
Aalborg Universitet

An Environment for Flexible Advanced Compensations of Web Service Transactions

Schaefer, Michael; Dolog, Peter; Nejdl, Wolfgang

Published in:
ACM Transactions on the Web

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Schaefer, M., Dolog, P., & Nejdl, W. (2008). An Environment for Flexible Advanced Compensations of Web
Service Transactions. ACM Transactions on the Web, 2(2). http://doi.acm.org/10.1145/1346237.1346242

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 23, 2025

https://vbn.aau.dk/en/publications/b1a78f00-ab73-11dd-96a1-000ea68e967b
http://doi.acm.org/10.1145/1346237.1346242

An Environment for Flexible Advanced
Compensations of Web Service Transactions1

MICHAEL SCHÄFER

L3S Research Center, University of Hannover

PETER DOLOG

Department of Computer Science, Aalborg University

and

WOLFGANG NEJDL

L3S Research Center, University of Hannover

Business to business integration has recently been performed by employing Web service envi-
ronments. Moreover, such environments are being provided by major players on the technology
markets. Those environments are based on open specifications for transaction coordination. When
a failure in such an environment occurs, a compensation can be initiated to recover from the fail-
ure. However, current environments have only limited capabilities for compensations, and are
usually based on backward recovery. In this paper, we introduce an environment to deal with ad-
vanced compensations based on forward recovery principles. We extend the existing Web service
transaction coordination architecture and infrastructure in order to support flexible compensation
operations. A contract-based approach is being used, which allows the specification of permitted
compensations at runtime. We introduce the abstract service and adapter components which
allow us to separate the compensation logic from the coordination logic. In this way, we can easily
plug in or plug out different compensation strategies based on a specification language defined
on top of basic compensation activities and complex compensation types. Experiments with our
approach and environment show that such an approach to compensation is feasible and beneficial.
Additionally, we introduce a cost-benefit model to evaluate the proposed environment based on net
value analysis. The evaluation shows under which circumstances the environment is economical.

Categories and Subject Descriptors: B.1.3 [Control Structure Reliability, Testing, and
Fault-Tolerance]: Diagnostics, Error Checking; C.2.4 [Distributed Systems]: Distributed
Applications; C.4 [Performance of Systems]: Fault tolerance, Reliability, availability, and
serviceability; H.3.4 [Systems and Software]: Distributed systems, Information networks; H.3.5
[Online Information Services]: Web-based services

General Terms: Design, Reliability

Additional Key Words and Phrases: Web Services, Transactions, Compensations, Forward-Recovery

1A preliminary version of this paper appeared in proceedings of ICWE 2007 [Schäfer et al. 2007]

Authors’ addresses: Michael Schäfer and Wolfgang Nejdl, L3S Research Center, University of Han-
nover, Appelstr. 9a, D-30167 Hannover, Germany, Michael.K.Schaefer@gmx.de, nejdl@l3s.de

Peter Dolog, Department of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300,
DK-9220 Aalborg East, Denmark, dolog@cs.aau.dk
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 0000-0000/2008/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, January 2008, Pages 1–35.

2 · M. Schäfer, P. Dolog and W. Nejdl

1. INTRODUCTION

The Web service environment has become the standard for Web applications sup-
porting business to business transactions and user services. Processes such as pay-
roll management or supply chain management are realized through Web services.
In order to ensure that the results of the business transactions are consistent and
valid, Web service coordination and transaction specifications [Arjuna Technologies
Ltd. et al. 2005; Arjuna Technologies Ltd. et al. 2005; Arjuna Technologies Ltd.
et al. 2005] have been proposed. They provide the architecture and protocols that
are required for transaction coordination of Web services.

The transaction compensation [Gray 1981] is a replacement for an operation
that was invoked but failed for some reason. The operation which replaces the
original one either undoes the results of the original operation, or provides simi-
lar capabilities as the original one. The notion of compensation was introduced
for environments where the isolation property of transactions is relaxed but the
atomicity needs to be maintained. Several protocols have been proposed to control
transactional processes with compensations [Yang and Liu 2006].

Current open specifications for transaction management in Web service environ-
ment provide only limited compensation capabilities [Greenfield et al. 2003]. In
most cases, the handling of a service failure is restricted to backward recovery in
order to maintain consistency, i.e. all running services participating in the transac-
tion are aborted, and all already performed operations are reversed [Alonso et al.
2003]. Subsequently, the aborted transaction will usually have to be restarted and
all requests resend to the Web services, because the failed distributed application
still has to perform its tasks. Backward recovery therefore results in the loss of time
and money that has already been spent in the aborted transaction, and additional
resources are needed to restart the transaction. Moreover, the provider of the ser-
vice that has encountered an error might have to pay contractual penalties, because
the failure has violated the Service Level Agreement (SLA) he has with the client.
The rollback of the complete transaction due to the failure of one single participat-
ing service can also have widespread consequences: All dependent transactions on
the participating Web services (i.e. transactions that have started operations on
a service after the currently aborting transaction and therefore have a completion
dependency [Choi et al. 2005]) have to abort and perform a roll back. Therefore,
using the backward recovery approach, the failure of one single participating Web
service can trigger the abort of many transactions and thus lead to cascading com-
pensations, which can result in a huge loss of time and money. This is sometimes
called the domino effect [Pullum 2001].

In addition to the problematic consequences of backward recovery, current ap-
proaches do not allow any changes in a running transaction. If for example erro-
neous data was used in a part of a transaction, then the only possible course of
action is to cancel the transaction and to restart it with correct data.

In this paper, we describe an environment for advanced compensation opera-
tions adopting forward recovery within Web service transactions. Forward recovery
proactively changes the state and structure of a transaction after a service failure
occurred, and thus avoids having to perform a rollback and enables the transac-
tion to finish successfully. The main idea is the introduction of a new component
ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 3

called an abstract service, which functions as a mediator for compensations, and
thus hides the logic behind the introduced compensations. Moreover, it specifies
and manages potential replacements for primary Web services to be used within a
transaction. The compensations are performed according to predefined rules, and
are subject to contracts [Meyer 1992]. We introduce a framework based on the
abstract services, which enables the compensations described in the compensation
specifications [Schäfer et al. 2007].

Such a solution has the following advantages:

—Compensation strategies can be defined on both, the service provider and the
client side. They utilize local knowledge (e.g. the provider of a service knows
best if and how his service can be replaced in case of failure) and preferences,
which increases flexibility and efficiency.

—The environment can handle both, internally and externally triggered compen-
sations.

—The client of a service is informed about complex compensation operations, which
makes it possible to trigger additional compensations. Compensations can thus
consist of multiple operations on different levels, and consistency is achieved
through well defined communication protocols.

—By extending the already adopted Web service specification, it is not necessary
to discontinue current practices if compensations are not required.

—The separation of the compensation logic from the coordination logic allows for a
generic definition of compensation strategies, independent from the coordination
specification currently in use. They are therefore more flexible and can easily be
reused in a different context.

Furthermore, we evaluate the environment according to a cost benefit model as
well as several experiments. The evaluation shows under which circumstances the
proposed environment is beneficial.

The remainder of the paper is structured as follows. Section 2 introduces the
motivating scenario, which will be used in the paper in order to exemplify the
concepts. Section 3 introduces design and prototype implementation of an infras-
tructure that is able to handle internally and externally triggered compensations
without transaction aborts, and describes the basic components and compensation
specifications based on compensation activities and compensation types. Section 4
discusses various aspects of the evaluation we have performed with the proposed
environment. This includes a case study according to the motivating scenario as
well as various experiments showing the performance of the environment. The new
design is also evaluated analytically on the basis of a net value model. Section 5
reviews related work in the area of forward recovery. Section 6 concludes this paper
and provides a direction for future work on this topic.

2. MOTIVATING SCENARIO

The motivating scenario for this paper is a company’s monthly payroll processing.
In order to introduce real-life dependencies, both, the company’s and the employee’s
responsibilities are considered.

ACM Journal Name, Vol. V, No. N, January 2008.

