rn) to some u lying in Bs

p,q(Rn) and ‖u |Bs
p,q‖≤ cB

for some c > 0 depending on n, s, p and q.
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Lemma 2.4 (The dyadic ball criterion). Let s > max(0, n
p − n) for 0 < p < ∞,

0 < q≤ ∞, and suppose u j ∈S ′(Rn) fulfil (2.9) and

F(q) :=
∥∥(

∞

∑
j=0

2s jq|u j(·)|q) 1
q
∥∥
p
< ∞. (2.11)

Then ∑∞
j=0 u j converges in S ′(Rn) to some u lying in Fs

p,r(Rn) for

r ≥ q, r > n
n+s

, (2.12)

and ‖u |Fs
p,r‖ ≤ cF(r) for some c > 0 depending on n, s, p and r.

This follows from the usual version in which s > max(0, n
p − n, n

q − n) is re-
quired, for one can just pass to larger values of q if necessary. Lemma 2.4 em-
phasises that the interrelationship between s and q is inconsequential for the mere
existence of the sum.

It is also well known that the restrictions on s can be entirely removed if ∑u j

fulfils the dyadic corona condition: for some A > 0, suppFu0 ⊂ {|ξ | ≤ A} and
suppFu j ⊂ {ξ ∈ Rn | 1

A
2 j ≤ |ξ | ≤ A2 j }, for j > 0. (2.13)

Lemma 2.5 (The dyadic corona criterion). Let u j ∈S ′(Rn) fulfil (2.13) and (2.10).
Then ∑∞

j=0 u j converges in S ′(Rn) to some u for which ‖u |Bs
p,q‖ ≤ cB for some

c > 0 that depends on n, s, p and q. And similarly for Fs
p,q(Rn), if F(q) < ∞.

These lemmas are proved in eg [Yam86a]. To estimate the numbers B and F

in the above criteria, the following summation lemma is often useful: for any se-
quence (a j) in C, s < 0 and q, r ∈ ]0,∞],

(
∞

∑
j=0

2s jq(
j

∑
k=0

|ak|r)
q
r )

1
q ≤ c(s,q,r)‖2s ja j |ℓq‖. (2.14)

For s> 0 the analogous holds if the second sum is over k≥ j instead. (Cf [Yam86a,
Lem. 3.8] for r = 1.)

For the estimates of the exact paralinearisation in Section 5.3 and 5.4, the fol-
lowing vector-valued Nikol′skiı̆–Plancherel–Polya inequality will be convenient.

Lemma 2.6. Let 0 < r < p < ∞, 0 < q ≤ ∞ and A > 0. There is a constant c

such that for every sequence of functions fk ∈ Lr(Rn)∩S ′(Rn) with suppF fk ⊂
B(0,A2k), ∥∥(

∞

∑
k=0

| fk|q)1/q
∣∣Lp

∥∥≤ c
∥∥sup

k

2( n
r− n

p )k| fk|
∣∣Lr∥∥ . (2.15)

The ordinary Nikol′skiı̆–Plancherel–Polya inequality results from this if fk 6= 0
holds only for one value of k. (Lemma 2.6 itself can be reduced to this version by
means of an elementary inequality in [BM01, Lem. 4], cf [JS07].)

To treat the examples in Proposition 2.10 below tensor products will be useful.
However, lacking a thorough reference to this, the next result is given. It improves
[JR97, Prop. 2.7] by including the case s > 0. A proof using the above dyadic
corona criterion is supplied, partly because [JR97, Prop. 2.7] was stated without
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details, partly because it then is more natural to omit the details behind the better
known, but analogous, paraproduct estimates recalled in Remark 4.3 below.

Lemma 2.7. The continuous map (u,v) 7→ u⊗ v from S ′(Rn′)×S ′(Rn′′) to

S ′(Rn′+n′′) restricts to bounded bilinear maps

Bs
p,q(Rn′)×Bs

p,q(Rn′′)→ Bs
p,q(Rn′+n′′) for s > 0, (2.16)

Bs′
p,q(Rn′)×Lp(Rn′′)→ Bs′

p,q(Rn′+n′′) for s′ < 0,1≤ p≤ ∞, (2.17)

Bs′
p,q′(R

n′)×Bs′′
p,q′′(R

n′′)→ Bs′+s′′
p,q (Rn′+n′′) for s′,s′′ < 0, 1q = 1

q′ +
1
q′′ . (2.18)

Proof. For u ∈S ′(Rn′) and v ∈S ′(Rn′′) there is a decomposition, when Ψ′N =
Φ′0 + · · ·+Φ′N refers to a Littlewood–Paley decomposition on Rn′ with the present

conventions, so that uk = Φ′k(D)u, uk = Ψ′k(D)u, and similarly for v on Rn′′ ,

u⊗ v = lim
N→∞

F−1((Ψ′N⊗Ψ′′N)F (u⊗ v)) =
∞

∑
k=0

(ukvk−1 +ukvk). (2.19)

Both series on the right-hand side fulfill the dyadic corona condition (2.13), since

ξ = (ξ ′,ξ ′′) for ξ ′ ∈ Rn′ , ξ ′′ ∈ Rn′′ and |(ξ ′,0)| ≤ |ξ | ≤ |ξ ′|+ |ξ ′′| yield eg
ξ ∈ suppF (ukvk−1) =⇒ 11

202
k ≤ |ξ | ≤ 13

10(2
k +2k−1) = 39

202
k. (2.20)

For 1≤ p≤ ∞ the usual convolution estimate gives

2sk ‖ukvk−1 |Lp(Rn′+n′′)‖ ≤ 2ks‖uk‖p‖F−1Ψ′′‖1‖v‖p, (2.21)

and since Bs
p,q →֒ Lp for s > 0, p ≥ 1, it follows from Lemma 2.5 by calculation

of the ℓq-norms that∥∥∑ukv
k−1 ∣∣Bs

p,q(Rn′+n′′)
∥∥≤ c‖u |Bs

p,q(Rn′)‖‖v |Bs
p,q(Rn′′)‖. (2.22)

The other series is treated the same way, and thus follows (2.16) for p ≥ 1. For
p < 1 one has ‖vk−1‖p ≤ ‖|v0|+ · · ·+ |vk|‖p ≤ ‖v |F0

p,1‖ ≤ c‖v |Bs
p,q‖, and this

instead of (2.21) extends (2.16) to all p ∈ ]0,∞].
Since (2.21) holds for all s, it suffices for (2.17) to estimate ∑ukvk . By (2.14),

∑2s
′kq‖uk‖qp ≤∑2s

′kq(‖u0‖p + · · ·+‖uk‖p)q ≤ c∑2s
′kq‖uk‖qp. (2.23)

Using Lemma 2.5, it follows as above that ‖∑ukvk |Bs′
p,q‖ ≤ c‖u |Bs′

p,q‖‖v‖p .
To prove (2.18) one can use the summation lemma for both uk and vk−1 since

both s′ , s′′ < 0. Combining this with Hölder’s inequality for ℓq , the above proce-

dure gives a bound of ‖u⊗ v |Bs′+s′′
p,q ‖ by c‖u |Bs′

p,q′‖‖v |Bs′′
p,q′′‖. �

2.3. Examples. The delta measure δ0 ∈ B
n
p−n
p,∞ (Rn) for 0 < p ≤ ∞; this well-

known fact follows directly from (2.5) since 2 j( n
p−n)‖Φ̌ j‖p is j-independent.

Other examples include |x|a , that for a >−n and p≥ 2 was shown in [Yam88]

to be locally in B
n
p +a
p,∞ (Rn) at x = 0. For 0 < p ≤ ∞ there is a technical treatment

via differences in [RS96, Sect.2.3] of |x|a| log |x||−b , but without details for the case
b = 0 that is used in the present paper.
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As a novelty, the Regular Convergence Lemma (Lemma 2.1) yields a direct
argument for a large class of homogeneous distributions: recall that u ∈D ′(Rn) is
homogeneous of degree a ∈ C if

〈u, ϕ 〉= tn+a〈u, ϕ(t·)〉, ∀t > 0, ∀ϕ ∈C∞
0 (Rn). (2.24)

When u ∈ S ′(Rn) this extends to ϕ ∈ S (Rn) by closure. This applies to the
Littlewood–Paley decomposition 1= ∑∞

j=0 Φ j , where Φ j(ξ ) = Φ(2− jξ ) for j ≥ 1

and a fixed Φ ∈C∞ (namely Φ = Ψ(| · |)−Ψ(2| · |)), so (2.24) gives directly
2 jaΦ j(D)u(x) = 〈u, 2 j(a+n)Φ̌(2 jx−2 j·)〉= Φ(D)u(2 jx). (2.25)

Therefore 2 j( n
p +Rea)‖Φ j(D)u‖p = ‖Φ(D)u‖p , which is a constant independent of

j. This can be exploited if u is assumed to have the origin as the only singularity:

Proposition 2.8. Let u ∈ D ′(Rn) be C∞ on Rn \{0} and homogeneous of degree

a ∈ C there, ie (2.24) holds for all ϕ ∈C∞
0 (Rn \{0}).

Then u is locally at x = 0 in B
n
p +Rea
p,∞ (Rn) for 0 < p ≤ ∞. If −n < Rea < 0

it holds for − n
Rea < p ≤ ∞ that u ∈ B

n
p +Rea
p,∞ (Rn); this holds also for p = ∞ if

Rea = 0. The Besov space conclusions are sharp with respect to s and q, unless u

is a homogenenous polynomial (which is the only case in which u ∈C∞(Rn)).

Proof. The function Dαu on Rn \ {0} acts on ϕ like ta−|α|Dαu(t−1x). Hence

Dαu has degree a−|α |, and t = |x| entails |Dαu(x)| ≤ cα |x|Rea−|α| for x 6= 0, all
|α | ≥ 0.

If u ∈ C∞(Rn), the homogeneity of Dαu gives Dαu ≡ 0 for Rea− |α | < 0
(otherwise Dαu would be discontinuous at x = 0), and that Dαu(0) = 0 for Rea−
|α |> 0. Therefore Taylor’s formula gives at once that u ≡ 0 if Rea /∈ N0 , or else
that u is a homogeneous polynomial (and a ∈ N0).

The homogeneity and smoothness on Rn \{0} together imply that u ∈S ′ with
Fu in C∞(Rn\{0}). This is known, cf [Hör85, Thm 7.1.18], but easy to see with a
few ideas used here anyway: for χ ∈C∞

0 (Rn), χ(0) = 1, one has u= χu+(1−χ)u,
where the second term is in OM by the above, ie u∈ E ′+OM ⊂S ′ . And ξ αDβ ∧u=
FDα((−x)βu) is in F (E ′+L1)⊂C0 for |α |> a+ |β |+n, so

∧
u is C∞ for x 6= 0.

By the Paley–Wiener–Schwartz Theorem Φ j(D)(χu) ∈ S (Rn). In particular
for j = 0 this gives ‖Φ0(D)(χu)‖p < ∞, while for j ≥ 1 it follows from (2.24) ff
that, cf (2.25),

Φ j(D)(χu)(x) = 〈u, χ2 jnΦ̌(2 jx−2 j·)〉= 2− jaΦ(D)(χ(2− j·)u)(2 jx). (2.26)

Here χ(2− j·) is handled with Lemma 2.1, for since Φ = 0 near singsupp
∧
u = {0},

(2π)−nΦ(
∧
u∗ (2 jn ∧χ(2 j·)))→ χ(0)Φ

∧
u in C∞

0 (Rn). (2.27)

Then the continuity of the embedding S →֒ Lp and of the quasi-norm ‖ · ‖p gives
lim
j→∞

2 j( n
p +Rea)‖Φ j(D)(χu)‖p = ‖Φ(D)u‖p < ∞. (2.28)
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Hence χu ∈ B
n
p +Rea
p,∞ (Rn) for all p. Note that the right hand side is zero if and only

if Φ
∧
u ≡ 0, that by the homogeneity of

∧
u is equivalent to supp

∧
u ⊂ {0}, that holds

if and only if u is a polynomial.
For −n < Rea < 0 and some p ∈ ]− n

Rea ,∞]⊂ ]1,∞], note first that

|x|Rea is in Lp for |x|> 1 ⇐⇒ pRea <−n. (2.29)

Since Lp ∗ L1 ⊂ Lp for p ≥ 1, it follows that Φ̌0 ∗ u belongs to Lp + S ⊂ Lp .

Likewise Φ̌0 ∗u ∈ L∞ for Rea = 0, for u is bounded for |x|> 1 by the first part of

this proof. Now (2.25) gives that 2 j( n
p +Rea)‖Φ j(D)u‖p equals ‖Φ(D)u‖p , which

is finite since Φ
∧
u ∈C∞

0 . Therefore u ∈ B
n
p +Rea
p,∞ (Rn).

Because Lp ⊃ B
n
p +Rea
p,∞ for Rea+ n

p > 0, the range for p is sharp, up to the end

point p = −n/Rea, by (2.29). Since the other Besov space conclusions follow

from identities, the spaces B
n
p +Rea
p,∞ are optimal (unless u is a polynomial). �

Remark 2.9. By Proposition 2.8,
P(x)
Q(x) ∈B

n
p
p,∞(Rn; loc), 0< p≤∞, for two homoge-

neous polynomials P, Q both of degree a≥ 1 such that Q(x) = 0 only for x= 0. In
case P 6=Q are real and n≥ 2, this has a special singularity since every neighbour-
hood of the origin is mapped onto the proper interval [min|x|=1

P
Q
,max|x|=1

P
Q
]. But

the obtained Besov regularity B
n
p
p,∞ is the same as the well-known one for simple

jump discontinuities across a hyperplane.

Invoking Lemma 2.7, the above analysis now leads to results for homogeneous
distributions that are constant in n− k variables. A local version is given with
optimal results for 1≤ p < ∞.

Proposition 2.10. If Ω ⊂ Rn , n ≥ 2 is an open set with 0 ∈ Ω and the variables

are split as x = (x′,x′′) for x′ = (x1, . . . ,xk), x′′ = (xk+1, . . . ,xn), then it holds for

every u(x′) in D ′(Rk) that is homogeneous of degree a ∈ C and C∞ outside of the

origin that

f (x) = rΩ[u(x′)⊗1(x′′)] (2.30)

belongs to Bs
p,∞(Ω) for s ≤ k

p +Rea, except possibly for p = ∞ if Rea = 0. For
p≥ 1 this result is sharp with respect to s.

Proof. By Proposition 2.8, it follows from (2.16)–(2.17) that v(x)= (ϕ1(x′)u(x′))⊗
ϕ2(x′′) is in B

k
p +Rea
p,∞ (Rn) for k

p +Rea 6= 0 when the ϕ j are both inC
∞
0 . For Rea= 0

this excludes p = ∞, while for Rea < 0 a gap is left at p0 = k/(−Rea), but this
can be closed by Hölder’s inequality, for if 1

p0
= 1

2p1
+ 1

2p2
for some exponents

p1 < p0 < p2 , then each j ≥ 0 yields ‖v j‖p0 ≤ ∏m=1,2(2
j( k
pm

+Rea)‖v j‖pm)
1
2 ≤

∏‖v |B
k
pm

+Rea

pm,∞ ‖1/2 . Taking ϕ1⊗ϕ2 equal to 1 on Ω one finds, with the mentioned
exception p = ∞ for Rea = 0,

f = rΩv ∈ Bs
p,∞(Ω) for s = k

p +Rea, 0 < p≤ ∞. (2.31)
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Conversely, if f is in this space for some s, it holds that w= (θ1⊗θ2) f ∈ Bs
p,∞(Rn)

when the θ j ∈ C∞
0 are supported sufficiently close to the origin. The support of

Φ′j(ξ ′)Φ′′0(ξ
′′)
∧
w intersects that of Φk(ξ ) only for | j−k| ≤ 2, so for p≥ 1 the con-

volution result Lp ∗ L1 ⊂ Lp gives ‖Φ′j(D′)Φ′′0(D′′)w‖p ≤ c∑|h|≤2 ‖Φ j+h(D)w‖p .
Consequently

sup
j≥0

2s j ‖Φ′′0(D
′′)θ2 |Lp(Rn−2)‖‖Φ′j(D

′)(θ1 f ) |Lp(R2)‖

≤ csup
j≥0

∑
|h|≤2

2s j‖Φ j+h(D)w‖p ≤ c1 ‖w |Bs
p,∞‖. (2.32)

Taking θ2 positive yields
∧
θ 2(0) =

∫
θ2 6= 0, so ‖Φ′′0(D′′)θ2‖p > 0 and as a result

of this ‖θ1 f |Bs
p,∞(R2)‖< ∞. Then Proposition 2.8 gives s≤ k

p +Rea. �

Since δ0 has degree −n on Rn , it is a special case that, for 0 ∈Ω, x = (x′,xn),

f (x) = 1(x′)⊗δ0(xn) is in B
1
p−1
p,∞ (Ω), 0 < p≤ ∞. (2.33)

3. THE GENERAL PARAMETRIX CONSTRUCTION

3.1. An abstract framework. For the applicability’s sake Theorem 3.2 below is
proved in a general set-up. If desired, the reader may think of the spaces X s

p as

Hs
p(Ω) and consider A to be an elliptic operator like

(−∆
γ0

)
etc. The concepts in

Section 1.3 are used freely, in particular this is so for parameter domains.