4 · M. Schäfer, P. Dolog and W. Nejdl

Transfer
salary

Print and
send payslip

Transfer
tax

Company

Employee

Tax

Car Dealer

Accounts

Business Process: Company

Perform
calculations

Transaction T0

Perform
payment

Transaction T1

Business Process: Employee

Transaction T2

Perform
monthly tasks

Fig. 1. The motivating scenario

Company: In the first step of the payroll processing procedure, the company
has to calculate the salary for each employee, which can depend on a multitude
of factors like overtime hours or bonuses. In the next step, the payment of the
salary is performed, which comprises several operations. First of all, the salary
is transferred from the company’s account to the employee’s account. Then the
company transfers the employee’s income tax to the account of the fiscal authorities.
Finally, the company prints the payslip and sends it to the employee.

Employee: The employee has only one task which he has to perform each month
in this scenario: He transfers the monthly instalment for his new car to the car
dealer’s account.

The company’s and the employee’s operations are each controlled by a business
process, and are implemented using Web services from multiple providers. The two
business processes use transactions in order to guarantee a consistent execution of
all required operations. This is depicted in Figure 1. Only the services of transaction
T1 are shown.

It is obvious that there are multiple dependencies in this simple scenario, be-
tween and within these transactions. Therefore, it is vitally important that no
transactions have to be aborted and compensated in order to avoid cascading com-
pensations. However, such a situation can become necessary quite easily:

(1) It can always happen that a service which participates in a transaction fails.
Here, it could be that the service that handles the transfer of the salary fails
due to an internal error. The transaction inevitably has to be aborted, even
though the error might be easily compensatable by using a different service
that can perform the same operation. Such a replacement is encouraged by the
fact that usually multiple services exist that have the same capabilities.

(2) A mistake has been made regarding the input data of an operation. In this
scenario, it could be that the calculation of the salary is inaccurate, and too

ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 5

A1

A2

A3

A4 A5

Client Stub

Client

Client ProcessServer Process

Web Service 1

2. Register, get transaction context

1.
3. Call with TID
 and context

4. Register with TID

5.

N. Run transaction
protocol

N+1. Notify about outcome

Service Stub

Transaction
Coordinator

Fig. 2. Transactional environment for Web services adopted from [Alonso et al. 2003]

much has been transferred to the employee’s account. The flaw is spotted by an
administrator, but the only option is again to abort the complete transaction,
although it would be very easy to correct the mistake by transferring the sum
that has been paid too much back to the company’s account.

Although it should be possible to handle these situations without the need to
cancel and compensate the transaction(s), current technology does not allow to do
so in a sensible way.

3. WEB SERVICE ENVIRONMENT WITH TRANSACTION COORDINATION

We base our work on Web service coordination and transaction specifications [Ar-
juna Technologies Ltd. et al. 2005; Arjuna Technologies Ltd. et al. 2005; Arjuna
Technologies Ltd. et al. 2005]. These transaction specifications provide a concep-
tual model and architecture for environments where business activities performed
by Web services are embedded in transactional contexts.

Figure 2 depicts an excerpt of such an environment with the main components.
The client runs business activities A1 to A5, which are embedded in a transactional
context. The transactional context and conversation is maintained by a transaction
coordinator. Client and server stubs are responsible for getting and registering the
activities and calls for Web services in the right context. The sequence of conver-
sation messages is numbered. For clarity, we only show a conversation with a Web
service provider that performs business activity A1. The transaction coordinator
is then responsible for running appropriate protocols, such as two phase commit
or some of the distributed protocols for Web service environments such as [Alrifai
et al. 2006].

As pointed out above, the compensation capabilities are left to the client business
activities according to the specifications in [Arjuna Technologies Ltd. et al. 2005;

ACM Journal Name, Vol. V, No. N, January 2008.

6 · M. Schäfer, P. Dolog and W. Nejdl

Abstract Service Interface

Compensation Interface

C
o

n
tr

ac
t

E
xc

h
an

g
e

In
te

rf
ac

e

Registration

Incident reporting,
Compensation interaction

Request/response Registration,
Status messaging

Registration,
Status messaging

Management

Concrete service list

Concrete service wrappers

Request log

Compensation rules repository

Contract repository

Coordinator
Capabilities

Adapter Management

AdapterE
ven

t In
terface

Abstract Service

Transaction
Coordinator

Client

Request/response

Initiator

Concrete
Service

Contract exchange

External compensation
interaction

Fig. 3. The abstract service and adapter transaction environment

Arjuna Technologies Ltd. et al. 2005; Arjuna Technologies Ltd. et al. 2005]. We
extend the architecture and the infrastructure based on those specifications, so that
it can handle internally and externally triggered compensations. Figure 3 depicts
the extension to the transaction Web service environment, namely the abstract
service and the adapter components. This extension does not change the way
how client, transaction coordinators and Web service providers operate. Instead of
invoking a normal Web service, a client invokes an abstract service, which looks
like a standard Web service to the outside. However, the abstract service is a
management component for forward recovery compensation handling, which wraps
multiple concrete services that offer the same functionalities and can thus replace
each other. The abstract service is therefore a mediator between a client and
the concrete service that performs the required operations. At the same time,
the adapter component functions as a mediator between transaction coordinator,
abstract service and concrete service to ensure proper transactional context and to
provide the means to intercept failure notifications and create additional messages
required in the compensation handling process.

3.1 Abstract Service

The central element of the extension is the notion of the abstract service. The
client stub communicates with the Web service provider stub through the abstract
service. An abstract service does not directly implement any operations, but rather
functions as a management unit, which allows to:

—define a list of Web services which implement the required capabilities,
ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 7

—invoke a service from the list in order to process requests which are sent to the
abstract service,

—replace a failed service with another one from the list without a failure of the
transaction, and

—process externally triggered compensations on the running transaction.

Distributed applications consisting of collaborating Web services have the advan-
tage that normally single operations can be performed by multiple services from
different providers. Which service will be chosen depends usually on the quality
of service (QoS) requirements of the distributed application. The abstract service
takes advantage of the existing diversity. To the outside, it provides an abstract
interface and can be used like any other Web service, and uses the same mecha-
nisms like SOAP [Nielsen et al. 2003] and WSDL [Christensen et al. 2001]. On the
inside, it manages a list of Web services (called concrete services) which provide the
required capabilities. When the abstract service receives a request, it chooses one
of these services and invokes it. Which concrete service is chosen depends on the
abstract service’s implementation. In the simplest case, the abstract service only
selects the next concrete service on the list. However, it would be possible to give
the abstract service the capability to dynamically assess each concrete service and
to choose the one that optimizes the client’s QoS requirements. Interface and data
incompatibilities between the abstract interface and the interfaces of the concrete
services are solved by predefined wrappers.

This approach has multiple benefits:

—Usually, a client does not care which specific service handles his requests, as
long as the job will be done successfully and in accordance with the contract.
The abstract service design supports this notion by providing the capabilities to
separate the required abilities from the actual implementation.

—The available list of concrete services enables the abstract service to provide
enhanced compensation possibilities.

—The definition of an abstract service can be done independently from the business
process in which it will be used. It can therefore be reused in multiple applications
without the need for changes. If a specific service implementation is no longer
usable, then the business process does not have to be changed, as this is being
managed in the abstract service.

Figure 3 depicts the basic structure of an abstract service. Four interfaces are
supplied to the outside: The service operations for which the abstract service has
been defined can be accessed via the abstract service interface. A contract can be
exchanged or negotiated by using the contract exchange interface. Execution events
of a service (e.g. a failure) can be signaled via the event interface. Compensations
can be triggered from the outside using the compensation interface.

On the inside, the main component is the management unit, which receives and
processes requests, selects and invokes concrete services, and handles compensa-
tions. In order to do so, it has several elements at its disposal:

—Concrete service list : Contains the details of all available concrete services.
ACM Journal Name, Vol. V, No. N, January 2008.

8 · M. Schäfer, P. Dolog and W. Nejdl

—Concrete service wrappers : Define the mapping of the generic abstract service
interface to the specific interface of each concrete service.

—Request log: Holds all requests of the current session.
—Compensation rules repository: Manages the rules that control the compensation

handling process.
—Contract repository: Contains the existing contracts with the different clients.

3.2 Adapter

Abstract services could be used in conjunction with a wide variety of technologies.
Therefore, it would be preferable if the definition of the abstract service itself could
be generic. However, the participation in a transaction requires capabilities that
are different for each transaction management specification.

That is why the transaction specific requirements are encapsulated in a so-called
adapter (see Figure 3). An abstract service registers with this adapter, which in
turn registers with the transaction coordinator. To the coordinator it appears as
if the abstract service itself has registered and sends the status messages. When
the abstract service invokes a concrete service, it forwards the information about
the adapter, which functions as a coordinator for the service. The service registers
accordingly at the adapter as a participant in the transaction.