In the following five axioms, n ∈ N and d ∈ R are two fixed numbers, playing
the role of the dimension and the order of the linear operator A, respectively, and I

denotes the identity map:

(I) Two scales X s
p and Y s

p of vector spaces are given with (s, p) in a common

parameter set S ⊂ R× ]0,∞]. In the X s
p-scale there are the usual simple,

Sobolev and finite-measure embeddings; ie for (s, p), (t,r) ∈ S,

X s
p ⊂ X s−ε

p when ε > 0, (3.1)

X s
p ⊂ X t

r when s≥ t and s− n
p = t− n

r , (3.2)

X s
p ⊂ X s

r when p≥ r. (3.3)

(II) There is a linear map A := A(s,p) , with parameter domain D(A)⊂ S,

A : X s
p→ Y s−d

p , (s, p) ∈ D(A). (3.4)

There is also for all (s, p) ∈ D(A), a linear map Ã : Y s−d
p → X s

p such that

R := IX s
p
− ÃA has range in

⋂
(s,p)∈D(A)

X s
p. (3.5)
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Inclusions
⋃

D(A)X
s
p ⊂X and

⋃
D(A)Y

s−d
p ⊂ Y hold for some vector

spaces X , Y ; and for (s, p), (t,r)∈D(A) there is a commutative diagram

X s
p∩X t

r
I−−−−→ X s

p

I

y yA(s,p)

X t
r

A(t,r)−−−−→ Y .

(3.6)

Likewise Ã should be unambiguously defined on Y s−d
p ∩Y t−d

r .

(III) There is a non-linear operator N , with parameter domain D(N ) ⊂ S,
which for every (s0, p0) in D(N ) and every u ∈ X s0

p0
has a linearisation

Bu , ie N (u) =−Bu(u), where Bu is a linear map

Bu : X
s
p→ Y

s−d+δ (s,p)
p with D(Bu)⊃ D(N ). (3.7)

For (s, p), (t,r)∈D(Bu) there is a commutative diagram analogous to (3.6)
for Bu (hence for N ).

(IV) For u as in (III), the domain D(A)∩D(Bu) is connected with respect to the
metric dist((s, p),(t,r)) given by ((s− t)2 +( n

p − n
t )

2)1/2 .
(V) For u as in (III), the function δ (s, p) satisfies

(s+δ (s, p), p) ∈ D(A) for every (s, p) ∈ D(A)∩D(Bu), (3.8)

inf
{

δ (s, p)
∣∣ (s, p) ∈ K

}
> 0 for every K ⋐ D(A)∩D(Bu). (3.9)

For the proof of Theorem 3.2 below it is unnecessary to assume that the embed-
dings in (I) should hold for the Y s

p spaces too (although they often do so in practice).
As it stands (I) is easier to verify in applications to parabolic boundary problems;
cf Remark 8.3 below.

For X s
p = Hs

p(Ω) it is natural to let S = R× ]1,∞[ ; the L2-theory comes out

for S = R×{2}. Besov spaces Bs
p,q would often require q to be fixed and S =

R× ]0,∞]. Anyhow X = D ′(Ω) could be a typical choice. Continuity of A and Ã

is not required (although both will be bounded in most applications).
Suppressing (s, p) in A is harmless in the sense that A by (3.6) is a well-defined

map with domain
⋃

D(A)X
s
p in X ; it is linear only on each ‘fibre’ X s

p . Similarly Ã

is a map on
⋃

D(A)Y
s−d
p . Moreover, A eg extends to a linear map on the algebraic

direct sum
⊕

X s
p ⊂X if and only if (when ′ indicates finitely many non-trivial

vectors)

0 = ∑
′

D(A)
v(s,p) =⇒ ∑

D(A)
A(s,p)(v(s,p)) = 0.

By (3.6) ff, R may be thought of as an operator from
⋃

D(A)X
s
p to

⋂
D(A)X

s
p .

For brevity the arguments s0 , p0 are suppressed in the function δ . By (III), the

map N sends X s
p into Y

s−d+δ (s,p)
p for each (s, p) in D(N ) (since D(N )⊂D(Bu)

for every u in X s
p). This fact will be used tacitly. Note that δ (s, p) > 0 by (3.9), so

(III) implies that N (u) has Bu as a moderate linearisation with ω = d− δ (s, p),
according to Definition 1.2.
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Via the transformation (s, p) 7→ ( n
p ,s), the reader should constantly think of

D(A), D(N ) and D(Bu) as subsets of [0,∞[×R. In the examples the boundary
of D(N ) (or a part thereof) often consists of the (s0, p0) for which δ ≡ 0, so
it may seem natural to require D(N ) to be open in [0,∞[×R. However, such
an assumption is avoided because it is unnecessary and potentially might exclude
application to weak solutions of certain problems; cf the below Section 6.

The function δ is in practice often constant with respect to (s, p), but depending
effectively on (s0, p0); cf Remark 1.3. When this is the case and furthermore N
has a natural parameter domain D(N ) on which δ can take both positive and
negative values, it is natural to use

D(N ,δ ) = {(s0, p0) ∈ D(N ) | δ > 0} (3.10)

as the parameter domain of N , instead of D(N ). Then N will be A-moderate
on the domain

D(A,N ) = D(A)∩D(N ,δ ). (3.11)

With σ(s, p) := d − δ (s, p), it is clear that D(A,N ) is a generalisation of the
domain D(A ,Q) introduced for the model problem in (1.29). We now return to
this.

Example 3.1. To elucidate (I)–(V) above, one may in (1.3) set A=
(−∆

γ0

)
and X s

p =
Bs
p,q(Ω), whereby q ∈ ]0,∞] is kept fixed. For the operator Ã there is a parametrix

of A belonging to the Boutet de Monvel calculus (cf Section 7.1 below). Using Lu
from (1.15), Bu and Y

s
p are taken as

Buv =
(
Luv

0

)
, Y s−2

p = Bs−2
p,q (Ω)⊕B

s− 1
p

p,q (Γ). (3.12)

For any ε ∈ ]0,1[ it is possible to take δ (s, p) as the constant function

δ (s, p) =


1 for s0 > n

p0
,

1− ε for s0 = n
p0

,

s0− n
p0

+1 for n
p0

> s0 > n
p0
−1.

(3.13)

See the below Theorem 5.7. As mentioned in Remark 5.10, this theorem and Corol-
lary 5.9 also gives the parameter domains, for any fixed u ∈ X s0

p0
,

D(A) = {(s, p) | s > 1
p +(n−1)( 1p −1)+ }= D1, (3.14)

D(N ) =
{

(s, p)
∣∣ s > 1

2 +( np − n
2)+

}
, (3.15)

D(N ,δ ) =
{

(s, p)
∣∣ s > 1

2 +( np − 3
2 + 1

2[[[[[[n = 2]]]]]])+
}

= D(A,N ), (3.16)

D(Bu) =
{

(s, p)
∣∣ s > 1− s0 +( np + n

p0
−n)+

}
. (3.17)

Being isometric to a polygon in [0,∞[×R, the set D(A)∩D(Bu) clearly satisfies
(IV); when (s0, p0) ∈ D(A)∩D(Bu), then condition (V) may be verified directly
from (3.13).
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3.2. The Parametrix Theorem. Using the above abstract framework, it is now
possible to establish a main result of the article in a widely applicable version.

Theorem 3.2. Let X s
p , Y

s
p and the mappings A and N be given such that condi-

tions (I)–(V) above are satisfied.

(1) For every

u ∈ X s0
p0

with (s0, p0) ∈ D(A)∩D(N ) (3.18)

the parametrix P(N) = ∑N−1
k=0 (ÃBu)k is for every N ∈ N a linear operator

P(N) : X s
p→ X s

p for all (s, p) ∈ D(A)∩D(Bu) =: Du . (3.19)

And for every (s′, p′), (s′′, p′′)∈Du there exists N
′ ∈N such that the “error

term” (ÃBu)N is a linear map

(ÃBu)N : X s′
p′ → X s′′

p′′ for N ≥ N′. (3.20)

(2) If some u fulfils (3.18) and solves the equation

Au+N (u) = f (3.21)

with data f ∈ Y t−d
r for some (t,r) ∈ Du, (3.22)

one has for every N ∈ N the parametrix formula

u = P(N)(Ã f +Ru)+(ÃBu)Nu. (3.23)

And consequently u ∈ X t
r too.

Proof. For arbitrary (s, p) ∈ Du , one can use (II) and (3.8) to see that Ã is defined

on Y
s−d+δ (s,p)
p , hence that ÃBu is a well defined composite

X s
p

Bu−→ Y
s−d+δ (s,p)
p

Ã−→ X
s+δ (s,p)
p . (3.24)

Since X s+δ
p →֒ X s

p by (I), the operator ÃBu is of order 0 on X s
p ; hence P(N) :=

∑N−1
j=0 (ÃBu) j is a linear map X s

p −→ X s
p . This shows the claim on P(N) .

Concerning (ÃBu)N , there is, by (IV), a continuous map k : I → Du , with I =
[a,b], such that

k(a) = (s′, p′), k(b) = (s′′, p′′). (3.25)

Clearly δk := inf
{

δ (s, p)
∣∣ (s, p) ∈ k(I)

}
> 0 by (V), and for (s, p) ∈ k(I)

X s
p

ÃBu−→ X
s+δ (s,p)
p →֒ X s+δk

p . (3.26)

With Xk(τ) := X s
p when k(τ) = (s, p), let M := supT for

T =
{

τ ∈ I
∣∣ ∃N ∈ N : (ÃBu)N(X s′

p′)⊂ Xk(τ)
}
. (3.27)

Then a ≤ M ≤ b since ÃBu(X s′
p′) ⊂ X s′+δ

p′ ⊂ Xk(a) . It now suffices to show that

b ∈ T , for (ÃBu)N(X s′
p′) ⊂ Xk(b) = X s′′

p′′ for some N ∈ N then; and (ÃBu)N equals

(ÃBu)N−N
′
(ÃBu)N

′
for N > N′ , so the full claim on ÃBu would follow because

(3.26) shows that (ÃBu)N−N
′
is of order 0 on X s′′

p′′ .
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For one thing M ∈ T : by continuity of k there is a τ ′ < M in T such that,
when | · | denotes the Euclidean norm on R2 and the isometry (s, p)↔ ( n

p ,s) is
suppressed,

|k(τ ′)− k(M)|< δk/2 (3.28)

and (ÃBu)N−1(X s′
p′)⊂Xk(τ ′) for some N . But by (3.26) this entails that (ÃBu)N(X s′

p′)
is a subset of a space with upper index at least δk higher than that of Xk(τ ′) , so the

embeddings in (I) show that (ÃBu)N(X s′
p′) is contained in any space in the intersec-

tion of S and a convex polygon; cf the dashed line in Figure 1 below. It follows

that (ÃBu)N(X s′
p′) is contained in every X s

p lying in S and fulfilling

|k(τ ′)− (s, p)|< δk/
√
2, (3.29)

so in particular (ÃBu)N(X s′
p′)⊂ Xk(M) is found from (3.28); whence M ∈ T .

•

• Xk(τ ′)

•
Xk(M)

δk/
√
2

(ÃBu)N(X s′
p′)s

FIGURE 1. The ( n
p ,s)-plane with the ball in (3.29) and a polygon

of spaces containing (ÃBu)N(X s′
p′).

Secondly, M = b follows from k(I)’s connectedness: assuming that τ ∈ ]M,b]
exists, the curve k(τ) would for some τ > M lie in the open δk

2 -ball around k(M).
Then |k(τ)− k(M)| ≤ δk

2 < δk√
2
would hold, so that the proved fact M ∈ T would

imply (as above) that (ÃBu)N(X s′
p′)⊂ Xk(τ) , contradicting that τ /∈ T .

According to (II), (III) and the assumptions in the theorem, the mapping Ã has
the same meaning on both sides of (3.21), regardless of whether one refers to Y s0−d

p0

or to Y t−d
r (on the left and the right hand sides, respectively). Therefore (3.5) and

the assumption (s0, p0) ∈ D(N ) entail

(I−R)u− ÃBuu = Ã f . (3.30)
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For the given u and f , it follows by calculation of the telescopic sum that

P(N)(I− ÃBu)u =
N−1
∑
j=0

(ÃBu) j(I− ÃBu)u = (I− (ÃBu)N)u, (3.31)

and P(N) has the same meaning when applied to both sides of (3.30). Therefore
(3.30), (3.31) yield (3.23).

Note that the term P(N)(Ã f + Ru) in (3.23) is in X t
r in view of (3.5) and the

proved fact that P(N) has order 0 on X t
r . By (3.20) also (ÃBu)Nu is in X t

r , so this
holds for every given solution u too. �

Applications of Theorem 3.2 to systems of elliptic boundary problems are de-
veloped in Section 7 below for non-linear terms of product type. In this context
(3.8) in (V) is redundant, for with D(A) equal to one of the standard domains Dk

it is for any η > 0 clear that (s+ η , p) belongs to D(A) when (s, p) does so. But
(3.8) is inserted in preparation for applications to other non-linearities, like |u|a
with non-integer a > 0; and to parabolic problems, cf Remark 8.3 below.

3.3. A solvability result. As an addendum to the Parametrix Theorem, it is used
for the solvability in eg problem (IR) and Theorem 8.1 below that bilinear pertur-
bations of linear homeomorphisms always give well-posed problems locally, ie for
sufficiently small data.

It should be folklore how to obtain this from the fixed-point theorem of contrac-

tions. The proof extends to any quasi-Banach space X for which ‖ · ‖λ is subaddi-

tive for some λ ∈ ]0,1], for d(x,y) = ‖x−y‖λ is a complete metric on X then. (For
Bs
p,q and Fs

p,q the existence of λ is easy to see, cf (2.6) ff.) In lack of a reference
the next result is given, including details for the lesser known quasi-Banach space
case.

Proposition 3.3. Let A : X → Y be a linear homeomorphism between two quasi-

Banach spaces and B : X ⊕X → Y be a bilinear bounded map. When ‖ · |X‖λ is

subadditive for some λ ∈ ]0,1] and y ∈ Y fulfills

‖A−1y |X‖< ‖A−1B‖−14−1/λ , (3.32)

then the ball ‖x |X‖< ‖A−1B‖−12−1/λ contains a unique solution of the equation

Ax+B(x) = y. (3.33)

This solution depends continuously on y in the ball (3.32).

Proof. When R := A−1 , the equation is equivalent to x = Ry− RB(x) =: F(x),
where also RB =: B′ is bilinear and ‖B′‖ ≤ ‖R‖‖B‖ . Bilinearity gives
‖F(x)−F(z)‖λ ≤‖B′(x,x−z)‖λ +‖B′(x−z,z)‖λ ≤‖B′‖λ (‖x‖λ +‖z‖λ )‖x−z‖λ ,

(3.34)
so F is a contraction on the closed ball Ka = {x ∈ X | ‖x‖ ≤ a} if a fulfills

2‖B′‖λaλ < 1. By the assumptions D := 1−4‖Ry‖λ‖B′‖λ > 0, so

‖Ry‖λ +‖B′‖λ t2 < t ⇐⇒ t ∈ ]1−√D
2‖B′‖λ

,
1+
√
D

2‖B′‖λ

[
; (3.35)
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here the interval contains t = aλ , when aλ is sufficiently close to (2‖B′‖λ )−1 . So,
since x ∈ Ka implies ‖F(x)‖λ ≤ ‖Ry‖λ + ‖B′‖λa2λ , it follows from (3.35) that
F(x) ∈ Ka , ie F is a map Ka→ Ka for such a. Hence x = F(x) is uniquely solved
in Ka . If also Ax′+B(x′) = y′ for some x′ ∈ Ka ,

‖x− x′‖λ ≤ ‖R(y− y′)‖λ +2aλ‖B′‖λ‖x− x′‖λ , (3.36)

so d(x,x′) ≤ cd(Ry,Ry′) for c = (1− 2aλ‖B′‖λ )−1 < ∞. This gives the well-
posedness in Ka , but with the leeway in the choice of a the proposition follows. �

4. PRELIMINARIES ON PRODUCTS

A brief review of results on pointwise multiplication is given before the non-
linear operators of product type are introduced in Sections 5 and 7 below.

4.1. Generalised multiplication. In practice non-linearities often involve multi-
plication of a non-smooth function and a distribution in D ′ \Lloc1 , as in u∂1u when

u ∈ H
1
2+ε for small ε > 0. Although it suffices for a mere construction of solu-

tions to extend (u,v) 7→ u · v by continuity to a bounded bilinear form defined on
Hs×H−s for some s > 0, the proof of the regularity properties will in general in-
volve extensions to Fs

p,q×F−sp,q for several exponents p and q. This would clearly
cause a problem of consistency among the various extensions, and for q = ∞ there
would, moreover, not be density of smooth functions to play on. Commutative dia-
grams like (3.6) would then be demanding to verify for the product type operators,
so a more unified approach to multiplication is preferred here.

Since a paper of L. Schwartz [Sch54] it has been known that products with
a few reasonable properties cannot be everywhere defined on D ′×D ′ , and as a
consequence many notions of multiplication exist, cf the survey [Obe92]. But for
the present theory it is important to use a product π(·, ·) that works well together
with paramultiplication on Rn and also allows a localised version πΩ to be defined
on an open set Ω⊂Rn . A product π with these properties was analysed in [Joh95],
cf also [RS96], and for the reader’s sake a brief review is given.

The product π is defined on Rn by simultaneous regularisation of both factors:
for ψk(ξ ) = ψ(2−kξ ) with ψ ∈C∞

0 (Rn) equal to 1 in a neighbourhood of ξ = 0,

π(u,v) := lim
k→∞

(ψk(D)u) · (ψk(D)v). (4.1)

Here u and v ∈S ′(Rn), and they are required to have the properties that this limit
should both exist in D ′(Rn) for all ψ of the specified type and be independent of

the choice of ψ . (ψk(D)u := F−1(ψk
∧
u) etc.)

This formal definition is from [Joh95], but analogous limits have been known
for a long time in the D ′-context. As shown in [Joh95, Sect. 3.1], π(u,v) coincides
with the usual pointwise multiplication:

Llocp (Rn)×Llocq (Rn) ·−→ Llocr (Rn), 0≤ 1
r = 1

p + 1
q ≤ 1, (4.2)

OM(Rn)×S ′(Rn) ·−→S ′(Rn). (4.3)
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For later reference, the main tool for (4.2) and localisation to open sets Ω is recalled
from [Joh95, Prop. 3.7]: if either u or v vanishes in Ω, then any ψ as in (4.1) gives

0 = lim
k→∞

rΩ(ψk(D)u ·ψk(D)v)) in D ′(Ω). (4.4)

When π(u,v) is defined, (4.4) implies suppπ(u,v)⊂ suppu∩ suppv (this is obvi-
ous for (4.2)–(4.3)). But as a consequence of Lemma 2.1, the limit in (4.4) exists
in any case when one of the factors vanish in Ω.

Using (4.4), πΩ(u,v) is defined for an arbitrary open set Ω ⊂ Rn on those u, v
in D ′(Ω) for which U , V ∈S ′(Rn) exist such that rΩU = u, rΩV = v and

πΩ(u,v) := lim
k→∞

rΩ[(ψk(D)U) · (ψk(D)V )] exists in D ′(Ω) (4.5)

independently of ψ ∈C∞
0 (Rn) with ψ ≡ 1 near ξ = 0. Hereby πΩ is well defined,

for (4.4) implies that the limit is independent of the ‘extension’ (U,V ), hence the
ψ -independence is so (cf [Joh95, Def 7.1]). But as π(U,V ) need not be defined, it
is clearly essential that rΩ is applied before passing to the limit.

4.2. Boundedness of generalised multiplication. Using (4.5), it is easy to see,
and well known, that πΩ inherits boundedness from π on Rn as follows:

Proposition 4.1. Let each of the spaces E0 , E1 and E2 be either a Besov space

Bs
p,q(Rn) or a Lizorkin–Triebel space Fs

p,q(Rn), chosen so that π(·, ·) is a bounded
bilinear operator

π : E0⊕E1→ E2. (4.6)

For the corresponding spaces Ek(Ω) := rΩEk over an arbitrary open set Ω ⊂ Rn ,

endowed with the infimum norm, πΩ is bounded

πΩ(·, ·) : E0(Ω)⊕E1(Ω)→ E2(Ω). (4.7)

In the result above it is a central question under which conditions (4.6) actu-
ally holds. This was almost completely analysed in [Joh95, Sect. 5] by means of
paramultiplication. To prepare for the definition and analysis (further below) of the
exact paralinearisation, this will now be recalled.

First, by using (2.4) and setting Φ j ≡ 0 ≡ Ψ j for j < 0, the paramultiplica-
tion operators πm(·, ·) with m = 1, 2, 3 (in the sense of M. Yamazaki [Yam86a,
Yam86b, Yam88]), are defined for those f , g ∈S ′(Rn) for which the series below
converge in D ′(Rn):

π1( f ,g) =
∞

∑
j=0

Ψ j−2(D) fΦ j(D)g (4.8a)

π2( f ,g) =
∞

∑
j=0

(Φ j−1(D) fΦ j(D)g+Φ j(D) fΦ j(D)g+Φ j(D) fΦ j−1(D)g)

(4.8b)

π3( f ,g) =
∞

∑
j=0

Φ j(D) fΨ j−2(D)g (4.8c)



26 JON JOHNSEN

This applies to (4.1) by taking ψk = Ψk , for Ψk = Φ0 + · · ·+ Φk , so that bilin-
earity gives that the limit on the right hand side of (4.1) equals ∑m=1,2,3 πm(u,v),
whenever each πm(u,v) exists—but this existence is easily analysed for each m by
standard estimates. In fact π1( f ,g) and π3( f ,g) both exist for all f , g ∈S ′(Rn),
as observed in [MC97, Ch. 16], so π(u,v) is defined if and only if the second series
π2(u,v) is so. Finally the ψ -independence is established post festum; cf [Joh95,
Sect. 6.4].

For convenience Es
p,q will now denote a space which (for every value of (s, p,q))

may be either a Besov or a Lizorkin–Triebel space on Rn . It was proved in [Joh95,
Thm. 4.2], albeit with (4.10b) and (4.11b) essentially covered by [Fra86b], that if

‖ f g |Es2
p2,q2‖ ≤ c‖ f |Es0

p0,q0‖‖g |Es1
p1,q1‖ (4.9)

holds for all Schwartz functions f and g, then

s0 + s1 ≥ n( 1
p0

+ 1
p1
−1), (4.10a)

s0 + s1 ≥ 0. (4.10b)

As a supplement to this, the following were also established there:

s0 + s1 = n
p0

+ n
p1
−n implies

{
1
q0

+ 1
q1
≥ 1 in BB•-cases,

1
q0

+ 1
p1
≥ 1 in BF •-cases;

(4.11a)

s0 + s1 = 0 implies 1
q0

+ 1
q1
≥ 1. (4.11b)

The main interest lies in the BB•- and FF •-cases and the case with max(s0,s1) > 0
(for s0 = s1 = 0 Hölder’s inequality applies). In this situation the sufficiency of
the above conditions was entirely confirmed by means of (4.8), cf the following
version of [Joh95, Cor 6.12] for isotropic spaces:

Theorem 4.2. When max(s0,s1) > 0, then it holds in the BB•- and FF •-cases that
Es0
p0,q0 and Es1

p1,q1 on Rn are ‘multiplicable’ if and only if both (4.10a)–(4.10b) and
(4.11a)–(4.11b) hold.

The spaces that receive π(Es0
p0,q0 ,E

s1
p1,q1) were almost characterised in [Joh95],

departing from at least 8 other necessary conditions, but the below Theorem 5.7
will imply what is needed in this direction.

Remark 4.3. To prepare for Theorem 5.7 below, a few estimates of the π j are

recalled. When 1
p2

= 1
p0

+ 1
p1
, 1
q2

= 1
q0

+ 1
q1
, there is boundedness

π1 : L∞⊕Bs
p,q→ Bs

p,q (4.12)

π1 : B
s0
p0,q0⊕Bs1

p1,q1 → Bs0+s1
p2,q2 for s0 < 0, (4.13)

π2 : B
s0
p0,q0⊕Bs1

p1,q1 → Bs0+s1
p2,q2 for s0 + s1 > ( n

p2
−n)+. (4.14)

Since π3( f ,g) = π1(g, f ), also π3 is covered by this. Analogous results hold for
the Lizorkin–Triebel spaces, except that Lemma 2.4 for s0+s1 > ( n

p2
−n)+ entails

π2 : F
s0
p0,q0⊕Fs1

p1,q1 → F
s0+s1
p2,t when

{
t ≥ q2 for q2 ≥ p2

t > n
n+s0+s1

for q2 < p2.
(4.15)
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These estimates all follow from the dyadic corona and ball criteria in a way that is
standard by now, so details are omitted (the arguments can be found in a refined
version for a special case in Proposition 4.5 below, cf also the proof of Lemma 2.7).
They go back to the paradifferential estimates of M. Yamazaki [Yam86a], but in the
simpler context of paramultiplication an account of the estimates may be found in
eg [Joh95, Thm 5.1], though with (4.15) as a small improvement.

Remark 4.4. It is used in Section 8 below that multiplication cannot define a con-
tinuous map Wm

1 ⊕Wm
1 → D ′ when 2m < n. When the range is a Besov space

this follows on Rn from (4.10a), but for the general statement an explicit proof

should be in order. If ρ ∈C∞
0 is real and ρk(x) = 1

k
2k(n−m)ρ(2kx), it is easy to see

that ‖ρk |Wm
1 ‖= O(1

k
)ց 0. But for ϕ ∈C∞

0 non-negative with ϕ(0) = 1, 2m < n

implies

〈ρ2
k , ϕ 〉= k−22k(n−2m)

∫
ρ2(y)ϕ(2−ky)dy→ ∞. (4.16)

This argument works for open sets Ω ∋ 0 and extends to all Ω⊂Rn by translation.

4.3. Extension by zero. Having presented the product π(·, ·) formally, the oppor-
tunity is taken to make a digression needed later.

In Section 6–7 the operators A and Ã of Section 3 will be realised through the
Boutet de Monvel calculus of linear boundary problems, so it will be all-important
to have commuting diagrams like (3.6) for the operators in the calculus. Avoid-
ing too many details, the main step is to show that truncated pseudo-differential
operators are defined independently of the spaces. As the question is local, it is
enough to treat them on the half-space Rn

+ = {xn > 0}, where they are of the form
P+ = r+Pe+ for a ps.d.o. P defined on S ′(Rn), so it suffices to define e+ on all
spaces with s close to 0 (e+ := eRn

+
, r+ := rRn

+
). However, setting e+u = π(χ,v)

when r+v = u and χ denotes the characteristic function of Rn
+ , it follows from

(4.4) that π(χ,v) at most depends on v in the null set {xn = 0}. But since the
spaces in the next result only contain trivial distributions supported in this hyper-
plane, this suffices for a space-independent definition of e+u when u belongs to
these spaces.

Proposition 4.5. The characteristic function χ of Rn
+ yields a bounded map

π(χ, ·) : Es
p,q(Rn)→ Es

p,q(Rn), (4.17)

for Besov and Lizorkin–Triebel spaces with 1
p −1+(n−1)( 1

p −1)+ < s < 1
p .

The Fs
p,q-part of this will be based on a similar result of J. Franke [Fra86a,

Cor. 3.4.6]. In principle Franke analysed another product as he estimated χv

for supp
∧
v compact and extended by continuity to Fs

p,q (for q = ∞ using Fatou’s
lemma). But the full treatment of P+ in Bs

p,q and Fs
p,q-spaces is also based on

the splitting of π in (4.8), so it is important that Franke’s product equals π(χ,v).
This was exploited in [Joh96], albeit without details, so it is natural to take the
opportunity to return to this point during the
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Proof of Proposition 4.5. In view of (4.8) it suffices for Bs
p,q to show bounds

‖πm(χ,u) |Bs
p,q‖ ≤C‖u |Bs

p,q‖ for m = 1, 2, 3. (4.18)

Using Remark 4.3, this holds for m = 1 for every s because χ ∈ L∞ . And L∞ ⊂
B0

∞,∞ , so for m = 2 it holds for s > ( n
p −n)+ , while for m = 3 it does so for s < 0.

The last two restrictions on s will be relaxed using the anisotropic structure of χ .
For brevity uk := Φk(D)u, uk := Ψk(D)u etc. Now π3(χ,u) = ∑k≥2 χku

k−2 . If
H is the Heaviside function, χ(x) = 1(x′)⊗H(xn) and

χk = cF−1(Φk(ξ )δ0(ξ ′)⊗
∧
H(ξn)) = 1(x′)⊗F−1

ξn→xn
(Φk(0,ξn)

∧
H). (4.19)

For the second factor, note that 2k
∧
H(2kξn) =

∧
H(ξn) since H is homogeneous of

degree zero, so

Hk(xn) = F−1(Φ1(0,2−k·)
∧
H)(xn) = 2kF−1(Φ1(0, ·)

∧
H(2k·))(2kxn) = H1(2kxn).

(4.20)
Here Hk refers to the decomposition 1 = ∑Φ j(0,ξn) on R. For k ≥ 1 this gives

‖Hk |Lp(R)‖= 2−(k−1)/p ‖H1 |Lp(R)‖< ∞. (4.21)

Indeed, Φ1(0, ·)
∧
H ∈S (R) because FH = − i

τ F (∂tH(t)) = 1
iτ for τ 6= 0; hence

H1 ∈ Lp . Note that H̃ := H −H0 , by (4.21) and Lemma 2.5, is in B
1/p
p,∞(R) for

0 < p≤ ∞.
To handle the factor 1(x′) in (4.19), there is a mixed-norm estimate

‖χku
k−2 |Lp‖p ≤

∫
(sup
t∈R
|uk−2(x′, t)|)p dx′ ‖Hk |Lp(R)‖p (4.22)

so that s− 1
p < 0 in view of the summation lemma (2.14) yields

∑
k>1

2skq‖χku
k−2‖qp ≤ c ∑

k>1

2
(s− 1

p )kq( ∑
0≤l≤k

‖ul |Lp(L∞)‖min(1,p))
q

min(1,p) ‖H1‖qp

≤ c‖H1‖qp ∑
k≥0

2(s− 1
p )kq ‖uk |Lp(L∞)‖q

≤ c‖ H̃ |B
1
p
p,∞‖q ‖u |Bs

p,q‖q.

(4.23)

Indeed, the last step follows from the Nikol′skiı̆–Plancherel–Polya inequality, cf
Lem. 2.6 ff, when this is used in the xn-variable (for fixed x′ the Paley–Wiener–
Schwartz Theorem gives that u(x′, ·) has its spectrum in the region |ξn| ≤ 2k+1).
By the dyadic corona criterion, cf Lemma 2.5, this proves π3(χ,u) ∈ Bs

p,q , hence

the case m = 3 for s < 1
p .

For m = 2 only 1
p − 1 < s ≤ 0 remains; this implies 1 < p ≤ ∞. It can be as-

sumed that u0 = 0, for u may be replaced by u−u0−u1 because χ ∈ L∞ implies
that π2(χ,u0 + u1) belongs to

⋂
t>0B

t
p,q by Lemma 2.5. Then π2(χ,u) is split in

three contributions, with details given for ∑ χkuk (terms with χkuk−1 and χk−1uk
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are treated analogously). In the following it is convenient to replace (u j) tem-
porarily by (0, . . . ,0,uN , . . . ,uN+M,0, . . .), in which the entries are also called u j

for simplicity. In this way the below series trivially converge.
Note that the Nikol′skiı̆–Plancherel–Polya inequality used in xn yields

‖Φ j(D) ∑
k≥ j−1

χkuk‖p ≤ c ∑
k≥ j−1

∥∥Φ̌ j ∗ (χkuk)
∣∣Lp,x′(L1,xn)

∥∥2 j(1− 1
p ). (4.24)

In this mixed-norm expression, Fubini’s theorem gives for k ≥ 1∫
|Φ̌ j ∗ (χkuk)(x′,xn)|dxn ≤ ‖Hk‖1

∫∫
|Φ̌ j(x′− y′,xn)|dxn sup

t∈R
|uk(y′, t)|dy′.

(4.25)
Reading this as a convolution on Rn−1 , the usual Lp-estimate leads to

‖Φ̌ j ∗ (χkuk) |Lp(L1)‖ ≤ ‖Hk‖1‖Φ̌ j‖1 ‖uk |Lp(L∞)‖. (4.26)

In view of (4.24) and (2.14) ff this gives, since s+1− 1
p > 0 and suppF (χkuk) is

disjoint from suppΦ j unless k > j−2 (and since u0 = 0),

∑
j≥0

2s jq‖Φ̌ j ∗∑
k≥0

χkuk‖qp ≤ c ∑
j≥0

2(s+1− 1
p ) jq( ∑

k≥ j−1
‖Hk‖1 ‖uk |Lp(L∞)‖)q

≤ c′ ∑
j≥0

2(s+1− 1
p ) jq‖H j‖q1 ‖u j |Lp(L∞)‖q

≤ c′ ‖ H̃ |B1
1,∞(R)‖q ∑

j≥0
2s jq‖u j‖qp < ∞.