As can be seen, the adapter works as a mediator between the abstract service, the
concrete service, and the transaction coordinator. The adapter receives all status
messages from the concrete service and is thus able to process them before they
reach the actual coordinator. Normal status messages can be forwarded directly
to the coordinator, while failure messages can initiate the internal compensation
handling through the abstract service.

If the adapter receives such an error message, it informs the abstract service,
which can then assess the possibility of compensation. The adapter will then be in-
formed about the decision, and can act accordingly. If for example the replacement
of a failed concrete service is possible, then the adapter will deregister this service
and wait for the replacement to register. In this case, the failure message will not
be forwarded to the transaction coordinator. The compensation assessment could
of course also show that a compensation is not possible (or desirable). In such a
case, the adapter will simply forward the failure message to the coordinator, which
will subsequently initiate the abort of the transaction.

3.3 Compensation Specifications

The compensation process on the side of the abstract service is controlled by rules,
which specify when and how a compensation can be performed. These rules will
usually be defined by the provider of the abstract service, who normally has the
most knowledge about possible compensations. Two different kinds of compensa-
tions can be specified within these rules: Internally triggered compensations (arising
from internal errors), which can be handled through a concrete service replacement
operation, and externally triggered compensations. An example for an externally
triggered compensation could be the handling of the mistake spotted by an admin-
istrator as described in the motivation scenario.

Each rule specifies the exact operations that have to be performed in the compen-
ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 9

Included compensation activity Possibly included compensation activity

S
er

vi
ce

R
ep

la
ce

m
en

t

La
st

R
eq

ue
st

R
ep

et
iti

on

P
ar

tia
lR

eq
ue

st
R

ep
et

iti
on

A
llR

eq
ue

st
R

ep
et

iti
on

C
om

pe
ns

at
io

nF
or

w
ar

di
ng

A
dd

iti
on

al
S

er
vi

ce
In

vo
ca

tio
n

A
dd

iti
on

al
R

eq
ue

st
G

en
er

at
io

n

S
er

vi
ce

A
bo

rt
In

iti
at

io
n

R
eq

ue
st

S
eq

ue
nc

eC
ha

ng
e

R
es

ul
tR

es
en

di
ng

Compensation Activities

Compensation Type
 NoCompensation

 Repetition

 Replacement

 Forwarding

 AdditionalService

 AdditionalRequest

 SessionRestart

Nr

In
te

rn
al

E
xt

er
na

l

01

02

03

04

05

06

07

08

09

10

Fig. 4. The compensation types and their included activities

sation process. For the purpose of defining the available compensation operations,
we distinguish between basic compensation activities, which constitute the available
single compensation operations, and complex compensation types, which are com-
posed compensation processes consisting of multiple activities. This is shown in
Figure 4. The reason for differentiating between compensation activities and types
is to provide the means for flexible compensations without loosing control over the
process within the abstract service environment. Moreover, while it would of course
be possible to define simpler rules for external and internal compensations that do
not offer many options, this approach would restrict the environment with regard
to future extensions and new compensation strategies.

The compensation types specify which combinations of compensation activities
can be defined in rules for handling internal and external compensations, as it is not
desirable to allow every possible combination within the environment. When an
abstract service receives a request for an internal or external compensation, it will
first of all check whether a rule for the current situation exists, and if this is the case,
it will validate each rule before executing the given set of compensation activities in
order to guarantee that they are consistent with the available compensation types.

Therefore, although the combination of different compensation activities allows
the definition of flexible and complex rules, it is not permitted to define arbitrary
compensation handling processes. Only the predefined compensation types can

ACM Journal Name, Vol. V, No. N, January 2008.

10 · M. Schäfer, P. Dolog and W. Nejdl

be used, and it is thus guaranteed that an abstract service does not execute a
process defined in a compensation rule that is not permitted or possible. At the
same time, this approach allows the future extension of the environment with new
compensation strategies: In order to test or include new compensation strategies,
it is possible to simply define a new compensation type and extend the abstract
service to accept it.

3.3.1 Basic Compensation Activities. Compensation activities are the basic op-
erations which can be used in a compensation process. ServiceReplacement replaces
the currently used Web service with a different one, which can offer the same capa-
bilities and can thus act as a replacement. LastRequestRepetition resends the last
request to the Web service. PartialRequestRepetition resends the last n requests
from the request sequence of the current session (i.e. within the current transaction)
to the Web service, while AllRequestRepetition resends all requests. Compensation-
Forwarding forwards the external compensation request to a different component,
which will handle it. AdditionalServiceInvocation invokes an additional (external
or internal) service, which performs a particular operation that is important for the
compensation (e.g. the invocation of a logging service, which collects data about
a specific kind of compensation). AdditionalRequestGeneration creates and sends
an additional request to the Web service. Such a request is not influenced by the
client, and the result will not be forwarded to the client. ServiceAbortInitiation
cancels the operations on the Web service, i.e. the service aborts and reverses all
operations which have been performed so far. RequestSequenceChange performs
changes in the sequence of requests that have already been sent to the Web service.
ResultResending sends new results for old requests, which have already returned
results.

3.3.2 Compensation Types. Compensation types aggregate multiple compensa-
tion activities, and thus form complex compensation operations, as shown in Figure
4. These types are the compensation actions which can be used for internal and
external compensations, and which form the basis of the compensation specification
language. There are currently 7 different compensation types.

The most simple type is NoCompensation, which does not perform any operation.
If a Web service fails, then this will be signaled to the transaction coordinator, which
will initiate the transaction abort.

The Repetition type is important for the internal error handling, as it repeats the
last request or the last n requests. The last request can for example be resent to a
Web service after a response was not received within a timeout period. A partial
resend of n requests can for instance be necessary if the request which failed was
part of a sequence, which has to be completely repeated after the failure of the final
request. A partial repetition of requests will result in the resending of results for
old requests to the client, which has to be able to process them.

The compensation type Replacement can be used if a Web service fails completely.
It replaces the current service with a different one, and resends either all requests, a
part of the requests, or only the last one. Resending only the last request is possible
if a different instance of the service that has failed can be used as replacement, which
works on the same local data and can therefore simply continue with the operations.
ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 11

Forwarding is special in comparison with the other types, as it only indirectly
uses the available activities. It forwards the handling of the compensation to a dif-
ferent component, which can potentially use each one of the compensation activities
(which are therefore marked as ”possibly included”) in the process.

In an externally triggered compensation, it is sometimes necessary to invoke
additional services and send additional requests to the concrete service. For this
purpose, the compensation types AdditionalService and AdditionalRequest exist.

The final compensation type is SessionRestart. This operation is required if the
external compensation request can not be handled without a restart of the complete
session, i.e. the service has to be aborted and subsequently the complete request
sequence has to be resent. The requested change will be realised by a change in the
request sequence prior to the resending.

3.3.3 Compensation Protocol. While the compensation rules specify when and
how a compensation can be performed, the compensation protocol controls the ex-
ternal compensation process itself and its interaction with the different participants.

An externally triggered compensation always has the purpose of changing one
particular request that has already been processed at the service. More specifically,
the compensation request contains the original request with its data that has to
be changed (request1(data1)), and the new request-data (data2) to which the
original request has to be changed to (request1(data2)). The participants in
the protocol are the abstract service, the client which uses the abstract service in
its business process, the initiator which triggers the external compensation (either
the client itself, or any other authorized source like an administrator), the concrete
service which is currently being utilized by the abstract service, and the transaction
coordinator. An externally triggered compensation can only be performed if the
transaction in which the abstract service participates has not yet finished, as this
usually has consequences for the client due to result resending.

The protocol consists of two stages. The first stage is the compensation assess-
ment : As soon as the abstract service receives a request for a compensation, it
checks whether it is feasible and what the costs would be. To that end, prede-
fined compensation rules are being used, which consist of a compensation condition
(defines when a compensation rule can be applied) and a compensation plan (de-
fines the compensation actions that have to be performed). The second stage of
the protocol is the compensation execution, which performs the actual compensa-
tion according to the plan. Whether this stage is actually reached depends on the
initiator: After the assessment has been completed and has come to a positive con-
clusion, the initiator, based on this data, has to decide whether the compensation
should be performed or not.