(4.27)

For q< ∞ the right hand side tends to 0 for N→∞, so the π2-series is fundamental
in Bs

p,q . There is also convergence for q = ∞, since u ∈ Bs−ε
p,1 for some ε > 0 such

that s− ε + 1− 1
p > 0. The above estimate then also applies to the original (u j),

which yields (4.18) for m = 2.

To cover the Fs
p,q-case, note the continuity Bs+ε

p,1

π(χ,·)−−−→ Bs+ε
p,1 →֒ Fs

p,q for p < ∞
and sufficiently small ε > 0. If Franke’s multiplication by χ is denoted Mχ , it

follows that Bs+ε
p,1

Mχ−−→ Fs
p,q is continuous. Since F−1C∞

0 is dense in Bs+ε
p,1 and Mχ

extends the pointwise product on F−1C∞
0 by χ , it follows that Mχ coincides with

π(χ, ·) for all Besov spaces with (s, p,q) as in the theorem, if p < ∞. But then
they coincide on all the Fs

p,q spaces, so π(χ, ·) is bounded on Fs
p,q as claimed. �

Remark 4.6. The above direct treatment of the Besov spaces should be of some
interest in itself, in view of the mixed-norm estimates that allow a concise proof of
all cases.

5. PRODUCT TYPE OPERATORS

A basic class of non-linear operators and their paralinearisations can now be
formally introduced:
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Definition 5.1. Operators of product type (d0,d1,d2) on an open set Ω ⊂ Rn are
maps (or finite sums of maps) of the form

(v,w) 7→ P2πΩ(P0v,P1w), (5.1)

for linear partial differential operators Pj of order d j , j = 0,1,2, with constant
coefficients. The quadratic map u 7→ P2πΩ(P0u,P1u) is also said to be of product
type.

Although (5.1) often just amounts to P2(P0v ·P1w), it is in general essential to
use πΩ from (4.5) in this definition, because the product cannot always be reduced
to one of the forms in (4.2)–(4.3). In Section 7 below the notion of product type
operators will be extended to certain maps between vector bundles.

The case with P2 = I is throughout referred to as an operator of type (d0,d1).
Generally d0 , d1 , d2 appear in the same order as the Pj are applied.

If for simplicity P2 = I is considered, the operator πΩ(P0u,P1u) may of course be
viewed as a homogeneous second order polynomial p(z1, . . . ,zN) composed with
a jet Jku = (Dαu)|α|≤k , k = max(d0,d1). But in general this jet description is too
rigid, for a given operator of product type with P2 = I may be the restriction of one
with P2 6= I , cf Example 5.2. And conversely P2πΩ(P0u,P1u) may extend another
one of the type in (5.1).

These differences lie not only in the various expressions such operators can be
shown to have, but also in the parameter domains they may be given. Consider eg

u 7→ u ·∂1u, u 7→ 1

2
∂1(u2). (5.2)

The latter coincides with the former at least for u ∈ C∞ . By Hölder’s inequality,
∂1(u2) is a bounded bilinear map L4(Rn)→ H−1(Rn), so its natural parameter
domain contains (s, p) = (0,4). But it is not easy to make sense of u∂1u, as a map

L4→H−1 ; even with the product π it is problematic, for by (4.10b) this is not well

defined on L4⊕H−14 . Hence it seems best (in analogy with minimal and maximal
differential operators in L2(Ω)) to treat the expressions in (5.2) as two different
operators, with different parameter domains.

More general classifications of non-linear operators are available in the litera-
ture; the reader may consult eg [Bon81, Sect. 5] and [Yam88, § 2]. But as discussed
in the introduction, the product type operators defined above are adequate for fixing
ideas and for important applications.

Example 5.2. For a useful commutation of differentiations to the left of the point-
wise product, consider as in Section 6 below the ‘von Karman bracket’:

[v,w] := D2
1vD

2
2w+D2

2vD
2
1w−2D2

12vD
2
12w. (5.3)

Introducing the expression

B(v,w) = D2
12(D1vD2w+D2vD1w)−D2

1(D2vD2w)−D2
2(D1vD1w), (5.4)

then B(v,w) = [v,w] whenever v and w are regular enough to justify application of
Leibniz’ rule. Clearly B(·, ·) is a case with P2 6= I .
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Definition 5.3. For each choice of Ψk in (2.4), the exact paralinearisation Lu of
Q(u) = P2π(P0u,P1u) on Rn is defined as follows,

Lug =−P2π1(P0u,P1g)−P2π2(P0u,P1g)−P2π3(P0g,P1u). (5.5)

For Ω ⊂ Rn and a universal extension operator ℓΩ , cf (1.14), the composite g 7→
rΩLU(ℓΩg) with U = ℓΩu is also referred to as the exact paralinearisation; it is
written Lu for brevity.

The rationale is that Lug has circa the same regularity as g (contrary to the case
of linearisations that are not moderate). Cf Theorem 5.7 below.

Conceptually, Definition 5.3 invokes an interchange of the maps ℓΩ and Pj ,
compared to (5.1), where P0 and P1 are applied before the implicit extensions to
Rn in πΩ ; cf (4.5). The advantage is that Lug then has the structure of a composite
map rΩ ◦Pu ◦ ℓΩ(g) for a certain pseudo-differential operator Pu of type 1,1; cf
Theorem 5.15 below.

However, as justification PjℓΩv = ℓΩPjv in Ω, whence the localisation property
in (4.4) implies that −Luu gives back the original product type operator:

Lemma 5.4. Let u belong to a Besov or Lizorkin–Triebel space Es
p,q(Ω) such that

the parameters (s−d j, p,q) j=0,1 fulfil (4.10)–(4.11) and s > max(d0,d1). Then

P2πΩ(P0u,P1u) =−Lu(u). (5.6)

This holds for any choice of ℓΩ and Ψk (or Φk ) in the definition of Lu .

Proof. Let P2 = I for simplicity. Theorem 4.2 gives that the parameters (s−
d j, p,q) j=0,1 belong to the parameter domain of π on Rn , so it holds for all v,

w ∈ Es
p,q(Ω) that

πΩ(P0v,P1w) = rΩπ(P0ℓΩv,P1ℓΩw) = rΩ lim
k→∞

(ψk(D)P0ℓΩv) · (ψk(D)P1ℓΩw)).

(5.7)
Indeed, π(P0ℓΩv,P1ℓΩw) is defined, and rΩ commutes with the limit by its D ′-
continuity, whilst the PjℓΩv restrict to Pjv, so the product πΩ(P0,P1w) exists and
(5.7) holds.

The choice of ℓΩ is inconsequential for rΩπ(P0ℓΩv,P1ℓΩw), since the left hand
side of (5.7) does not depend on this; similarly one can take ψk = Ψk (the formal
definition of πΩ in (4.5) is essential here). Now (5.6) follows upon insertion of
v = w = u, for by (4.8) ff and the formula Ψk = Φ0 + · · ·+Φk , the right hand side
of (5.7) then equals the formula for −Lu(u) in (5.5), since the π j -series converge
by the assumption on (s, p,q) and the remarks following (4.8). �

The above introduction of paralinearisation is not the only possible, but the in-
tention here is to make the relation to the ‘pointwise’ product on Ω clear.

5.1. Estimates of product type operators. For a general product type opera-
tor B(·, ·) := π(P0·,P1·) a large collection of boundedness properties now follows
from the theory reviewed in Section 4.1–4.2. Indeed, using Theorem 4.2 it is clear
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that π(P0·,P1·) is bounded from Es0
p0,q0⊕Es1

p1,q1 to some Besov or Lizorkin–Triebel
space provided

s0 + s1 > d0 +d1 +( n
p0

+ n
p1
−n)+. (5.8)

The standard domain D(B) of the bilinear operator B is the set of (pairs of triples
of) parameters (s j, p j,q j) j=0,1 that satisfy this inequality. Since it works equally
well for the BBB- and FFF -cases, the notation is the same in the two cases.

For the map Q(u) := B(u,u) the parameter domain D(Q) derived from (5.8) is
termed the quadratic standard domain of Q (or of B). For this domain one has the
next result on the direct regularity properties of product type non-linearities.

Proposition 5.5. Let B(v,w) be an operator of product type (d0,d1,d2) with d0 ≤
d1 . The quadratic standard domain D(Q) consists of the (s, p,q) fulfilling

s > d0+d1
2 +( n

p − n
2)+, (5.9)

and for each such (s, p,q) the non-linear operator Q is bounded

Q : Bs
p,q→ B

s−σ(s,p,q)
p,q (5.10)

when σ(s, p,q), for some ε > 0, is taken equal to

σ(s, p,q) = d2 +d1 +( n
p +d0− s)+ + ε[[[[[[ np +d0 = s]]]]]][[[[[[q > 1]]]]]]. (5.11)

Similar results hold for Fs
p,q provided [[[[[[q > 1]]]]]] is replaced by [[[[[[p > 1]]]]]].

Analogous results for open sets Ω ⊂ Rn can be derived from Proposition 4.1.
Details on this are left out for simplicity, and so is the proof, for it follows from
the below Theorem 5.7 by application of Lu to u, cf Lemma 5.4 (note that (5.9)
implies (s−d1)+(s−d0) > 0, thence s > max(d0,d1)).

Remark 5.6. By (5.9) the quadratic domain D(Q) only depends on the orders via
the mean (d0+d1)/2. The correction n

p − n
2 occurring for p < 2 is independent of

d0 and d1 ; cf Figure 2.

n
p

s

d0+d1
2

n
2

s = d0+d1
2 +( n

p − n
2)+

D(Q)

FIGURE 2. The quadratic standard domain D(Q)
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5.2. Moderate linearisations of product type operators. The properties of exact
paralinearisations of product type operators will now be derived. This will in two
ways give better results than the usual linearisation theory in, say [Bon81] and
[MC97, Thm. 16.3]: first of all, the π2-terms are incorporated into Lu , which is
useful since they need not be regularising in the context here. Secondly, the family
Lu is obtained for u running through the (large) set

⋃
Bs
p,q , and it is only in the

quadratic standard domain, where u is regular enough to make −Luu = Q(u) a
meaningful formula, that Lu is a linearisation of Q.

Theorem 5.7 (The Exact Paralinearisation Theorem). Let B be of product type

(d0,d1,d2) with d0 ≤ d1 as in Definition 5.1; and let ℓΩ be a universal extension

from Ω to Rn .

When u ∈ Bs0
p0,q0(Ω) for some arbitrary (s0, p0,q0), then the exact paralineari-

sation in Definition 5.3 yields a linear operator Lu with parameter domain D(Lu)
given by

s > d0 +d1− s0 +( n
p + n

p0
−n)+. (5.12)

For ε > 0 the operator Lu is of order ω as follows,

Lu : B
s
p,q(Ω)→ Bs−ω

p,q (Ω) for (s, p,q) ∈ D(Lu), (5.13)

ω = d2 +d1 +( n
p0
− s0 +d0)+ + ε[[[[[[ n

p0
− s0 +d0 = 0]]]]]][[[[[[q0 > 1]]]]]], (5.14)

In particular, when Q(u) := B(u,u) and (s0, p0,q0) ∈ D(Q), cf (5.9), then Lu is

a moderate linearisation of Q. Corresponding results hold for Lizorkin–Triebel

spaces when u ∈ Fs0
p0,q0(Ω), provided the factor [[[[[[q0 > 1]]]]]] in (5.14) is replaced by

[[[[[[p0 > 1]]]]]].

Remark 5.8. Clearly ω is independent of (s, p,q); because it formally equals
σ(s0, p0,q0), it can be said that, for a product type operator, the paralinearisation
Lu inherits the order of the non-linear operator Q(u) on the space Es0

p0,q0 ∋ u.

Proof. Since the nature of the proof is well known, the formulation will be brief
and based on the estimates recalled in Remark 4.3.

In the following (s1, p1,q1) is arbitrary in D(Lu), ie together with the given
(s0, p0,q0) it fulfils (5.8). It is therefore seen from Remark 4.3 and the Sobolev
embeddings that, with p2 and q2 as in Remark 4.3,

π2(P0ℓΩ·,P1ℓΩ·) : Bs0
p0,q0(Ω)⊕Bs1

p1,q1(Ω)→ Bs0−d0+s1−d1
p2,q2

→֒ B
s1−d1−( n

p0
−s0+d0)

p1,q1 .
(5.15)

The π1-term in Lu is straightforward to treat for s0− d0 < n
p0
: in this case the

Sobolev embedding Bs0−d0
p0,q0 →֒ B

s0−d0− n
p0

∞,∞ goes into a space with negative smooth-
ness index, so the estimate (4.13) gives, for ε0 = 0,

π1(P0ℓΩ·,P1ℓΩ·) : Bs0
p0,q0(Ω)⊕Bs1

p1,q1(Ω)→ B
s1−d1−( n

p0
−s0+d0)+−ε0

p1,q1 . (5.16)
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In the same manner one has, since u appears in the second entry of π3 , that for
s0−d1 < n

p0
and ε1 = 0,

π3(P0ℓΩ·,P1ℓΩ·) : Bs1
p1,q1(Ω)⊕Bs0

p0,q0(Ω)→ B
s1−d0−( n

p0
−s0+d1)+−ε1

p1,q1 . (5.17)

For s0−d0 > n
p0

the estimate (4.12) and Bs0−d0
p0,q0 →֒ L∞ clearly yields the conclusion

in (5.16) with ε0 = 0. The term with π3 may be treated analogously for s0−d1 >
n
p0
, leading to (5.17) once again. For s0−d j = n

p0
one can use (5.16) and (5.17) at

the expense of some ε j > 0, eg fulfilling 0 < ε1 < d1− d0 , or ε0 = ε1 if d1 = d0 .
This is unless q0 ≤ 1 for then the embedding into L∞ applies.

Comparing the three estimates (incl. the ε -modifications), (5.15) is the same
as (5.16), except when n

p0
− s0 + d0 ≤ 0, but in this case Bs1−d1

p1,q1 or Bs1−d1−ε0
p1,q1 in

(5.16) clearly contains the space on the right hand side of (5.15). Similarly the
co-domain of (5.17) equals the last space in (5.15), except for n

p0
− s0 + d1 ≤ 0,

but then the assumption that d0 ≤ d1 yields that also
n
p0
− s0 +d0 ≤ 0 so that there

is an embedding into the corresponding space in (5.16). Regardless of whether
( n
p0
− s0 + d j)+ equals 0 for none, one or both j in {0,1}, it follows that Lu is a

bounded linear operator

Lu : B
s1
p1,q1 → Bs1−ω

p1,q1 , (5.18)

when ω is as in (5.14) and (s1, p1,q1) fulfils (5.8).
In the Lizorkin–Triebel case the above argument works with minor modifica-

tions. For one thing the Sobolev embedding F
s0−d0+s1−d1
p2,t →֒ F

s1−d1−( n
p0
−s0+d0)

p1,q1

and (4.15) give an analogue of (5.15).
Secondly, for s0−d0 < n

p0
, it is easy to see from the dyadic corona criterion and

the summation lemma (in analogy with the proof of Lemma 2.7) that if r < 0,

π1(·, ·) : Br
∞,∞⊕Fs1

p1,q1 → Fs1+r
p1,q1 . (5.19)

Combining this with Fs0−d0
p0,q0 →֒ B

s0−d0− n
p0

∞,∞ , formula (5.16) is carried over to the
Lizorkin–Triebel case. Otherwise one may proceed as in the Besov case, noting

that F
n/p
p,q →֒ L∞ when p≤ 1. �

To shed light on (5.12), one could consider an elliptic problem {A,T}, say with
A of order 2m, T of class m and a solution u ∈ Hm(Ω), with (m,2) ∈ D(Q), of

Au+Q(u) = f in Ω (5.20)

Tu = ϕ on Γ. (5.21)

According to (5.12), D(Lu) then consists of parameters (s, p,q) with

s >
d0 +d1

2
+(

n

p
− n

2
)+− (m− d0 +d1

2
), (5.22)

so that D(Lu) is obtained from the quadratic standard domain D(Q) in (5.9) simply
by a downward shift given by the last parenthesis, which is positive for (m,2) ∈
D(Q). Therefore D(Lu) ⊃ D(Q); by an extension of the argument this is seen to
hold also in general when (s0, p0,q0) ∈ D(Q).
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When deriving easy-to-apply criteria for A-moderacy, for some given linear op-
erator A of constant order dA on a parameter domain D(A), it is clearly a necessary
condition that dA > d2 +max(d0,d1), for both σ and ω are ≥ d2 +max(d0,d1).

Corollary 5.9. Let Q(u) be of product type (d0,d1,d2) with d0 ≤ d1 . When dA >
d2+d1 , then Q is A-moderate on every Es

p,q in D(A)∩D(Q) if d1−d0 ≥ n, or else

on the Es
p,q in D(A)∩D(Q) fulfilling

s > n
p −dA +d0 +d1 +d2. (5.23)

The exact paralinearisation Lu is A-moderate on D(Lu) when Q is A-moderate on

the space Es0
p0,q0 ∋ u.

Proof. Given (5.23) one has dA − d2 − d1 > ( n
p − s+ d0)+ ≥ 0. So by taking

ε ∈ ]0,dA− d2− d1[ , clearly this gives dA > σ so that Q is A-moderate on Es
p,q .

However, if d1− d0 ≥ n it is easy to see, both for p < 2 and p ≥ 2, that every
(s, p,q) fulfills

1
2(d0 +d1)+( n

p − n
2)+ ≥ n

p +d0. (5.24)

Concequently s > n
p + d0 , so σ = d2 + d1 . Hence Q is A-moderate on the entire

domain D(A)∩D(Q) in this case.
The statement on Lu follows since ω equals σ on the space containing the

linearisation point u. �

In cases with d1− d0 < n, there always is a part of the quadratic standard do-
main D(Q) where (5.23) must be imposed. Indeed, the last two terms in (5.11)
contributes to the value of σ in the slanted slice of D(Q) given by

1
2(d0 +d1)+( n

p − n
2)+ < s≤ n

p +d0. (5.25)

For d1−d0 < n any p< 2 leads to solutions (s, p) of these inequalities, so the slice
in (5.25) is non-empty. Because σ > d2 +d1 in the slice, A-moderacy is obtained
only where dA > σ , ie where (5.23) holds. Note, however, that Lu by the formulae
for σ and ω is born to be A-moderate on the entire domain D(Lu), if only Q is so
on a space containing u.

Remark 5.10. Concerning the model problem (1.3) and Example 3.1, where d0 = 0,
d1 = 1 and dA = 2, the above (5.9) leads to the quadratic standard domains in
(1.27) and (3.15). Notice that the more important domains D(A ,Q) and D(A,N )
in (1.30) and (3.16) are obtained from the conjunction of (5.9) and (5.23) (the latter
is redundant for n = 2 and n = 3). Similarly (3.17) follows from (5.12).

Remark 5.11. One could compare (1.3) (or the stationary Navier–Stokes problem)
with the von Karman problem (cf Section 6). They both fulfil d1−d0 ≤ 1 < n. In
the former problem (5.23) is felt, and the quadratic term is only ∆γ0 -moderate on
the part of D(Q)∩D1 where s > n

p − 1, by (5.23). (For the Neumann condition,

(5.23) gives again s > n
p − 1, that now should be imposed on the smaller region

D(Q)∩D2 because the boundary condition has class 2.) But in the von Karman
problem, (5.23) is not felt, for it is fulfilled on all of the quadratic standard domain
of the form [·, ·], and even after this has been extended to the B(·, ·) of type (1,1,2)
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given in Example 5.2, it still holds that ω < 4 = d∆2 on all of D(Q). But never-
theless a small portion of D(Q) must be disregarded to have ∆2-moderacy, simply

because the boundary condition in the Dirichlét realisation of ∆2 is felt; cf Figure 3
below. In view of this, it seems pointless to generalise beyond Corollary 5.9.

5.3. Boundedness in a borderline case. In the cases given by equality in (4.11)
it is more demanding to estimate Lu . For later reference a first result on such
extensions of D(Lu) is sketched. It adopts techniques from a joint work with
W. Farkas and W. Sickel [FJS00], in which approximation spaces As

p,q (that go

back to S. M. Nikol′skiı̆) were useful for the borderline investigations.
Recall that As

p,q(Rn) for s≥ ( n
p −n)+ , p,q ∈ ]0,∞] (with q≤ 1 for s = n

p −n),

consists of the u∈S ′(Rn) that have an S ′-convergent decomposition u= ∑∞
j=0 v j

fulfilling supp
∧
v j ⊂ {|ξ | ≤ 2 j+1 } for v j ∈S ′∩Lp with

(
∞

∑
j=0

2s jq ‖v j |Lp‖q) 1
q < ∞. (5.26)

Then ‖u |As
p,q‖ is the infimum of these numbers, over all such decompositions.

The idea of [FJS00] is that, while the dyadic ball criterion cannot yield conver-
gence for s = n

p −n (at least not for q > 1), one can sometimes show directly that

such ∑v j converges to some u in L1 or S ′ ; then the finiteness of the above num-
ber gives ∑v j ∈ As

p,q . For this purpose the next borderline result is recalled from
[Joh95, Prop. 2.5].

Lemma 5.12. Let 0 < q ≤ 1 ≤ p < ∞ and let ∑∞
j=0 u j be such that F(q) < ∞ for

F(q) = ‖(∑ |u j|q)1/q‖p . Then ∑u j converges in Lp to a sum u fulfilling ‖u |Lp‖ ≤
F(q).

Proof. With ∑ |u j(x)| as a majorant (since F(1) ≤ F(q)), ‖∑∞
j=k |u j| |Lp‖ −→

k→∞
0.

Hence ∑u j is a fundamental series in Lp , and the estimate follows. �
Theorem 5.13. Let B = πΩ(P0·,P1·) with d0 ≤ d1 and let u ∈ Bs0

p0,q0(Ω) be fixed.

For (s, p,q) such that

s0 + s = d0 +d1 +( n
p0

+ n
p −n)+, 1

q2
:= 1

q0
+ 1

q ≥ 1 (5.27)

the operator Lu is continuous

Lu : B
s
p,q(Ω)→ Bs−ω

p,∞ (Ω), (5.28)

provided, in case 1
p2

:= 1
p0

+ 1
p > 1, that p2 ≥ q2 or p ≥ 1 holds. Moreover,

Lu : F
s
p,q(Ω)→ Bs−ω

p,∞ (Ω) is continuous if u ∈ Fs0
p0,q0(Ω), when [[[[[[q0 > 1]]]]]] in (5.14) is

replaced by [[[[[[p0 > 1]]]]]] (no restrictions for p2 < 1).

Proof. With notation as in the proof of Theorem 5.7, the assumption q2 ≤ 1 gives
ℓq2 →֒ ℓ1 , so for p2 ≥ 1 insertion of 1 = 2s0−d0+s1−d1 into a double application of
Hölder’s inequality shows that the series defining π2(P0ℓΩ·,P1ℓΩ·) converges abso-
lutely in Lp2 . There is a Sobolev embedding Lp2 →֒ Bs̃

p1,∞ for s̃ = s1−d1− ( n
p0
−

s0 + d0), since p1 ≥ p2 , so the conclusion of (5.15) holds with the modification
that the sum-exponent is ∞ in this case.
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For p2 < 1 one uses the Nikol′skiı̆–Plancherel–Polya inequality to estimate L1-

norms by 2
n
p2
−n = 2s0+s1−d0−d1 times corresponding Lp2 -norms, leading to conver-

gence in L1 . After this convergence has been established, the same estimates also
give the strengthened conclusion that, for As

p,q as above,

π2(P0ℓΩ·,P1ℓΩ·) : Bs0
p0,q0⊕Bs1

p1,q1 → A
n
p2
−n

p2,q2 . (5.29)

By [FJS00, Thm. 6] the conjunction of r ≥max(p2,q2) and o = ∞ is equivalent to

A
n
p2
−n

p2,q2 →֒ B
n
r−n
r,o . (5.30)

Therefore π12
2Ω(u, ·) := rΩπ2(P0ℓΩu,P1ℓΩ·) is continuous Bs1

p1,q1(Ω)→ B
n
p2
−n

p2,∞ (Ω)
for p2 ≥ q2 , hence into Bs̃

p1,∞(Ω) as desired; for p1 ≥ 1 this is seen directly from
the above L1-estimate.

Since (5.16) and (5.17) also hold in the present context, and since this implies
weaker statements with the sum-exponents equal to ∞ on the right hand sides there,
Lu has the property in (5.18) except that the co-domain should be Bs1−ω

p1,∞ .

For the Fs
p,q-spaces the estimates of π12

2Ω(u, ·) are derived in the same way, except
that the ℓq2 -norms are calculated pointwisely, before the Lp2 -norms. Indeed, for
p2 ≥ 1, Lemma 5.12 gives (since q2 ≤ 1 in this case) that π2(P0ℓΩ·,P1ℓΩ·) maps
Fs0
p0,q0⊕Fs1

p1,q1 to Lp2 : for p2 > 1 this co-domain is embedded via F s̃
p1,q1 into Bs̃

p1,∞ ,

while Lp2 →֒ B0
1,∞ →֒ Bs̃

p1,∞ for p2 = 1.

For p2 < 1 one finds by the vector-valued Nikol′skiı̆–Plancherel–Polya inequal-
ity in Lemma 2.6 that eg (when fk := Φk(D) f etc on Rn)

‖
∞

∑
k=0

| fkgk|‖1 ≤ c‖(
∞

∑
k=0

2k(
n
p2
−n)q2 | fkgk|q2)

1
q2 ‖p2 ≤ c′ ‖ f |Fs0−d0

p0,q0 ‖‖g |Fs1−d1
p1,q1 ‖.

(5.31)
In this way π12

2Ω(u, ·) is shown to map Fs1
p1,q1 into L1(Ω). Hence into Bs̃

p1,∞(Ω) for

p1 ≥ 1. In general there is p3 ∈ ]p2, p1[ (p0 < ∞) and the A
n
p3
−n

p3,p3 -norm of π12
2Ω(u,v)

is estimated by an Lp2(ℓq2)-norm as in the middle of (5.31), for the sum and integral
may be excanged and the estimate realised through Lemma 2.6. By (5.30)–(5.31)

this means that π12
2Ω(u, ·) maps Fs1

p1,q1 into B
n
p3
−n

p3,∞ →֒ Bs̃
p,∞ for p2 < 1. Comparison

with the Fs
p,q-results for the other terms shows that Lu : F

s1
p1,q1 → Bs̃

p1,∞ . �

The above result suffices for the present paper, but it could probably be sharp-
ened in several ways, perhaps with a consistent use of As

p,q as co-domains.

5.4. Relations to pseudo-differential operators of type 1,1. For the local reg-
ularity improvements later, it is useful to express paralinearisations in terms of
pseudo-differential operators with symbols in Sd1,1 . Recall that a(x,ξ ) ∈C∞(R2n)
belongs to Sd1,1(Rn×Rn) for d ∈ R, if for all multiindices α , β there is cαβ > 0

such that for x, ξ ∈ Rn ,

|Dβ
xD

α
ξ a(x,ξ )| ≤ cαβ 〈ξ 〉d−|α|+|β |; 〈ξ 〉= (1+ |ξ |2)1/2. (5.32)
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The operator a(x,D)ϕ(x) = (2π)−n
∫
Rn eix·ξa(x,ξ )

∧
ϕ(ξ )dξ obviously induces a bi-

linear map Sd1,1×S →S that is continuous with respect to the Fréchet topologies.

In general A := a(x,D) = OP(a) cannot be extended to S ′ by duality, for the ad-
joint of A need not be of type 1,1. However, A can be defined as a linear operator
with domain D(A)⊂S ′(Rn) by analogy with (4.1). More precisely u ∈S ′ is in
D(A) when the limit

aψ(x,D)u := lim
k→∞

OP(ψk(Dx)a(x,ξ )ψk(ξ ))u (5.33)

exists in D ′(Rn) for all ψ ∈C∞
0 (Rn) with ψ = 1 in a neighbourhood of the origin,

and when moreover aψ(x,D)u is independent of such ψ so that it makes sense to
let a(x,D)u = aψ(x,D)u then.

This definition by so-called vanishing frequency modulation was introduced re-
cently and investigated from several perspectives in [Joh08]. As the symbol on the
right-hand side of (5.33) is in S−∞ the definition means roughly that in a(x,D)u
one should regularise the symbol a instead of the argument u; it clearly gives the
integral after (5.32) for u ∈S (Rn).

Previously L. Hörmander determined (up to a limit point) the s for which A

extends to a continuous map Hs+d
2 → Hs

2 ; cf [Hör88, Hör89] and [Hör97, Ch 9.3].
Eg continuity for all s∈R is proved there for a(x,ξ ) satisfying his twisted diagonal
condition. However, it was proved in [Joh04, Joh05] that there always are bounded
extensions, for 1≤ p < ∞,

Fd
p,1(Rn)

a(x,D)−−−→ Lp(Rn), Bd
∞,1(Rn)

a(x,D)−−−→ L∞(Rn), (5.34)

and that, without further knowledge about a(x,ξ ), this is optimal within the Bs
p,q

and Fs
p,q scales for p < ∞. For s > ( n

p −n)+ there is continuity

Bs+d
p,q (Rn)

a(x,D)−−−→ Bs
p,q(Rn), Fs+d

p,q (Rn)
a(x,D)−−−→ Fs

p,r(Rn) (r as in (2.12)).
(5.35)

This extends to all s∈R under the twisted diagonal condition; cf [Joh05, Cor. 6.2];
cf also [Joh08]. The reader may consult [Hör97, Joh08] for various aspects of the
theory of operators in OP(Sd1,1).

The just mentioned results will not be directly used here, but they shed light
on how difficult it is to determine the domain D(A). Nevertheless one has the
pseudo-local property:

singsuppAu⊂ singsuppu for all u ∈ D(A). (5.36)

Theorem 5.14. Every pseudo-differential operator a(x,D) in OP(Sd1,1(Rn×Rn))
has the property in (5.36).

This was first proved in [Joh08, Thm. 6.4], to which the reader is referred. The
proof given there exploits the definition of type 1,1-operators given above as well
as the Regular Convergence Lemma; cf Lemma 2.1.

The exact paralinearisations turn out to factor through pseudo-differential oper-
ators of type 1,1. This entails that the former are pseudo-local:
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Theorem 5.15. Let B be of product type and u ∈ Bs0
p0,q0(Ω) for some arbitrary

(s0, p0,q0). Then the exact paralinearisation in (5.5) factors through an operator

Pu ∈ OP(Sω
1,1(Rn×Rn)) with ω as in (5.14). That is, for every (s, p,q) in D(Lu),

cf (5.12), there is a commutative diagram

Es
p,q(Ω) ℓΩ−−−−→ Es

p,q(Rn)

Lu

y yPu

Es−ω
p,q (Ω) ←−−−−

rΩ

Es−ω
p,q (Rn).

(5.37)

Moreover, g 7→ Lug is pseudo-local when g ∈ Es
p,q(Ω) and (s, p,q) is in D(Lu).

Proof. 1◦ . By linearity, it suffices to treat Pm = Dηm for |ηm| = dm , and d0 ≤ d1 ,
d2 = 0. Set ũ = ℓΩu.

2◦ . Applying Lu to ℓΩg ∈S , it is a composite Lu = rΩa(x,D)ℓΩ for a symbol
a(x,ξ ) satisfying (5.32) for d = ω with ω as in (5.14), namely

a(x,ξ ) =−
∞

∑
j=0

(
Ψ j+1(Dx)Dη0

x ũ(x)ξ η1 +Ψ j−2(Dx)Dη1
x ũ(x)ξ η0

)
Φ j(ξ ) (5.38)

Indeed, the formula for a(x,ξ ) follows directly from Definition 5.3 and (4.8) once
a ∈ Sω

1,1 has been verified. To prove that Pu = a(x,D) is of type 1,1, note that

a(x,ξ ) is C∞ since each ξ is in suppΦ j for at most two values of j, and for these

2 j−1 ≤ |ξ | ≤ 2 j+1 , so that |Dα(ξ ηmΦ j(ξ ))| ≤ c〈ξ 〉dm−|α| holds for all α . Concern-

ing the estimates for x∈Rn and ξ ∈ suppΦ j , so that 2
j ≤ 2〈ξ 〉, note that if k= j+

1 and ε > 0 is fixed, the convenient short-hand ε ′ := ε[[[[[[ n
p0
− s0 +d0 = 0]]]]]][[[[[[q0 > 1]]]]]]

fulfils ε ′ ≥ 0 and gives

|Dβ
x Ψk(D)Dη0 ũ(x)| ≤ c〈ξ 〉|β |+( n

p0
−s0+d0)++ε ′ . (5.39)

In fact, for q0 ≤ 1 one has ℓq →֒ ℓ1 , so the Nikol
′skiı̆–Plancherel–Polya inequality

yields

|Ψk(D)Dβ+η0 ũ(x)| ≤ c
k

∑
l=0

2l(s0−|β+η0|) ‖Φl(D)Dβ+η0 ũ |Lp0‖2l(|β |+
n
p0
−s0+d0)

≤ c‖u |Bs0
p0,q0‖〈ξ 〉(

n
p0
−s0+d0)++|β |;

(5.40)

for q0 > 1 Hölder’s inequality applies to the first line in (5.40), if 2k(
n
p0
−s0+d0)++k|β |

is taken out in front of the summation (it is less than (4〈ξ 〉)|β |+( n
p0
−s0+d0)+ ); except

when n
p0
−s0+d0 = 0, ie ε ′ > 0, then |β | should just have ε added and subtracted.