As the client and the initiator of an external compensation can differ, the pro-
tocol contains the means to inform the client about the compensation process. It
also ensures that the current concrete service and the transaction coordinator are
informed about the status of the external compensation, as it is possible that the
concrete service’s (and thus the abstract service’s) state changes due to the external
compensation. The concrete service has to enter a specific external compensation
handling procedure state for this purpose. While the concrete service is in this
state, it will wait for additional requests from the abstract service, and the coordi-

ACM Journal Name, Vol. V, No. N, January 2008.

12 · M. Schäfer, P. Dolog and W. Nejdl

Active Completing Completed

Canceling

Exiting

Closing

Compensating

Faulting

Ended
Complete Completed Close Closed

Compensate Compensated

Fault

Fault

Faulted

ExitExit

Cancel Cancel

Exited

Canceled

ExCompensation I

Fault

ExCompensated,
Active

Cancel

Waiting
Compensate

CompletedWait

Exit

ExCompensate

ExCompensate

Complete

ExCompensation II

ExCompensate ExCompensate
Wait

Completed

Fault

CompensateExCompensated

Coordinator generated Participant generated Adapter generated

Fig. 5. The state diagram of the BusinessAgreementWithCoordinatorCompletion protocol with
extensions for the external compensation handling

nator is not allowed to complete the transaction. While assessing the possibilities
for a compensation, and while performing it, the abstract service can not process
additional requests (and either has to store the requests in a queue, or has to reject
them with an appropriate error message).

Because of the requirements of the compensation protocol, it is necessary to
adapt the normal transaction protocol with additional state changes regarding the
coordinator and participant (i.e. the concrete service). This has been done in our
implementation for the BusinessAgreementWithCoordinatorCompletion protocol
(refer to [Arjuna Technologies Ltd. et al. 2005]), using an extended version intro-
duced in [Alrifai et al. 2006] as a basis, which uses transaction dependency graphs
in order to solve cyclic dependencies. The result of the state diagram adaptation
for the compensation protocol is depicted in Figure 5.

Two new states have been introduced, ExCompensation I and ExCompensation
II. While both represent the external compensation handling procedure state which
the concrete service has to enter, it is necessary to distinct between them, because,
depending on the former state, different consequential transitions exist.

If the concrete service as participant is currently either in the Active state or the
Completing state when receiving an ExCompensate notification from the adapter,
it will enter the ExCompensation I state. While the concrete service is in this
state, it will wait for new requests from the abstract service, and the coordinator
will not finish the transaction. If the external compensation procedure is canceled
after the assessment has been performed, the concrete service will be instructed to
re-enter its former state by receiving either an Active or a Complete instruction
from the adapter. The transaction processing can then continue in the normal way.
ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 13

In contrast, if the external compensation is executed and performed successfully,
the concrete service will receive an ExCompensated message, which instructs it to
enter the Active state. This is necessary for two reasons: Firstly, because any
additional requests as part of the external compensation handling require that the
participant again performs the Completing operations. And secondly, because the
abstract service’s client will be informed about the external compensation that has
been performed, and it is possible that additional operations are required by the
client as a consequence of the compensation.

In addition to these options within the ExCompensation I state, the same transi-
tions exist as in the Active and Completing states, i.e. the coordinator can Cancel
the operations, and the participant can Exit or send a Fault notification.

If the concrete service is either in the Waiting or Completed state when receiving
an ExCompensatemessage, it will enter the ExCompensation II state. In principle,
the state has the same meaning as ExCompensation I: The concrete service will
wait for new abstract service requests, and at the same time the coordinator is not
allowed to finish the transaction. The concrete service will be notified to enter the
Active state through an ExCompensated message after a successful external com-
pensation execution. However, in contrast to ExCompensation I, different conse-
quential transitions are available, and therefore it is necessary to separate these two
states. In case of a compensation abort, the concrete service can be instructed to
re-renter its former state through a Wait or Completed message. Moreover, a Fault
message can be sent to signal an internal failure. Finally, the the coordinator can
send a Compensate instruction while the concrete service is in the ExCompensation
II state. The concrete service can only be instructed to Compensate if it is ei-
ther in the Waiting or the Completed state. Therefore, it is necessary to introduce
ExCompensation II, as this option is not available for the Active and Completing
states and may thus not be permitted within ExCompensation I.

The extended state diagram contains new transitions generated by the adapter
in addition to the ones from the participant (i.e. the concrete service) and the
coordinator. This is actually a simplification, because although the adapter creates
the messages and sends them to the coordinator and the participant, both are not
aware of the fact that the adapter has sent them. To the coordinator it always
looks as if the participant has sent the messages, while the participant thinks that
the coordinator has sent them, as both are unaware of the extended transaction
environment. Therefore, in order to obtain a state diagram that shows only transi-
tions generated by either the coordinator or the participant, it would be necessary
to create two different state diagrams, one from the participant’s view and one from
the coordinator’s.

3.4 Application on the Client and Provider Side

The abstract service design can be applied on both, the client and the provider
side. A client which wants to create a new distributed application using services
provided by multiple providers can utilize abstract services in two different ways:

(1) The client can include the abstract service from a provider in its new business
process, and can use the added capabilities.

(2) The client can define a new abstract service, which manages multiple concrete
ACM Journal Name, Vol. V, No. N, January 2008.

14 · M. Schäfer, P. Dolog and W. Nejdl

services that can perform the same task.

The main goal of a Web service provider is a successful and stable execution of
the client’s requests in accordance with the contracts. If the service of a provider
fails too often, he might face contractual penalties, or the client might change
the provider. He can use abstract services in order to enhance the reliability and
capability of his services by creating an abstract service which encapsulates multiple
instances or versions of the same service. These can be used in case of errors to
compensate the failure without the need for a transaction abort.

3.5 Client Contracts

While the multiple compensation capabilities of an abstract service allow the han-
dling of internal and external compensations, it may not always be desirable for
a client that these functionalities are applied. The abstract service environment
therefore allows the definition and evaluation of contracts.

A client who wants to make use of the functionalities provided by an abstract
service will negotiate a contract with the abstract service before sending the first
request. This contract not only contains legal information and the Service Level
Agreement, but can also specify which compensation operations the abstract service
is permitted to apply. The abstract service dynamically adapts to this contract
by checking the restrictions defined in it prior to performing a compensation: A
compensation rule may only be applied if all necessary compensation operations are
permitted via the contract. It can thus happen that although a compensation rule
exists for handling a compensation, the abstract service will not apply it because
the contract restricts the use of required compensation operations. Accordingly, an
abstract service that is not allowed to use any compensation capabilities will act
exactly like a standard Web service. A client therefore can make use of the forward
recovery capabilities, but he does not have to, and thus always has the control over
the environment’s forward recovery compensation handling features.

Because of this ability to dynamically adapt to each client’s contract, it is possible
to use the same abstract service in a wide variety of distributed applications with
differing requirements regarding compensation handling.

3.6 Transaction Environment Adaptation

The abstract service and adapter approach has been designed as an extension of
the current transaction coordination structure so that it is easy to integrate it
into existing environments and different transaction protocols. Therefore, it is not
necessary to change either the client, coordinator or concrete service in order to use
the internal compensation handling capability: An abstract service that manages
different concrete services and that is able to replace failed concrete services can be
used like a normal Web service and without any changes in the transaction protocol.

However, the introduced external compensation functionality for changing al-
ready processed requests requires some changes in the transaction environment:

(1) It is necessary to extend the existing transaction specification protocols to pro-
vide the capability to perform external compensations. This has been shown
for the BusinessAgreementWithCoordinatorCompletion protocol in Section

ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 15

3.3.3. Accordingly, the transaction coordinator and the participating Web ser-
vices (i.e. concrete service) have to be able to handle this adapted protocol.

(2) The external compensation process requires that reports about a performed
compensation and possibly the resending of results can be sent to the client of
a transaction. It is therefore necessary that the client provides the expected
interfaces and that he is able to process these reports in accordance with his
business process.

The extend of the changes thus depends on the compensation handling require-
ments.