This shows (5.39).
Terms with |Ψ j−2(D)Dβ+η1 ũ(x)| are treated analogously, in the first line of

(5.40) the factor 2l(s0−|β+η0|) may be estimated by 2l(s0−|β+η1|) (which is absorbed
by the Besov norm on u) times 2 j(d1−d0) ; the latter, together with the estimate of
Dα(ξ η0Φ j(ξ )), gives the estimates in (5.32) also for these terms.

3◦ . To prove (5.37) also for non-smooth functions, it is noted that there is a
linear map Pu : E

s
p,q(Rn)→ Es−ω

p,q (Rn) that is bounded for (s, p,q) ∈ D(Lu). This
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is seen as in the proof of Theorem 5.7, cf (5.18), for one can keep the first entry in
the expressions with π1 , π2 there equal to P0ũ while the other entry runs through
P1(Es

p,q(Rn)), for π3 the first entry is taken in P0(Es
p,q) and the second equal to

P1ũ. From the definition of Lu it is then evident that Lu = rΩ ◦Pu ◦ℓΩ , hence (5.37)
holds.

4◦ . To show that Pu from step 3◦ equals the type 1,1-operator a(x,D) given
by the symbol in step 2◦ , it remains by (5.33) to be verified that one has the limit
relation Pu f = limm→∞OP(ψm(Dx)a(x,ξ )ψm(ξ )) f for all ψ ∈C∞

0 (Rn) with ψ = 1
around 0, whenever f ∈ Bs

p,q(Rn) with (s, p,q) ∈ D(Lu), ie for

s0−d0 + s−d1 > max(0, n
p0

+ n
p −n). (5.41)

(If f ∈ Fs
p,q , then f ∈ Bs

p,∞ that also fulfils (5.41).) This is tedious but results from
consistent use of the techniques that gave boundedness of Pu .

Indeed, for every ψ and a (large) m as above, it is straightforward to see that
Φ jψm = Φ j and Ψ j+1ψm = Ψ j+1 for j below a certain limit J(m), so that the
symbol of the approximating operator can be written as follows, when ′ indicates
summation over l = m− j in a fixed finite subset of Z,

ψm(Dx)a(x,ξ )ψm(ξ ) =− ∑
j≤J(m)

(
Ψ j+1(Dx)Dη0

x ũ(x)ξ η1+

Ψ j−2(Dx)Dη1
x ũ(x)ξ η0

)
Φ j(ξ )

−∑
′

l

(
ψm(Dx)Ψm−l+1(Dx)Dη0

x ũ(x)ξ η1+

ψm(Dx)Ψm−l−2(Dx)Dη1
x ũ(x)ξ η0

)
Φm−l(ξ )ψm(ξ ).

(5.42)

The operator induced by the first sum here converges to Pu for m→ ∞, by (5.38)
and the construction of Pu . Therefore it suffices to show that the primed sum de-
fines an operator Rm for which Rm f → 0 for m→ ∞. Fixing l one has the contri-
bution

Rl,m f = (ψm(D)Ψm−l+1(D)Dη0 ũ ·Dη1

+ψm(D)Ψm−l−2(D)Dη1 ũ(x) ·Dη0)Φm−l(D)ψm(D) f , (5.43)

the worst part of which is

R̃l,m f = ψm(D)(Φm−l−1 +Φm−l +Φm−l+1)(D)Dη0 ũ ·Dη1Φm−l(D)ψm(D) f .
(5.44)

Clearly suppF R̃l,m f is contained in B(0,c2m), ie it fulfils the dyadic ball condition
in Lemma 2.3. To estimate the quantity B there, note that in case p, p0 ≥ 1 the

family ψm(D) is uniformly bounded in Lp and Lp0 , so when 1
p2

= 1
p0

+ 1
p and
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1
q2

= 1
q0

+ 1
q , then

(
∞

∑
m=0

2(s0+s−(d0+d1))mq2‖R̃l,m f‖q2p2)
1
q2 ≤ c‖ ũ |Bs0

p0,q0‖

× (
∞

∑
m=0

2(s−d1)mq‖ψm(D)Φm−l(D)Dη1 f‖qp)
1
q

≤ c′ ‖ f |Bs
p,q‖< ∞.

(5.45)

Hence ∑∞
m=0 R̃l,m f converges by Lemma 2.3 (cf (5.41)), so as desired R̃l,m f →

0. If p and/or p0 is in ]0,1[ one can use Sobolev embeddings into B
s+n− n

p

1,q and

B
s0+n− n

p0

1,q0
, since these spaces also fulfil (5.41).

The rest of Rl,m f may be handled with Lemma 2.5, as done in the π1- and
π3-parts of Pu (this is also analogous to the proof of Lemma 2.7). This shows

that ∑∞
m=0Rl,m f converges in S ′ so that limmRl,m f = 0, hence limm ∑

′
l
Rl,m f =

limmRm f = 0. Hence Pu is of type 1,1 as claimed.
5◦ . If g is as in the theorem, x ∈ singsuppℓΩg implies that x ∈ singsuppg∪

Rn \Ω. By 4◦ and Theorem 5.14, singsuppℓΩg is not enlarged by Pu , so rΩPuℓΩg

is C∞ in the part of Ω where g is so. �
Remark 5.16. As indicated above, the theory of type 1,1 operators is still far from
complete. To avoid any ambiguity, the exact paralinearisations have been defined
here without reference to these operators, and the Paralinearisation Theorem was
for the same reason proved directly, before the factorisation through type 1,1 op-
erators was established.

Remark 5.17. One way to attempt a symbolic calculus would be to replace ℓΩ by
eΩ , ie by extension by zero outside of Ω. The resulting linearisation L̃u would have
the form L̃ug = rΩPeΩg where P is in OP(Sω

1,1(Rn×Rn)) as in Theorem 5.15. For

L̃u to have order ω in spaces with s > 0, it is envisaged that the transmission prop-
erty would be needed for P. However, transmission conditions have been worked
out for Sdρ,δ with δ < 1, cf [GH91]. For δ = 1 there is a fundamental difficulty

because OP(Sω
1,1) in general, cf (5.34), is defined on Hs

p for s > ω > 0—whereas

the usual induction proof of the continuity of truncated pseudo-differential opera-
tors with transmission property effectively requires application to spaces with s< 0
(in the induction step, rΩP is applied to distributions supported by the boundary
Γ⊂Rn). Also the powers (RDLu)N should be covered, so the general rules of com-
position with the operators in the Boutet de Monvel calculus should be established.
All in all this is better investigated elsewhere; it could be useful eg in reductions
where traces or solution operators of other problems are applied to the parametrix
formula.

6. THE VON KARMAN EQUATIONS OF NON-LINEAR VIBRATION

The preceding sections apply to von Karman’s equations for a thin, buckling
plate, initially filling an open domain Ω⊂R2 with C∞-boundary Γ. The following
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is inspired by [Lio69, Ch. 1.4] and by the treatise of P. G. Ciarlet [Cia97, Ch. 5],
that also settles the applicability of the model to physical problems.

In the stationary case the problem is to find two real-valued functions u1 and u2
(displacement and stress) defined in Ω and fulfilling

∆2 u1− [u1,u2] = f in Ω (6.1a)

∆2 u2 +[u1,u1] = 0 in Ω (6.1b)

γku1 = 0 on Γ for k = 0, 1 (6.1c)

γku2 = ψk on Γ for k = 0, 1. (6.1d)

Hereby ∆2 denotes the biharmonic operator, whilst [·, ·] as in Example 5.2 stands
for the bilinear operator

[v,w] = D2
1vD

2
2w+D2

2vD
2
1w−2D2

12vD
2
12w. (6.2)

For the real-valued case with ψ0 = ψ1 = 0, it is well known that Brouwer’s fixed

point theorem implies the existence of solutions with u j ∈ F2
2,2(Ω) for given data

f ∈ F−22,2 (Ω); cf [Lio69, Thm. 4.3] and (1.5). For ψk ∈ F
2−k−1/2
2,2 (Γ) solutions are

established by non-linear minimisation in [Cia97, Thm. 5.8-3]. Concerning the
regularity it was eg shown in [Lio69, Thm. 4.4] that if f ∈ Lp(Ω) for some p > 1,

then any of the above solutions of (6.1) fulfils that u1 ∈ F4
p,2(Ω) while u2 belongs

to F4
q,2(Ω) for any q < ∞. It was also noted in [Lio69] that iteration would give

more, eg that the problem is hypoelliptic. Corresponding results for non-trivial ψ0

and ψ1 may be found in [Cia97, Thm. 5.8-4].

These results are generalised in three ways in the present paper, as a conse-
quence of the general investigations: firstly the assumptions on the data and on
the solution (u1,u2) are considerably weaker, including fully inhomogeneous data;
secondly the weak solutions are carried over to a wide range of spaces with p 6= 2.
Thirdly the non-linear terms are shown to have no influence on the solution’s reg-
ularity (within the Besov and Lizorkin–Triebel scales).

In the discussion of (6.1), the coupling of the two non-linear equations is a little
inconvenient, since the Exact Paralinearisation Theorem, 5.7, needs a modification
to this situation. But this can be done easily when u1 and u2 are given in the same
space, for in the proof of Theorem 5.7 the mapping properties will then remain the
same regardless of whether u1 or u2 is inserted in the various π j -expressions. For
brevity, it is left for the reader to substantiate this expansion of the theorem. (More
general methods follow in Section 7.)

Because [v,w] is of type (2,2), the quadratic standard domain in (5.9) is for

Q0(u) := [u,u] given by s > 2+( 2
p −1)+ , and clearly (s, p,q) = (2,2,2) is at the

boundary of and therefore outside of D(Q0); cf Figure 3. Hence Theorem 5.7 does
barely not apply as it stands.

To carry over weak solutions to other spaces, one can use the more refined esti-
mates for the borderlines in Theorem 5.13. In fact the co-domain of type Bp,∞ is
embedded into Es−ω−ε

p,q for ε > 0, so this gives that L(u1,u2) has order ω = 3+ ε
when both (s0, p0,q0) and (s, p,q) equal (2,2,2). For other choices of (s, p,q)
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the continuity properties of L(u1,u2) are given by Theorem 5.7. In addition, L(u1,u2)
linearises the non-linear terms in (6.1), for at (2,2,2) these only contains products
of L2-functions, whence the conclusions of Lemma 5.4 remain valid (the assump-
tion s > max(d0,d1) is then not needed in the proof of the lemma). In this way
Theorem 3.2 can be used for the von Karman problem, when D(N ) is taken as
D(Q0)∪{(2,2,2)} and D(Bu) likewise is the union of D(L(u1,u2)) and {(2,2,2)}.
(Parameter domains were not required to be open in Theorem 3.2.)

One could also envisage other problems in which the weak solutions belong
to spaces at the borderline of the quadratic standard domain, so that results like
Theorem 5.13 would be the only manageable way to apply Theorem 3.2.

s

2
p

1 2

1

2

D(Q)

ω = 4

D2

FIGURE 3. The quadratic standard domains of Q and Q0 (in dots)
in relation to D2 .

For the von Karman problem, however, the symmetry properties of [v,w] make
it possible to avoid the rather specialised estimates in Theorem 5.13. Indeed, as
recalled in Example 5.2, [·, ·] is a restriction of

B(v,w) = D2
12(D1vD2w+D2vD1w)−D2

1(D2vD2w)−D2
2(D1vD1w). (6.3)

Since B is of type (1,1,2), the larger domain D(Q) is given by s > 1+( 2
p − 1)+

according to (5.9). But by (1.22) the appropriate parameter domain for the linear
part is D2 , and D(Q)∩D2 = D2 , cf Figure 3.

On the resulting domain D2 , the operator Q is ∆2-moderate in view of Corol-
lary 5.9. It is moreover easy to infer from (5.14) that ω = 4 holds on the borderline
with s = 2/p (for p < 1) of D2 .

This leads to the following result on the fully inhomogeneous problem:



44 JON JOHNSEN

Theorem 6.1. Let two functions u1 , u2 ∈ Bs
p,q(Ω) with (s, p,q) in D2 solve

∆2 u1−B(u1,u2) = f1 in Ω (6.4a)

∆2 u2 +B(u1,u1) = f2 in Ω (6.4b)

γku1 = ϕk on Γ for k = 0, 1 (6.4c)

γku2 = ψk on Γ for k = 0, 1, (6.4d)

for data fk ∈ Bt−4
r,o (Ω), with k = 1, 2, together with ϕ0 , ψ0 ∈ B

t− 1
r

r,o (Γ) and ϕ1 ,

ψ1 ∈ B
t−1− 1

r
r,o (Γ) whereby (t,r,o) ∈ D2∩D(L(u1,u2)), that is

t > 1+ 1
r +(1r −1)+,

t > 2− s+(2r + 2
p −2)+.

(6.5)

Then u1 , u2 belong to Bt
r,o(Ω). If instead fk ∈ F t−4

r,o (Ω), ϕ0 , ψ0 ∈ B
t− 1

r
r,r (Γ) and

ϕ1 , ψ1 ∈ B
t−1− 1

r
r,r (Γ) for some (t,r,o) fulfilling (6.5), then it follows that u1 , u2 ∈

F t
r,o(Ω).

Since D2 is open, it is not a loss of generality here to assume for the Lizorkin–
Triebel case that u1 and u2 are given in a Besov space.

One can prove the theorem directly, as indicated above, but it will follow from
the general considerations in Section 7. So instead the consequences for existence
of solutions in Besov and Lizorkin–Triebel spaces are given; this amounts to a
solvability theory for the domain bounded by the dotted lines in Figure 3. It is also
noteworthy that solutions exist for data with arbitrarily large norms:

Corollary 6.2. Let f ∈ Bs−4
p,q (Ω) and ψk ∈ Bs−k− 1

p
p,q (Γ), for k = 0, 1, be real-valued

data for some (s, p,q) fulfilling

s > 2+( 2p −1)+, or (6.6a)

s = 2+( 2p −1)+ and q≤ 2. (6.6b)

Then there exists a solution (u1,u2) in Bs
p,q(Ω)2 of the equations in (6.1).

If f ∈ Fs−4
p,q (Ω) and ψk ∈ B

s−k− 1
p

p,p (Γ), for k = 0, 1, and (s, p,q) fulfils either

(6.6a) or

s = 2+( 2
p −1)+, and q≤ 2 if p≥ 2, (6.7)

then (6.1) has a solution (u1,u2) in Fs
p,q(Ω)2 .

Proof. Under the assumptions on (s, p,q), the data f and ψk belong to F
−2
2,2 (Ω) and

B
2−k− 1

2
2,2 (Γ), as seen by the usual embeddings. So by invoking [Cia97, Thm. 5.8-3]

there is a solution (u1,u2) ∈ F2
2,2(Ω)2 ; according to Theorem 6.1 it also belongs to

Bs
p,q(Ω)2 or Fs

p,q(Ω)2 , respectively. �

Example 6.3. Equation (6.1) may be considered with force term f (x1,x2) equal
to 1(x1)⊗ δ0(x2) and 0 ∈ Ω. Such singular data could model displacements and
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stresses generated by a heavy rod lying along the x1-axis on a table, obtained by
clamping a wooden plate along its edges to a sturdy metal frame.

By (2.33), this f ∈ B
1
p−1
p,∞ (Ω) for every p ∈ ]0,∞]. So Corollary 6.2 gives for

every set of ψk ∈ B3−k
p,∞ (Γ), k = 0,1, with fixed p ∈ ]0,∞], a solution (u1,u2) in

B
3+ 1

p
p,∞ (Ω)2 of (6.1). By Theorem 6.1, it belongs to this space for every p ∈ ]0,∞],

when ψ0 = ψ1 = 0.

Remark 6.4. Although the coupling of the two non-linear equations in (6.1), as
described, could be handled using that u1 and u2 are sought after in the same space,
it seems more flexible to stick with the general set-up in Section 3 by developing a
theory in which the pair (u1,u2) is regarded as the unknown, entering the bilinear
form twice. This only requires some projections onto u1 and u2 , cf the details
around (7.16) below. For this purpose it is convenient to generalise product type
operators to a framework of vector bundles, as done in the next section.

7. SYSTEMS OF SEMI-LINEAR BOUNDARY PROBLEMS

In this section the abstract results of Section 3 and those on paralinearisation
in Section 4 will be carried over to a general framework for semi-linear elliptic
boundary problems. This is formulated in a vector bundle set-up, not just because
this is natural for linear elliptic systems of multi-order, but also because vector
bundles are useful for handling non-linearities, as mentioned in Remark 6.4 above.

7.1. General linear elliptic systems. Because the parametrix construction relies
on a linear theory with the properties in (I)–(II) of Section 3, it is natural to utilise
the Boutet de Monvel calculus [BdM71]. The Lp-results for this are reviewed
briefly below (building on [Joh96], that extends Lp-results of G. Grubb [Gru90]
and J. Franke [Fra85, Fra86a]). Introductions to the calculus may be found in
[Gru97, Gru91] or [JR97, Sect. 4.1], and a thorough account in [Gru96].

Recall that Ω ⊂ Rn denotes a smooth, open, bounded set with ∂Ω = Γ. The
main object is then a multiorder Green operator, designated by A , ie,

A =
(
PΩ +G K

T S

)
(7.1)

where P = (Pi j) and G = (Gi j), K = (Ki j), T = (Ti j) and S = (Si j). Here i ∈
I1 := {1,2, . . . , iΩ } and i ∈ I2 := { iΩ +1, . . . , iΓ }, respectively, in the two rows of
the block matrix A . Similarly it holds that j ∈ J1 := {1,2, . . . , jΩ } and j ∈ J2 :=
{ jΩ + 1, . . . , jΓ }, respectively, in the two columns of A ; that is, A is an iΓ× jΓ
matrix operator with indices belonging to I× J , when I = I1∪ I2 and J = J1∪ J2 .

Each Pi j , Gi j , Ki j , Ti j and Si j belongs to the poly-homogeneous calculus of
pseudo-differential boundary problems. More precisely, P is a pseudo-differential
operator satisfying the uniform two-sided transmission condition (at Γ), G is a
singular Green operator, K a Poisson and T a trace operator, while S is an ordinary
pseudo-differential operator on Γ. (The well-known requirements on the symbols
and symbol kernels may be found in the references above; they are not recalled,

since they will not enter the arguments directly here.) The operator in the i j
th
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entry of A is taken to be of order d + bi + a j , where d ∈ Z, a = (a j) ∈ Z jΓ and

b= (bi)∈ZiΓ ; for each j, both Pi j,Ω +Gi j and Ti j is supposed to be of class κ +a j

for some fixed κ ∈ Z. For short A is then said to be of order d and class κ
(relatively to (a,b), more precisely).

Recall that the transmission condition ensures that PΩ := rΩPeΩ has the same
order on all spaces on which it is defined. More explicitly this means that each Pi j,Ω

has order d+a j+bi on every B
s
p,q and F

s
p,q with arbitrarily high s> κ +a j+1− 1

p ;

implying, say that C∞(Ω) is mapped into C∞(Ω), without blow-up at Γ. (Thus PΩ

has the transmission property.)
In general the operators act on spaces of sections of vector bundles E j over Ω

and Fj over Γ, with j running in J1 and J2 , respectively; they map into sections of
other such bundles E ′i and F ′i . The fibres of E j , Fj have dimension M j , N j , while
dimE ′i = M′i and dimF ′i = N′i . Letting

V = (E1⊕·· ·⊕E jΩ)∪ (FjΩ+1⊕·· ·⊕FjΓ) (7.2)

V ′ = (E ′1⊕·· ·⊕E ′iΩ)∪ (F ′iΩ+1⊕·· ·⊕F ′iΓ), (7.3)

then A is a map C∞(V )→C∞(V ′). One may either regard C∞(V ) as a short hand
for C∞(E1)⊕ ·· ·⊕C∞(FjΓ), or view V as a vector bundle with the dimension of
both the base manifold Ω∪Γ and of the fibres over its points x be depending on
whether x ∈Ω or x ∈ Γ (as allowed in eg the set-up of [Lan72]). Similarly for V ′ .

The following spaces are adapted to the orders and classes of A ,

Bs+a
p,q (V ) = (

⊕
j≤ jΩ

B
s+a j
p,q (E j))⊕ (

⊕
jΩ< j

B
s+a j− 1

p
p,q (Fj)) (7.4)

Bs−b
p,q (V ′) = (

⊕
i≤iΩ

Bs−bi
p,q (E ′i))⊕ (

⊕
iΩ<i

B
s−bi− 1

p
p,q (F ′i )). (7.5)

Here the spaces of Bs
p,q-sections of E j etc is defined and normed as usual via local

trivialisations. Fs+a
p,q (V ) and Fs−b

p,q (V ′) are analogous (p < ∞), except that q = p in

the summands over Γ; as usual Fs
p,p(Fj) = Bs

p,p(Fj) etc. For convenience

‖v |Bs+a
p,q ‖=

(‖v1 |Bs+a1
p,q (E1)‖q + · · ·+‖v jΓ |B

s+a jΓ
− 1

p
p,q (FjΓ)‖q

) 1
q (7.6)

‖v |Fs+a
p,q ‖=

(‖v1 |Fs+a1
p,q (E1)‖p + · · ·+‖v jΓ |F

s+a jΓ
− 1

p
p,p (FjΓ)‖p

) 1
p , (7.7)

with similar conventions for Bs−b
p,q and Fs−b

p,q . With respect to these spaces, A is
continuous

A : Bs+a
p,q (V )→ Bs−d−b

p,q (V ′), A : Fs+a
p,q (V )→ Fs−d−b

p,q (V ′), (7.8)

for each (s, p,q) ∈ Dκ , when p < ∞ in the Lizorkin–Triebel spaces.
Ellipticity for multi-order Green operators is similar to this notion for single-

order operators, except that the principal symbol p0(x,ξ ) is a matrix with p0i j equal

to the principal symbol of Pi j relatively to the order d+ bi + a j of Pi j ; invertibil-

ity of p0(x,ξ ) should hold for all x ∈ Ω and |ξ | ≥ 1. The principal boundary

operator a0(x′,ξ ′,Dn) is similarly defined and should be invertible as a map from

S (R+)M×CN to S (R+)M
′×CN′ with M := ∑ j≤ jΩ

M j , N := ∑ jΩ< j≤ jΓ
N j etc.



PARAMETRICES OF SEMI-LINEAR PROBLEMS 47

For the mapping properties of elliptic systems A and their parametrices one has
the next theorem, which is an anbridged version of [Joh96, Thm 5.2].

Theorem 7.1. Let A denote a multi-order Green operator going from V to V ′ , and
of order d and class κ relatively to (a,b) as described above. If A is injectively

or surjectively elliptic, then A has, respectively, a left- or right-parametrix Ã

in the calculus. Ã can be taken of order −d and class κ − d, and then Ã is

bounded in the opposite direction in (7.8) for all the parameters (s, p,q) ∈ Dκ .

The corresponding is true for Fs+a
p,q (V ) and Fs−d−b

p,q (V ′). In the elliptic case, all

these properties hold for A , and the parametrices are two-sided.

The above statement is deliberately rather brief. It should be added that (7.8) is

sharp, since it only holds for (s, p,q) outside Dκ if the class is effectively lower
than κ . Moreover, the kernel of A is a finite-dimensional space in C∞(V ), which
is the same for all (s, p,q) and in the B- and F -cases; the range is closed with
complements that can be chosen to have similar properties. The reader is referred
to [Gru90, Joh96] for this. In particular the (s, p,q)-invariance of the range com-
plements implies that the compatibility conditions on the data are fulfilled for all
(s, p,q), if they are so for one parameter. Hence these conditions can be ignored in
the following regularity investigations.

For the inverse regularity properties of an injectively elliptic system A , note

that, by the above theorem, the left-parametrix Ã may be chosen so that R :=
I− Ã A has class κ and order −∞, hence is continuous

R : Bs+a
p,q (V )→C∞(V ) for every (s, p,q) ∈ Dκ . (7.9)

So if A u = f for some u ∈ Bs1+a
p1,q1(V ) and data f ∈ Bs0−d−b

p0,q0 (V ′), and if (s j, p j,q j)
belongs to Dκ for j = 0 and 1, then application of Ã to A u = f yields (cf (1.8)–
(1.10) ff)

u = Ã f +Ru ∈ Bs0+a
p0,q0(V ). (7.10)

It can now be explicated how this framework fits with the conditions (I)–(II) of
Section 3: for each fixed q ∈ ]0,∞] let S = {(s, p) | s ∈ R, 0 < p≤ ∞} and take

X s
p = Bs+a

p,q (V ), Y s
p = Bs−b

p,q (V ′), A(s,p) = A |Bs+a
p,q (V ), D(A) = Dκ .

(7.11)

Moreover, Ã = Ã should be chosen to be of class κ − d . For the corresponding
spaces X s

p = Fs+a
p,q (V ) and Y s

p = Fs−b
p,q (V ′) one needs a little precaution because

the sum and integral exponents in (7.7) are equal in the spaces over the boundary
bundles Fj . Then (3.3) is not a direct consequence of (2.8) ff, but for p > r,

F
s+a j− 1

p
p,p (Fj) →֒ F

s+a j− 1
p

r,p (Fj) →֒ F
s+a j− 1

r
r,r (Fj). (7.12)

In this way (I) and (II) holds also for these spaces.
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Example 7.2. For the Dirichlét problem for ∆2 , which enters the von Karman
equations, it is natural to let

A =


∆2 0

0 ∆2

γ0 0
γ1 0
0 γ0
0 γ1

 , (7.13)

whereby d = 4, κ = 2, a = (0,0) and b = (0,0,−4,−3,−4,−3). The choice in
(7.11) amounts to

X s
p = Bs

p,q(Ω)2 (7.14)

Y s−4
p = Bs−4

p,q (Ω)2⊕ (B
s− 1

p
p,q (Γ)⊕B

s−1− 1
p

p,q (Γ))2; (7.15)

this is clear since one can use the trivial bundles V = Ω×C2 and V ′ = (Ω×C2)∪
(Γ×C)4 for this problem.

7.2. General product type operators. Together with the Green operator A in
(7.13) above, a treatment of the von Karman equation may conveniently use the
bilinear operator B̃ given on v = (v1,v2) and w = (w1,w2) by

B̃(v,w) =
(−[v1,w2] [v1,w1] 0 0 0 0

)T
. (7.16)

Indeed, in the set-up of the previous section, a solution u = (u1,u2) of (6.1) is a

section of the trivial bundle Ω×C2 , of which the two canonical projections u1 and
u2 enter directly into the expressions in (6.1). The same projections enter for v =
w = u in (7.16) above, and this is taken as the guiding principle in a generalisation
of product type operators to vector bundles.

Between vector bundles, a product type operator is roughly just an operator that
locally has the form introduced in Section 5. But in relation to a given elliptic
system A of order d and class κ with respect to a fixed set of integers (a,b), it
is useful to introduce a class of product type operators with compatible mapping
properties.

Since the non-linearities typically send sections over Ω to other such sections
(so that sections over Γ and zero-entries as in (7.16) can be tacitly omitted), the
following framework should suffice for most applications:

Given bundles over Ω as in (7.2)–(7.3), there are bundles

W = E1⊕·· ·⊕E jΩ , W ′ = E ′1⊕·· ·⊕E ′iΩ , (7.17)

β j : E j→Ω, β ′i : E
′
i →Ω (7.18)

in which sections w and w′ , respectively, may naturally be regarded as jΩ- and
iΩ-tuples of sections (by means of projections pr j and pr′i)

w = (w1, . . . ,w jΩ), w′ = (w′1, . . . ,w
′
iΩ

). (7.19)



PARAMETRICES OF SEMI-LINEAR PROBLEMS 49

There is also a finite covering Ω =
⋃
Uκ of local coordinate systems κ : Uκ → Ũκ ,

for disjoint open balls or half balls Ũκ in Rn . Alternatively Ũκ is written Uκ̃ , as it
is the domain of κ̃ := κ−1 ; then Es

p,q(Uκ̃) denotes the function spaces over Ũκ .

With this there are associated trivialisations τ jκ and τ ′iκ , for each j, i and κ ,

together with associated projections pr jκm onto the mth coordinate of CM j :

β−1j (Uκ)
τ jκ−→ Ũκ ×CM j

pr jκm−−−−→ C. (7.20)

For short, τ jκm := pr jκm ◦τ jκ ◦pr j , and similarly for τ ′iκm and pr′iκm in the sequel.

Definition 7.3. An operator B from W ⊕W to W ′ is of product type (d0,d1,d2)
compatibly with integers (a,b) as in (7.4)–(7.5) ff if the following holds:

(i) Each map τ ′iκmB(v,w) can be written

τ ′iκmB(u,v) = ∑
j0,m0, j1,m1

B
j0κm0, j1κm1

iκm (τ j0κm0
(u),τ j1κm1

(v)), (7.21)

where B
j0κm0, j1κm1

iκm maps pairs of sections of W to sections of Ũκ ×C and
only depends on two projections τ j0κm0

(v) and τ j1κm1
(w), where 1≤m0 ≤

M j0 and 1≤ m1 ≤M j1 .

(ii) Each B
j0κm0, j1κm1

iκm is of product type (d0+a j0 ,d1+a j1 ,d2+bi) on the open
set Ũκ of Rn .

Remark 7.4. The non-linear operator B̃ in (7.16), that enters the von Karman
equation, has the structure in Definition 7.3. Indeed, working in Ω×C2 one has
i = j = 1, but the choice m = 1 in (i) gives −[v1,w2] (if Ω is flat such as a ball),
so that the non-trivial terms in (7.21) have m0 = 1, m1 = 2; whilst m = 2 gives
m0 = m1 = 1 6= m.

As another illustration, the finite sums appear directly in the Navier–Stokes
equation, where the unknown (u,p) is a section ofW =W ′ = (Ω×Cn)⊕ (Ω×C),
at least for the Dirichlét condition. Here (u,p) enters the non-linear term ((u ·
∇)u,0). For i = 1 each m gives rise to the sum ∑n

m0=1 vm0
∂m0

wm , where obviously

any m0 ∈ {1, . . . ,n} occurs and m1 = m. (For i = 2 the zero-operator appears.)

In the next result pseudo-local operators are defined as usual to be those that
decrease or preserve singular supports; the singular support of eg a section v ofW
is the complement in Ω of the x for which τ jκm ◦ v is C∞ from a neighbourhood
of x to C, for all Uκ ∋ x and all j and m. It is understood that universal extension
operators have been chosen for the sets Ũκ , so the exact paralinearisations are
meaningful on these sets.

Theorem 7.5. Let B be of product type (d0,d1,d2) compatibly with (a,b) and with
d0 ≤ d1; and let Besov and Lizorkin–Triebel spaces be defined as in (7.4)–(7.5) ff,
with the unified notation Es+a

p,q (V ) and Es−b
p,q (V ′). Then Q(v) := B(v,v) is bounded

Es+a
p,q (V )→ E

s−σ(s,p,q)−b
p,q (V ′) for every (s, p,q) ∈ D(Q), (7.22)

whereby D(Q) and σ(s, p,q) are given by (5.9) and (5.11), respectively.
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Moreover, for each u ∈ Es0+a
p0,q0(V ) there is a moderate linearisation Lu , which

with ω as in (5.14) is bounded

Lu : E
s+a
p,q (V )→ Es−ω−b

p,q (V ′) (7.23)

for every (s, p,q) in the parameter domain D(Lu) given by (5.12). Furthermore,
Lu is pseudo-local on every such Es+a

p,q (V ).

Proof. Let (s0, p0,q0) and u ∈ Es0+a
p0,q0(V ) be given; and consider (s, p,q) such that

(5.12) holds. For each pair of projections τ j0κm0
(u) ∈ E

s0+a j0
p0,q0 (Uκ̃) and τ j1κm1

(v),
Theorem 5.7 applies to spaces with parameters (s0 +a j0 , p0,q0) and (s+a j1 , p,q)
since by (ii) the orders are d0 + a j0 and d1 + a j1 , so there is a u-dependent linear

operator L
j0κm0, j1κm1

iκm sending E
s+a j1
p,q (Uκ̃) continuously to Es−ω̃

p,q (Uκ̃) for

ω̃ = (d2 +bi)+(d1 +a j1)+( n
p0
− s0 +d0)+ + ε (ε ≥ 0). (7.24)

Therefore L
j0κm0, j1κm1

iκm is bounded E
s+a j1
p,q (Uκ̃)→ Es−ω−bi

p,q (Uκ̃) for ω as in (5.14).

In case (s0, p0,q0) is in the domain D(Q), one can take (s, p,q) = (s0, p0,q0) with-
out violating (5.12), and then

L
j0κm0, j1κm1

iκm (τ ′j1κm1
(u)) = B

j0κm0, j1κm1

iκm (τ j0κm0
(u),τ j1κm1

(u)). (7.25)

Summation over all j0 , m0 and j1 , m1 as in (7.21) gives

τ ′iκmB(u,v) = ∑L
j0κm0, j1κm1

iκm (τ ′j1κm1
(v)). (7.26)

This determines a linear operator Liκ,u , which in the set of sections of Uκ̃ ×CM′i is
given by

Liκ,u(v) = (∑L
j0κm0, j1κm1

iκm (τ ′j1κm1
(v)))m=1,...,M′i . (7.27)

As a composite map, Liκ,u(v) is continuous Es+a
p,q (V )→ Es−ω−bi

p,q (Uκ)M
′
i .

Using a partition of unity 1 = ∑κ ψκ subordinate to the coordinate patches Uκ ,
there is a bounded linear operator Lu : E

s+a
p,q (V )→ Es−ω−b

p,q (V ′) given by

Lu(v)i = ∑
κ

(τ ′iκ)−1 ◦Liκ,u(ψκv), for i ∈ I1. (7.28)

It follows from Theorem 5.15 that each Liκ,u is pseudo-local; and so is Lu , since
the class of pseudo-local operators is closed under addition.