3.7 Middleware Prototype

The described design approach has been used in a prototype implementation. The
implementation has been done using Apache Tomcat as Web container, and Apache
Axis as SOAP engine. The WS-Transaction specification has been chosen for the
transaction coordination, more specifically the adapted BusinessAgreementWith-
CoordinatorCompletion protocol that has been introduced in Section 3.3.3. The
implementation has been published online at SourceForge.net as the FROGS (for-
ward recovery compensation handling system) project:

http://sourceforge.net/projects/frogs/

4. EVALUATION

In this section we discuss various aspects of the middleware which we have eval-
uated. First of all, we look at exploitation of the proposed middleware in two
experiments according to the motivating scenario we have discussed in Section 2.
The experiments show how the components of the environment can work together
in a concrete case, how compensation operates in such a context and how a concrete
case with such a middleware is set up.

Secondly, we discuss an experiment which shows the performance of the proposed
environment in comparison to the environment without forward compensation. The
results of the experiments show that the proposed environment outperforms the
standard environment based on backward recovery.

Thirdly, we propose an analytical evaluation model which carries out a cost ben-
efit analysis of the proposed environment in contrast to the standard environment.
We apply the analytical evaluation model to a concrete evaluation. By doing so
we show under which conditions the environment with advanced forward compen-
sations is beneficial.

Last but not least, we outline several possibilities for formal verification of the
communication protocol we have introduced in this paper. We focus on one property
to explain that there is always a computation which leads to compensation. Due
to space limitation we do not show a complete proof.

4.1 Expoitation of the Middleware in Banking Scenario

We have experimented with the scenario introduced in Section 2 for test purposes.
Multiple experiments have been performed within the implemented environment,
two of which will be presented in this section.

ACM Journal Name, Vol. V, No. N, January 2008.

16 · M. Schäfer, P. Dolog and W. Nejdl

Business Process: Company

...

Adapter 1

Adapter 2

Web Service 2

Service Provider

Client

Web Service 1

Transaction
Coordinator

Transfer
salary

AS1

Transfer
service

AS2

Fig. 6. Compensation on the provider side

The four services participating in the payment transaction have been realized as
abstract services. The abstract services manage the standard Web services per-
forming the required operations as concrete services.

The first experiment was devoted to the evaluation of the compensation of an
internal service error. In this case, a failure of the concrete service on the provider
side is simulated. Figure 6 shows the setup for the transfer salary operation: The
abstract service AS1 on the client side currently uses a concrete service that is itself
an abstract service (AS2), which is operated by a service provider. The abstract
service AS2 uses Web Service 1, which performs the required operations. Figure 6
also depicts the interconnection of the services: AS1 is registered as a participant
at the Transaction Coordinator via Adapter 1, AS2 is registered at Adapter 1 via
Adapter 2, and Web Service 1 is registered at Adapter 2.

Now Web Service 1 fails due to an internal error, and is thus not able to perform
all operations required for the salary transfer. Instead of informing the transac-
tion coordinator, abstract service AS2 is informed, which assesses its compensa-
tion rules, the contract, and the available substitution services, and decides that a
compensation is possible. Web Service 1 is discarded and the request that failed is
send to Web Service 2, which registers awith the adapter. Web Service 2 is another
instance of the same service, and can therefore simply continue with the request
as it operates on the same local resources. This scenario shows that the signal of
the service failure can be intercepted and the service replaced, without the need to
cancel the complete transaction.

The second experiment evaluates an externally triggered compensation. Table I
ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 17

Nr. Transaction Company (C) Employee (E) Tax (T) Car Dealer (D)

10.000 0 Y Z

01 T1.debit(C,1.000) 9.000

02 T1.credit(E,1.000) 1.000

03 T1.debit(C,500) 8.500

04 T1.credit(T,500) Y+500

05 T2.debit(E,150) 850

06 T2.credit(D,150) Z+150

8.500 850 Y+500 Z+150

Table I. The transfer operations on the accounts in the scenario

Nr. Transaction Company (C) Employee (E) Tax (T) Car Dealer (D)

...

07 T1.debit(E,50) 800

08 T1.credit(C,50) 8.550

8.550 800 Y+500 Z+150

Table II. The additional operations on the accounts

summarizes the operations on the different accounts in the scenario described in
Section 2. In this experiment, an administrator has found an error in the calculation
of the salary: The company transferred 50 units too much to the account of the
employee. The administrator directly sends a compensation request to the abstract
service that handles the salary transfer (AS1). The abstract service assesses the
request by consulting its compensation rules. In this scenario, the rules specify that
this compensation is only allowed if the employee’s account would still be in credit
after the additional debit operation, in order to avoid the employee’s account being
in debit after the transaction.

The result of the assessment is positive, which is reported to the administrator,
who can decide based on this data whether the compensation should be performed.
He decides that the compensation is necessary. The abstract service compensates
operations 01 and 02 from Table I by creating an additional debit and credit op-
eration, as can be seen in Table II. The operations transfer 50 units from the
employee’s account back to the company’s account, which thus compensates the
initial problem. As an additional service, the abstract service initiates a precau-
tionary phone call, which informs the employee about the change.

Subsequently, the compensation will be reported to the client, who has to assess
whether any other services are affected according to its business process. It decides
that the tax transfer does not have to be changed, while the payslip has to be
updated, as the details of the salary have changed. The business process therefore
initiates a compensation on the respective service, which handles this request by
printing and mailing a new payslip. This shows that even the more complex initial
problem could be solved without the need to abort the transaction.

These experiments have shown that the proposed design is successful in employing
flexible compensation strategies in Web service transactions. It is thus possible to
develop more robust distributed applications, where the abstract services are able to
adapt their compensation rules to the contract they have with the client. Especially

ACM Journal Name, Vol. V, No. N, January 2008.

18 · M. Schäfer, P. Dolog and W. Nejdl

in long-running transactions, this approach helps to avoid unnecessary transaction
aborts, and therefore saves money and time. While it is of course still possible that
the abstract service itself encounters an error, it at least provides the capabilities
to avoid transaction aborts due to concrete service failures. Moreover, it is possible
to mix the new design with existing technology: The new capabilities can be used,
but do not have to, as an abstract service can be employed like any other normal
Web service.

The current implementation is a proof-of-concept of the proposed design archi-
tecture, and is still limited regarding certain aspects. The prototype of the abstract
service uses only synchronous requests and does not allow parallel requests. Never-
theless, the same principles can be applied in this case, although additional request
queue management will be required. Accordingly, the execution of compensation
actions is currently performed only sequentially.

In this prototype implementation, compensation rules can be specified on the
basis of an XML Schema definition. The following is an example of a rule for the
processing of external compensation requests:

<cmp:ExternalCompensationRule identifier="refundSalaryDifference">

<cmp:CompensationCondition>

<cmp:RequestMethod identifier="transferSalaryMethod" />

<cmp:ParticipantRequest identifier="getAccountBalanceMethod"

parameterFactory="CheckEmployeeAccountParameterFactory">

<cmp:Result resultEvaluator="AccountInCreditResultEvaluator" />

</cmp:ParticipantRequest>

</cmp:CompensationCondition>

<cmp:CompensationPlan>

<cmp:Compensation>

<cmp:AdditionalRequest identifier="transferSalaryMethod"

parameterFactory="RefundSalaryDifferenceParameterFactory" />

</cmp:Compensation>

<cmp:Compensation>

<cmp:ServiceRequest

serviceAddress="http://localhost:8080/axis/services/TelephoneCall"

methodName="initializeTelephoneCall" />

</cmp:Compensation>

</cmp:CompensationPlan>

</cmp:ExternalCompensationRule>

The rule has been specified for the abstract service AS1, which handles the trans-
fer of the salary in the scenario. The compensation condition consists of two single
condition elements:

(1) RequestMethod - The rule applies for external compensation requests, which
aim at changing requests that originally invoked the abstract service’s method
with the identifier transferSalaryMethod, i.e. it applies for external compen-
sations that try to change the details of a salary transfer that has already been
performed.

(2) ParticipantRequest - The second condition element specifies a request that
has to be sent to the current concrete service. In this rule, the goal of the request
is to check whether the account of the employee will still be in credit after the

ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 19

excess amount that has been transferred has been refunded to the company’s
account. The condition’s request invokes the concrete service’s method that
matches the abstract service’s method with the identifier getAccountBalance-
Method. This method returns the current balance of the employee’s account.
The parameters of this request are created using the CheckEmployeeAccount-
ParameterFactory parameter factory. This factory is a predefined class that
implements a specific interface, and which is dynamically instantiated and in-
voked via the Java Reflection API. After the request has returned the current
balance, the predefined AccountInCreditResultEvaluator result evaluator is
responsible for checking whether the salary refund can be performed, and thus
whether the rule’s condition is fulfilled or not. Like a parameter factory, each
result evaluator class has to implement a specific interface and is instantiated
and invoked via the Java Reflection API.