When (s0, p0,q0) belongs to the domain D(Q) given by (5.9), then v = u is
possible for (s0, p0,q0) = (s, p,q), and using (7.28)–(7.25),

Lu(u)i = ∑
κ

(τ ′iκ)−1 ◦ τ ′iκB(u,ψκu) = priB(u,∑
κ

ψκu) = priB(u,u). (7.29)

Moreover, the value of ω equals σ(s, p,q), so (7.22) is also proved. �
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7.3. Semi-linear elliptic systems. It is now straigthforward to specialise Theo-
rem 3.2 to the vector bundle framework of multi-order systems.

For generality’s sake it is observed that it suffices, by (II), to take the linear

part A injectively elliptic, ie with a left parametrix Ã and regularising operator

R := I− Ã A . Recall that for a product type operator B, the linearisation Lu of
Q(u) := B(u,u) furnished by Theorem 7.5 enters the parametrix

P(N) = I+ Ã Lu + · · ·+(Ã Lu)N−1. (7.30)

As above, D(A ,Q) = {(s, p,q)∈Dκ ∩D(Q) | σ(s, p,q) < d } is the domain where
Q is A -moderate. Using these ingredients, one has the following main result:

Theorem 7.6. Let A be an injectively elliptic Green operator of order d and class

κ relatively to (a,b), and assume that B is of product type (d0,d1,d2) compatibly
with (a,b), and with d0 ≤ d1 , so that Q has order function σ(s, p,q) on D(Q) and
moderate linearisations Lu , according to Theorem 7.5.

For a section u of Bs0+a
p0,q0(V ) with (s0, p0,q0) ∈ D(A ,Q), and any choice Ã of

a left parametrix of A of class κ−d, the parametrices P(N) in (7.30) are bounded
endomorphisms on Bs+a

p,q (V ) for every (s, p,q) in Dκ ∩D(Lu). And for (s1, p1,q1)
and (s2, p2,q2) in Dκ ∩D(Lu) the linear operator (Ã Lu)N maps Bs1+a

p1,q1(V ) to

Bs2+a
p2,q2(V ) for all sufficiently large N. If such a section u solves the equation

A u+Q(u) = f (7.31)

for data f ∈ Bt−d−b
r,o (V ′) with (t,r,o) ∈ Dκ ∩D(Lu), then

u = P(N)(Ã f +Ru)+(Ã Lu)Nu (7.32)

and u∈Bt+a
r,o (V ). Analogous results are valid for the scales Fs+a

p,q (V ) and Fs−b
p,q (V ′).

Proof. As observed in (7.11), the choice X s
p = Bs+a

p,q (V ) and Y s
p = Bs−b

p,q (V ′) makes
conditions (I) and (II) satisfied. As the Bu in (III) one can take Lu , for its construc-
tion via paramultiplication implies that it is unambigously defined on intersections

of the form X s
p ∩X s′

p′ . Similarly there is commutative diagrams for A and Ã by

the general constructions in the Boutet de Monvel calculus and the results in Sec-
tion 4.3.

Moreover, D(A ,Q) is connected and δ = d−ω(s, p,q) is constant and pos-

itive; hence (IV) and (V) hold. The claims on P(N) may now be read off from

Theorem 3.2. For (Ã Lu)N the sum exponents should also be controlled, but
Dκ ∩D(Lu) is open, hence contains (s1− ε, p1,q2) for ε > 0, so that the larger
space Bs1−ε+a

p1,q2 (V ) is mapped into Bs2+a
p2,q2 for all sufficiently large N , according to

Theorem 3.2.
Finally, since (s0− ε, p0,q0) also belongs to Dκ ∩D(Lu) for sufficiently small

ε > 0, one can assume q0 = o. So according to Theorem 3.2 the section u fulfils
(7.32) and belongs to X t

r = Bt+a
r,o (V ). �

It should be mentioned that while the abstract framework in Theorem 3.2 was
formulated with only s and p as parameters, for convenience, the third parameter
q was easily handled in the proof above by simple embeddings.
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From the given examples it is clear that Theorem 6.1 on the von Karman problem
is just a special case of the above result. One also has

Corollary 7.7. For operators A and B as in Theorem 7.6, the equation

A u+Q(u) = f (7.33)

is hypoelliptic, ie for f in C∞(V ′) any solution u belongs to C∞(V ).

As an application of the parametrix formula (7.32) it is shown that this corollary
has a sharper local version. This also uses the obvious fact that the class of pseudo-

local maps is stable under composition, in particular Ã Lu is pseudo-local. (This

really only involves the PΩ +G-part of Ã , since Lu goes from W to W ′ . And the
pseudo-differential part clearly inherits pseudo-locality from the operators on Rn ,
since PΩ = rΩPeΩ . For the singular Green part one can extend [Gru96, Cor. 2.4.7]
by means of Rem. 2.4.9 there on (xn,yn)-dependent singular Green operators to get
the pseudo-local property. Details are omitted since it is outside of the subject.)

Let Ξ ⊂ Ω be an open subregion with positive distance to the boundary, that is
Ξ ⋐ Ω. Then, if f in (7.31) in addition fulfils f ∈ Bt1−d−b

r1,o1 (V ′|Ξ ; loc) it will be shown
for any solution u of (7.31) that u ∈ Bt1+a

r1,o1(V|Ξ , loc).
More precisely, f ∈ Bt1−d−b

r1,o1 (V ′|Ξ ; loc) means that ϕ f is in Bt1−d−b
r1,o1 (V ′) for ev-

ery ϕ in C∞(Ω) with compact support contained in Ξ. Hereby ϕ f is calculated
fibrewisely for the components of f , both in the bundles E ′i over Ω, for i ≤ iΩ ,
and in the F ′i over Γ, for iΩ < i ≤ iΓ (the last part is always 0 for Ξ ⋐ Ω). That
u ∈ Bt1+a

r1,o1(V|Ξ , loc) is defined similarly, and these conventions extend to the F -
spaces.

Theorem 7.8. Under hypotheses as in Theorem 7.6, suppose f ∈ Et1−d−b
r1,o1 (V ′|Ξ ; loc)

holds in addition to (7.31) for some (t1,r1,o1) in Dκ ∩D(Lu), for an open set

Ξ ⋐ Ω. Then u is also a section of Et1+a
r1,o1(V|Ξ ; loc).

Proof. Let ψ ,χ0 and χ1 ∈C∞(Ω) be chosen so that suppχ1 ⊂ Ξ and

χ0 + χ1 ≡ 1, χ j ≡ j on a neighbourhood of suppψ . (7.34)

By the parametrix formula (7.32),

ψu = ψP(N)(Ã (χ1 f )+Ru
)
+ψP(N)Ã (χ0 f )+ψ(Ã Lu)Nu (7.35)

and here the last term belongs to Et1+a
r1,o1(V ) for a sufficiently large N , according to

the first part of Theorem 7.6. Since Ã Lu is pseudo-local so is P(N) , and there-

fore the inclusion singsuppÃ (χ0 f ) ⊂ suppχ0 implies that ψP(N)Ã (χ0 f ) is in

C∞
0 (V )⊂ Et1+a

r1,o1(V ). And because Ã (χ1 f )+Ru is in Et1+a
r1,o1(V ), the fact that P(N)

has order zero gives that also the first term on the right hand side of (7.35) is in
Et1+a
r1,o1(V ). �
When Ξ adheres to the boundary of Ω one can depart from the parametrix

formula in the same way. But it seems to require more techniques to show that

ψP(N)Ã (χ0 f ) is in Et1+a
r1,o1(V ), for although this term is in C∞(V ), a possible blow-

up at the boundary should be ruled out.
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8. FINAL REMARKS

To sum up, a semi-linear elliptic boundary problem of product type as in (7.31)
can conveniently be treated by determining

D(A ): to have well-defined boundary conditions, ie D(A ) = Dκ when A
is of class κ , cf (1.22);

D(Q): the quadratic standard domain of Q, cf (5.9);
D(A ,Q): the domain where Q is A -moderate, obtained from D(A )∩D(Q)

and the inequality s > n
p − d+ d0 + d1 + d2 (unnecessary if d1− d0 ≥ n),

cf (5.23);
D(Lu): the domain of the exact paralinearisation at u, that is given by the

inequality s >−s0 +d0 +d1 +( n
p + n

p0
−n)+ , cf (5.12);

Du: equal to D(A )∩D(Lu), ie the domain where the parametrices P
(N)
u in-

duced by a given solution u are defined and the parametrix formula (7.32)
holds.

Stated briefly, any given solution u in D(A ,Q) then leads to the parametrix for-
mula (7.32), and u belongs to any space associated with the data, as long as this
space is in the larger domain Du . Theorems 7.6–7.8 contain the precise statements,
including hypoellipticity and local properties in subregions Ξ ⋐ Ω.

8.1. A last example. The use of parameter domains is finally illustrated by the
following polyharmonic Dirichlét problem perturbed by Q(u) = u2 , and with γu=
(γ1u, . . . ,γm−1u):

(−∆)mu+u2 = c f in Ω⊂ Rn (8.1a)

γu = 0 on Γ. (8.1b)

Data are taken as a constant c > 0 times the function f (x) = |x21 + · · ·+ x2k |a/2 in a
domain Ω⊂ Rn , n≥ 2, with Ω ∋ 0. For a ∈ ]− k,0[ it is clear that |x′|a is locally
integrable on Rk , hence is in D ′(Rk), so by Proposition 2.10 f is in B

k/p+a
p,∞ (Ω) for

all p > 0.
Now (−∆)m : Hm

0 (Ω)→ H−m(Ω) is a bijection by Lax–Milgram’s lemma, and

f ∈ B
k/2+a

2,∞ ⊂H−m for k+2a+2m > 0, so under this condition data are consistent

with the linear problem; because Hm = Bm
2,2 this means that (m,2,2) ∈ D(∆m

γ ) =
Dm . (Here ∆m

γ denotes the realisation of (−∆)m induced by the condition γu = 0.)

If moreover Q is of order < 2m on Hm
0 , ie (m,2,2) is in D(∆m

γ ,Q), that by (5.23)
holds for m > n/6, then (8.1) is by Proposition 3.3 solvable for certain c > 0.

However, it is a consequence of the theory here that any solution u in Hm
0 also

is an element of W 2m
1 (Ω). This is an improvement in the sense that any derivative

Dαu with |α | ≤ 2m is a function, which is not true for every element of Hm .

Theorem 8.1. Let Ω ⊂ Rn (n ≥ 2) be smooth open and bounded, 0 ∈ Ω. When

m≥ n/6, k ∈ {1, . . . ,n} and −k < a< 0, then problem (8.1) with f (x) = c|x′|a has
a solution u∈Hm

0 (Ω) for sufficiently small c> 0. Every solution in Hm(Ω) is then
also in Bk+a+2m

1,∞ (Ω), which is a subspace of W 2m
1 (Ω).
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Proof. Solvability was noted above. To see that any solution u in Hm ⊂ Bm
2,∞ is in

Bk+a+2m
1,∞ , note first that f ∈ Bk+a

1,∞ by the above. Moreover, to see that the param-

eter (k+ a+ 2m,1,∞) is in D(Lu), it suffices to apply (5.12) with (s0, p0,q0) =
(m,2,∞), that yields k+a+3m > n/2. This inequality is fulfilled since m > n/6
and k+a > 0 are assumed. So by Theorem 7.6, u is in Bk+a+2m

1,∞ ⊂W 2m
1 . �

In dimensions n ∈ {2,3,4,5} the theorem allows m = 1, hence covers eg the
Dirichlét problem of −∆ for any choice of k, and every a ∈ ]− k,0[ . For n ∈
{6, . . . ,11} the requirement that m> n/6 shows that one gets theW 2m

1 regularity at
least for m = 2, ie for the biharmonic Dirichlét problem; etc in higher dimensions.

Remark 8.2. In many cases the square Q(u) = u2 is ill-defined on the ‘target’ space

Bk+a+2m
1,∞ , for this space is outside of D(Q) if (5.9) is violated, ie if k+ a+ 2m ≤

n/2. But by taking k+a> 0 close to 0, it will be enough to have m< n/4, so there
are examples of such target spaces whenever m can be taken in ] n6 ,

n
4 [∩N, which

is non-empty for n ∈ {5,9,10,11} and for n ≥ 13. For the slightly larger space

W 2m
1 one can refer to Remark 4.4 for a specific proof that Q cannot be continuous

from W 2m
1 → D ′ for m < n/4. Note that the result is sharp: if it could be shown

that u ∈ Bt
1,∞(Ω) for t so large that (t,1,∞) is in D(∆m

γ ,Q), ie t > n− 2m > n
2 ,

then c f =−∆m u+u2 would be in Bt−2m
1,∞ , which by Proposition 2.10 would imply

t ≤ k + a+ 2m ≤ n
2 , giving a contradiction. Hence the ill-definedness of Q at

Bk+a+2m
1,∞ is not explained by partial knowledge at p = 1, but rather by the fact that

Q is defined on Hm ∋ u.

All in all there are legion examples of regularity properties corresponding to
spaces outside of the parameter domains of A-moderacy. They are of importance
for the general theory of partial differential equations, albeit at some distance from
the most common boundary problems of mathematical physics.

8.2. Other types of problems. The analysed product type operators are obtained
roughly by inserting derivatives of the unknown u in a polynomial of degree two;
cf Section 5. This restriction to the second order case could seem artificial, but it
has been made in order not to burden the exposition.

In fact products u1(x) . . .um(x) have been analysed in Bs
p,q and Fs

p,q spaces by
paramultiplication in eg [RS96, Ch. 4.5]. The approach is the same as for m = 2
with collection of terms in two groups to which the dyadic ball and corona criteria
applies, respectively, but the complexity of this is rather larger for m > 2 because
of the many indices. When needed one can undoubtedly obtain, say um =−Lu(u)
and analyse the exact paralinearisation Lu along the lines of Theorem 5.7, using the
framework of [RS96, Ch. 4.5]. Therefore these applications are left for the future,
while the second order case is treated here with its consequences for eg the von
Karman problem in Section 6; as mentioned the developed results also apply to the
stationary Navier–Stokes equation.

An extension of the parametrix formulae to quasi-linear problems seems to re-
quire further techniques.
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Remark 8.3. Parabolic boundary value problems could also be covered by Theo-
rem 3.2, by taking A as the full parabolic system (∂t − a(x,Dx),r0,T ) acting in
anisotropic spaces (r0 is restriction to t = 0, and T a trace operator defining the
boundary conditions). For the linear problems, the reader is referred to [Gru95,
Sect. 4] for the Lp-theory (using classical Besov and Bessel potential spaces) with
a complete set of compatibility conditions on fully inhomogeneous data. In par-
ticular Corollary 4.5 there applies because the underlying manifold ]0,b[×Ω for
0 < b < ∞ is bounded, so that the solution spaces X s

p fulfil (I) above. Because of
the stronger data norms introduced to control the compatibility of the boundary-
and initial-data for exceptional values of s, cf [Gru95, (4.16)], it is here convenient
that the Y s

p -scale is not required to fulfil (3.1)–(3.3). (The compatibility conditions
may force one to work with rather small parameter domains, once data are given.
But even so the present results may well allow considerable improvements of the
solution’s integrability.) For the non-linear terms, the product type operators of
Section 4 are straightforward to treat in the corresponding anisotropic spaces, since
the necessary paramultiplication estimates have been established in this framework
[Yam86a, Joh95].

For problems of composition type, T. Runst and the author [JR97] obtained solu-
tions using the Leray–Schauder fixed point theorem and carried the existence over
to a large domain of Bs

p,q- and Fs
p,q-spaces with a boot-strap argument. However,

the domain of A-moderacy D(A ,Q) is not convex for such problems, cf [JR97,
Fig 1], so the iteration almost developed into a formal algorithm. J.-Y. Chemin
and C.-J. Xu [CX97] used a boot-strap method to give a simplified proof of the
smoothness of weak solutions to the Euler–Lagrange equations of harmonic maps;
the basic step was to obtain hypoellipticity of a class of semi-linear problems with
terms of the form ∑a j,k(x,u(x))∂ ju∂ku. Formally this incorporates both composi-
tion and product type non-linearities, but the difficulties met in [JR97] did not show
up in [CX97], since the weak solutions in this case are known to be bounded (so
that consideration of u 7→ F(u) on the full spaces Hs

p or Bs
p,q with 1 < s < n

p was
unnecessary). However, this well indicates that larger families of non-linearities
will be relevant and potentially require disturbingly many additional efforts.

It has therefore been natural to treat only the class of product type operators
in the present article, although Section 3 applies at least to bounded solutions of
composition type problems. But the latter sphere of problems could in general
deserve stronger methods, say to get rid of the boot-strap algorithm in [JR97].
However, it seems rather demanding to analyse the exact paralinearisation of F(u)
when u is an unbounded function, say an element of Hs

p for s< n
p ; this is probably

an open problem.
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