The rule’s compensation plan, which handles the salary refund, consists of two
steps as well:

(1) AdditionalRequest - In the first step, an additional request is sent to the
concrete service in order to perform the changes that are required, i.e. the
transfer of the money back to the company’s account. The request invokes the
concrete service’s method that matches the abstract service’s method with the
identifier transferSalaryMethod, which is the method that executes the salary
transfer. The parameters for this request are again created by a predefined
parameter factory RefundSalaryDifferenceParameterFactory.

(2) ServiceRequest - In the second step, an additional external service located
at http://localhost:8080/axis/services/TelephoneCall is being utilized.
The method initializeTelephoneCall has to be invoked, which does not
require any parameters, and therefore no parameter factory has been specified.
This external service performs the precautionary telephone call mentioned in
the second experiment, which informs the employee about the error in the salary
calculation and the refund that has been performed.

This example shows how compensation rules can be specified in the current im-
plementation. By combining the different available condition and compensation
action elements, it is thus possible to create complex rules for internal and external
compensations. Although this specification of compensation rules is quite simple,
it is sufficient for defining the different compensation strategies for the abstract
service, and is flexible enough for creating and testing new compensation strategies
within the extended transaction environment.

The use of predefined parameter factory and result evaluator classes makes the
definition of rules simpler and reduces complexity, but at the same time of course
externalizes condition and compensation action logic. This can make maintenance
more difficult, because in this way the formal XML definition does not specify
all parts of a compensation rule. Moreover, it is currently not possible to define
AND/OR expressions for conditions. Each single condition element contained in a
compensation rule therefore has to be fulfilled in order to fulfill the complete rule.
In future implementations, it would be preferable to use a full-fledged rules language
for the purpose of defining complex compensation rules. Nevertheless, the current

ACM Journal Name, Vol. V, No. N, January 2008.

20 · M. Schäfer, P. Dolog and W. Nejdl

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70

Number of concurrent transactions

A
ve

ra
g

e
n

u
m

b
er

 o
f

fa
il

ed
 s

er
vi

ce
s

Standard Environment

Abstract Service Environment

Fig. 7. The average number of failed services in the abstract service and the standard environment

rules specification is suitable for the prototype implementation, as it simplifies
the creation of new rules as well as their analysis and execution. In addition,
the design of the abstract service is flexible enough to allow the replacement of the
compensation rules specification, in case this is necessary in future implementations.

4.2 Empirical Evaluation of Performance

In order to quantify the advantage of the proposed environment, an empirical eval-
uation has been performed. A scenario was set up in which multiple transactions
concurrently invoke services, which have a predefined probability of encountering a
failure. By gathering data within this scenario for both, the standard environment
and the abstract service environment, it is possible to compare these two approaches
with respect to the consequences of service failures.

In this scenario, each transaction always invokes two services:

(1) Shared service - A normal Web service that is invoked by all transactions in
order to introduce transactional dependencies. This service exists only for this
single purpose and will not fail when processing a request.

(2) Individual service - A service that will only be utilized by one transaction,
and which has a failure probability of 10%. Whether or not a failure occurs is
determined each time the service receives a request.

The transactions are limited to two participating services to allow a better com-
parison of the results. All services do not have any real functionality, which is not
necessary for performing the tests, but instead simulate a required processing time
of 3 to 20 seconds. When the scenario is being run for the standard environment,
each individual service is a standard Web service. Accordingly, for the abstract
ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 21

0

20

40

60

80

100

120

10 20 30 40 50 60 70

Number of concurrent transactions

A
ve

ra
g

e
p

er
ce

n
ta

g
e

o
f

su
cc

es
sf

u
l

tr
an

sa
ct

io
n

s

Standard Environment

Abstract Service Enrivonment

Fig. 8. The average percentage of successful transactions in the abstract service and the standard
environment

service environment each individual service is an abstract service, and each man-
ages two different concrete services. However, only the first concrete service carries
the possibility of failure, the second one is the concrete service that can be used as
a replacement in case the first one fails. Therefore, there will always be only one
replacement operation per abstract service. All abstract services have a probability
of 70 % of being able to perform a replacement in case of an error. This is to
simulate that it is possible that no replacement service is available or that it is not
allowed to perform a replacement according to the client contract.

A client initializer is responsible for creating and starting the clients within this
scenario, each in an interval of 2 seconds. Each client will create a new transaction
at the coordinator, and will then invoke first the shared service and then the indi-
vidual service. The tests have been performed for a different number of concurrent
transactions, and a new client is responsible for each new transaction.

The scenario has been repeated 10 times for each number of concurrent transac-
tions, and the mean values for the gathered data have been calculated. Figure 7
depicts the average number of failed services in these tests, shown for 10, 20, ... 70
concurrent transactions in a comparison of both environments. As can be seen, the
number of failed services is more or less the same, and therefore the consequences
of these failures can directly be compared.

For each test run, the percentage of successful transactions and the number of
successful transactions per minute have been calculated, and the average results for
both environments are shown in Figure 8 and Figure 9, respectively.

Both, the number of successful transactions as well as the number of successful
transactions per minute is considerably higher in the abstract service environment

ACM Journal Name, Vol. V, No. N, January 2008.

22 · M. Schäfer, P. Dolog and W. Nejdl

0

5

10

15

20

25

10 20 30 40 50 60 70

Number of concurrent transactions

A
ve

ra
g

e
n

u
m

b
er

 o
f

su
cc

es
sf

u
l

tr
an

sa
ct

io
n

s
p

er
 m

in
u

te

Standard Environment

Abstract Service Environment

Fig. 9. The average number of successful transactions per minute in the abstract service and the
standard environment

than in the standard environment. The abstract service environment is able to re-
place many failed services, and thus is able to avoid the rollback of dependent trans-
actions. These results emphasise the advantage of the proposed design with respect
to the overall success in an environment with concurrent transactions. Although
the abstract service design increases the amount of messaging and the complexity
of the environment, it is obviously beneficial because it decreases the number of
transactions that have to be compensated and increases the reliability.

4.3 Analytical Cost-Benefit Evaluation

Evaluating the proposed environment is a challenging task, because a lot of different
factors have to be taken into account when considering whether or not the abstract
service environment should be applied. The main disadvantage of the approach
is that it requires considerable message forwarding on the side of the abstract
service and the adapter: The number of messages that have to be sent between
client, participant, and coordinator is basically doubled. So when only the plain
number of messages that have to be sent within a transaction is important or is
considered, then the traditional environment is the better one. Figure 10 depicts
this by comparing the required messages in the two different environments. For
this comparison, a transaction is repeated consecutively 15 times, and in three
of these transactions an error occurs. In order to handle this error, the standard
environment aborts the whole transaction and restarts it, while the abstract service
environment chooses a different direct replacement concrete service and continues
with the request processing.

As can be seen, the number of messages that have to be sent in the abstract service
ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 23

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transaction iteration number

C
u

m
u

la
ti

ve
 n

u
m

b
er

 o
f

m
es

sa
g

es

Cumulative number of messages in the
standard environment

Cumulative number of messages in the
abstract service environment

Fig. 10. Comparison of the cumulative message number progression in the standard and the
abstract service environment

environment is considerably higher. However, the motivation for creating this new
approach was to provide the means to avoid the consequences of a transaction abort,
and not the reduction of the amount of messaging. The abort of a single transaction
not only directly affects the service provider through possible contractual penalties
(due to not fulfilling QoS promises) and loss of clients (local effects), but potentially
can also trigger cascading transaction aborts, which can result in the loss of a huge
amount of resources that have already been spent (global effects). Therefore, instead
of only considering the number of messages that have to be sent, it is necessary
to perform a cost-benefit analysis for the assessment of the proposed environment,
which shows under which circumstances the extended environment is economically
beneficial. For this purpose, it is required to calculate net values for both, the
standard environment and the abstract service environment. A net value is defined
as follows:

net value = revenue - transaction costs - incurred losses

Revenue is the sum of the earnings on the side of the participating Web services
for performing the client’s requests. Transaction costs are the costs that arise from
the transaction management. Finally, incurred losses is the sum of all indirect costs
of a transaction abort, i.e. contractual penalties, the costs for aborting cascading
transaction, etc.

The cumulative net value of a transaction environment is the sum of all net values
of the single transactions that are managed, and thus increases or decreases with

ACM Journal Name, Vol. V, No. N, January 2008.

24 · M. Schäfer, P. Dolog and W. Nejdl

-400

-200

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transaction iteration number

C
u

m
u

la
ti

ve
 n

et
 v

al
u

e

Cumulative net value in the standard
environment

Cumulative net value in the abstract
service environment

Fig. 11. Comparison of the cumulative net value progression in the standard and the abstract
service environment

each new transaction. When considering this in the example from Figure Figure
10, it is possible to directly compare the sum of all 15 transaction net values for
the standard environment with the abstract service environment. This is depicted
in Figure 11.

The figure shows that the cumulative net value of the standard environment
drops whenever a participating Web service encounters an error, mainly due to the
incurred losses of the transaction abort and restart. However, the cumulative net
value of the abstract service environment constantly increases because a transaction
abort and its consequential losses could be avoided by using a different concrete
service.

As can be seen, it is necessary to consider the whole picture of transaction man-
agement when assessing the proposed environment. A provider who considers using
the abstract service approach in a service he wants to create has to decide on the
following attributes of his new service:

—Availability - How available has the service functionality to be?
—Reliability - How reliable has the service to be, i.e. how often may it fail?
—Adaptability - How flexible does the service has to be with respect to request

changes?

Moreover, he has to consider the costs that accumulate when a transaction abort
is necessary as a result of a service failure or erroneous input data. The following
factors have to be analyzed and taken into account:
ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 25

—How many Web services participate in the transaction?
—How many dependent transactions exist per participant?
—How high is the probability of a participant failure?
—How high are the costs of performing a rollback on all dependent transactions?
—How high are these costs if the respective transactions have to be restarted?
—How many different clients are affected by the transaction aborts?
—How can the loss in reputation of the provider that offers the failed service be

appraised if the service fails too often?
—How high are the contractual penalties that the provider incurs for a service

failure/ for a reliability score that is too low?
—How often does it happen that a client enters incorrect information, which has

to be changed?

As it can be seen, there are many different factors that have to be considered when
assessing the use of the abstract service and adapter design within a given context.
Usually, the service provider has only limited knowledge about the transaction in
which one of his services participates. He only is informed about the number of
transactions which currently use the service, and the contracts he has with the
respective clients. Therefore, the provider’s cost-benefit analysis will always be
based on his limited knowledge and his estimations.

For the purpose of making a more general statement about the economic efficiency
of the new design, we have created a simplified model which allows the calculation
of the net value of both, the standard transaction environment and the enhanced
transaction environment using abstract services. The two net values can be com-
pared, and it is thus possible to decide whether the new design is economical. The
model assumes that complete knowledge about all aspects of the transaction and all
dependent transactions is available, and the different factors can be appraised. The
goal of this model is not to have a realistic view on all aspects of the transactional
environment, but rather to illustrate the methodology of the assessment.

The evaluation model will now be demonstrated on the basis of a simple scenario.

4.3.1 Evaluation Set-Up. In order to quantify and assess the abstract service
design in comparison to the standard procedures with the proposed methodology,
a simplified application case is being analysed: The cumulative costs are being as-
sessed on the basis of the messages that have to be sent in the BusinessAgreement-
WithCoordinatorCompletion protocol with atomic outcome as this was the con-
text in which we performed the experiments presented above. Each message and
thus each operation that it triggers has the same standard cost of ”1”. The analysis
is therefore only valid for this specific transaction protocol and the scenarios that it
assesses, but it gives an idea about the circumstances under which the application
of the new design can be beneficial according to the net value analysis. Due to lack
of space, the listing of the single messages that have to be sent is omitted and only
the results are presented.

The transaction that is examined consists of p participating services, which re-
ceive s requests (s ≥ p). In the standard environment, the normal processing of
such a transaction without any failures requires

ACM Journal Name, Vol. V, No. N, January 2008.

26 · M. Schäfer, P. Dolog and W. Nejdl

6p + 2s + 2

messages until all requests are processed and the transaction closed. However, if
a failure occurs and the transaction has to be aborted and restarted,

12p + 4s + 1

messages are necessary until the transaction is closed.
In contrast to the standard environment, the abstract service environment re-

quires for the normal transaction processing without any failures

12p + 4s + 2

messages, due to the doubled amount of required status messages. Should an
error occur during the processing of the required requests, and a replacement of the
failed concrete service be possible, then

12p + 4s + 2r + 8

messages have to be sent until the transaction is closed. The replacement of a
concrete service requires that r requests are resent to the new one. If r=1 then
the new concrete service is a direct replacement, which operates on the same local
resources and is thus able to directly continue with the processing of the request
that caused the failure. If a replacement should not be possible, then the normal
transaction abort and restart procedure has to be performed, which requires

24p + 8s

messages in the abstract service environment until all operations have been per-
formed and the transaction is closed.

4.3.2 Economic Model for Evaluation. The net value of the standard environ-
ment considers the normal processing of the transaction without any operational
errors, as well as the failure processing through a transaction abort. It is assumed
that the distributed application still requires the operations to be performed, there-
fore a transaction restart is necessary subsequent to the transaction abort. In order
to calculate the net value for this standard environment, the following parameters
have to be provided:

—e : The revenue of the operations that are performed, i.e. the sum of all revenues
of the participating services.

—pN : The percentage of transactions in which no failures occur during the oper-
ations on the transactions’ participants.

—cS1 : The costs of normal processing (i.e. without any errors), which includes for
example costs for messaging and processing.

—cS2 : The costs of transaction processing in case a failure occurs. The abort and
restart costs of the transaction after a failure include the costs of compensating
the participants and resending the requests and thus reinvoking the different
services.

—lT : During a restart, the transaction has to be aborted by sending the accord-
ing notifications to all participants. Therefore, all consequential costs that are

ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 27

incurred because of these actions have to be considered as well: Costs of cas-
cading transaction aborts, contractual penalties because of service failures and
aborts, the estimated customer migration, etc. These costs are summarized in
this general loss value.

The net value vS of the the standard environment can therefore be calculated as
follows:

vS = pN · (e − cS1) + (1 − pN) · (e − cS2 − lT) (1)

e, cS1, cS2, lT , pN ∈ R

0 ≤ pN ≤ 1; e, cS1, cS2, lT ≥ 0

In order to simplify the model, it is assumed that the restart of the operations
after a transaction abort is successful, and that no other errors occur.

In contrast to this, the net value of the abstract service environment considers the
normal processing of the transaction without any operational errors, the replace-
ment of a failed concrete service with a different one with request resending, as well
as the failure processing through a transaction abort and restart if a replacement
is not possible. In this model, it is assumed that all participating services are ab-
stract services, and the performed replacement and/or restart does not encounter
any additional errors. In order to calculate the net value for this environment, the
following parameters have to be provided:

—e : As defined above.
—pN : As defined above.
—pR : The percentage of service replacement compensation operations, which can

successfully be performed and thus handle a failure when it occurs.
—cA1 : The costs of normal transaction processing (i.e. without any errors) in the

abstract service environment, which includes for example costs for messaging and
processing.

—cA2 : The costs of transaction processing in case a failure occurs and a service
replacement is possible. The costs of a concrete service replacement after a
failure include the costs for assessing the possibility of a service replacement and
for executing it.

—cA3 : The costs of transaction processing in case a failure occurs and a service
replacement is not possible. The costs of the abort and restart of the transaction
that can not be compensated through a service replacement include the costs for
assessing the possibility of a service replacement, and the costs for compensating
the participants and resending the requests to the different services.

—lT : As defined above.
—lR : If a service has to be replaced as failure handling, a loss value has to be

considered, which appraises consequences of the single concrete service’s failure.

The net value vS of the the abstract service environment can therefore be calcu-
lated as follows:

vA = pN · (e − cA1) + pR · (e − cA2 − lR) + (1 − pN − pR) · (e − cA3 − lT) (2)

ACM Journal Name, Vol. V, No. N, January 2008.

28 · M. Schäfer, P. Dolog and W. Nejdl

e, cA1, cA2, cA3, lT , lR, pN , pR ∈ R

0 ≤ pN ≤ 1; 0 ≤ pR ≤ 1; (pN + pR) ≤ 1; e, cS1, cS2, cA3, lT , lR ≥ 0

The new design using abstract service and adapter components is economic, as
long as the net value of the abstract service environment is higher than the net
value of the standard environment:

vA > vS (3)

pN · (e − cA1) + pR · (e − cA2 − lR) + (1 − pN − pR) · (e − cA3 − lT) (4)
>

pN · (e − cS1) + (1 − pN) · (e − cS2 − lT)

Using this simple model, it is possible to evaluate whether the utilization of the
new design is beneficial by assigning the different required parameters according to
experience or estimations, and then by comparing the net values of the standard
and the extended transaction environment.

4.3.3 Evaluation Results. In order to demonstrate the utilization of the pro-
posed model for calculating and comparing the net values, we assume that p=5
and s=15. Moreover, we assume that all replacements are direct replacements
(r=1). It is thus possible to calculate the basic costs for the model based on the
assumption that each message costs ”1” in operation:

cS1 = 6 · 5 + 2 · 15 + 2 = 62
cS2 = 12 · 5 + 4 · 15 + 1 = 121
cA1 = 12 · 5 + 4 · 15 + 2 = 122
cA2 = 12 · 5 + 4 · 15 + 2 · 1 + 8 = 130
cA3 = 24 · 5 + 8 · 15 = 240

In addition to these cost values, we assume that the following parameters have
been estimated:

e = 200
pN = 85%
pR = 10%
lT = 600
lR = 20

It is assumed that 85% of the transactions can be performed successfully and
without any error in the first attempt. In the abstract service environment, 10% of
the failed transactions can be compensated via a replacement of the current concrete
service. The remaining 5% have to be compensated through a standard abort and
restart of the transaction. The revenues of the operations in each transaction is set
ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 29

to 200, while the loss through consequences of a transaction abort are set to 600,
and the loss through consequences of a replacement are set to 20.

Using these parameters, the following net values result from the calculation:

vS = 0, 85 · (200 − 62) + (1 − 0, 85) · (200 − 121 − 600)
= 39, 15

vA = 0, 85 · (200 − 122) + 0, 10 · (200 − 130 − 20)
+ (1 − 0, 85 − 0, 10) · (200 − 240 − 600)

= 39, 3

In this model and configuration, the abstract service design is economical, because
its net value is higher than the standard environment’s net value.

The functions of the net values for fixed revenue, cost, and loss parameters but
for varying percentage values can be depicted as shown in Figure 12. As can be
seen, the standard environment’s net value constantly declines with the decreasing
percentage of a failure-free transaction (pN). In order to depict the net value of
the abstract service environment, it is necessary to differentiate between its upper
and lower boundary. The upper boundary defines the net value in case all failures
can be compensated by replacing the failed concrete service. Accordingly, the
lower boundary defines the net value in case replacing is never possible, and all
failures have to be compensated by aborting and restarting the transaction. The
area between these two boundaries is the range of possible net value functions for
the abstract service environment, depending on the percentage of cases in which
replacement operations can be performed in order to compensate the error.

It can be seen in Figure 12 that the abstract service environment is not econom-
ical for the specified parameters as long as the percentage of successful transaction
without any failures is above 90%. However, this threshold of course changes dra-
matically as soon as higher losses are considered due to more or more expensive
compensations in dependent transactions.

The proposed net value model also offers the capability to calculate how high the
percentage of successful replacement compensation operations (pR) has to be for a
given percentage of successful transactions so that the abstract service environment
is still beneficial:

pR >
pN · (−cS1 + cS2 + cA1 − cA3) − cS2 + cA3

−cA2 − lR + cA3 + lT
(5)

In the example calculation, the percentage of successful service replacement com-
pensations has to be:

pR >
0, 85 · (−62 + 121 + 122 − 240)− 121 + 240

−130 − 20 + 240 + 600
> 9, 98%

This minimum percentage can also be determined by using the graph shown in
ACM Journal Name, Vol. V, No. N, January 2008.

30 · M. Schäfer, P. Dolog and W. Nejdl

Fig. 12. Net value comparison between the standard and the abstract service environment

Figure 12. A specific abstract service environment net value function has to be
included, which cuts the net value function of the standard environment at 85%.
This is shown in Figure 13. By introducing a percentage scale between the upper
and lower boundary of the abstract service environment’s net value, it is possible
to identify the percentage of compensation operations that have to be performed
successfully by a service replacement instead of a transaction abort and restart. In
this case, the percentage is approximately 65%, so 65% of the 15% of compensation
operations have to be successful service replacements, which results in pR > 9, 75%.

As can be seen, the proposed simplified model for the calculation and comparison of
net values is both easy to apply and beneficial in the assessment of the new design.

4.4 Protocol Verification

Other means for the evaluation of our proposed environment exist, one of them is
protocol verification. There are several possibilities how to do that and the decision
which one to apply depends on which properties we would like to show. Time petri
nets [Merlin and Farber 1976] or extended D-Time petri nets [Zuberek 1985] are
suitable formalisms to perform model checking and formal analysis tasks to show
various properties such as the recoverability of communication protocols. Other
dialects of petri nets are suitable for this purpose as well.

Another possibility is to employ symbolic model checking to verify whether some
properties of the protocol, which are specified in a dialect of a logic, hold. Suitable
formalisms include but are not limited to linear temporal logic [Gerth et al. 1996]
or branching temporal logic (CTL) [Clarke and Emerson 1982]. There are model
checkers which support verification of properties stated in such a kind of logic such
ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 31

Fig. 13. The derivation of the minimum percentage of successful replacement compensation op-
erations

as SMV [McMillan 1993]. Based on states and components in the environment and
transitions defined in the protocol depicted in Figure 5, we can check the following
property specified in CTL:
∀�(Active → ∃ � ExCompensationI)
This property specifies that there is a computation in which if a participant in

the protocol from Figure 5 is in the Active state, it will eventually reach also the
ExCompensation I state. By looking at the protocol, one can see that there is
such a situation for example if an adapter as part of the environment sends an
ExCompensate message. Other properties can be specified similarly.

It is not possible to show a complete formal model as well as the results of a
formal analysis based on such a model in this paper due to space limitations. A
CTL formalization and complete proofs are planned for a followup paper.

5. RELATED WORK

Compensations in transaction environments have been studied already in distributed
database systems. Various advanced transaction models have been introduced [El-
magarmid 1992]. The main reason to go beyond the traditional transaction model
was its unsuitability for long running transactions working on extended application
areas, operating on more data items and resources spanning longer periods of time
[Gray 1981]. Various advanced transaction models have been introduced where a
notion of forward and backward recovery with compensations have been discussed
such as Sagas [Garcia-Molina and Salem 1987; Garcia-Molina et al. 1991], nested
transactions [Weikum and Schek 1991], split-transactions [Pu and Kaiser 1988],
and others [Biliris et al. 1994; Barga and Pu 1995; Dayal et al. 1991]. Rule-based

ACM Journal Name, Vol. V, No. N, January 2008.

32 · M. Schäfer, P. Dolog and W. Nejdl

approaches for database extended transaction management have been introduced
in [Günthör 1993; Klein 1991]. We have built on top of that work and proposed
an environment for flexible Web service transactions. We employ a rule based ap-
proach in the abstract service component to specify compensations at the client
as well as provider side. The abstract service component is separated the from
coordination component in the environment, which enhances flexibility in compen-
sation design without a need to exchange the standard coordination infrastructure.
We allow for various transaction models at the provider side due to the introduced
adapter component which hides this heterogeneity. Therefore our work provides
an evidence how to realize in practice flexible compensations in autonomous Web
service environments.

Forward recovery can be realized by using dynamic workflow changes, as de-
scribed in [Reichert and Dadam 1998; Rinderle et al. 2006], which allow the semi-
automatic adaptation of a workflow in case of errors. A change of the workflow
process can for example consist of a deletion or jump instruction, or the insertion
of a whole new process segment. The change can either be done on a running
instance, or it can be performed on the scheme which controls the workflow, and
which results in a change in all running instances. Refer to [Reichert et al. 2005]
for details. Although this approach is very powerful, it has two major disadvan-
tages. Firstly, it is in most cases only possible to perform these adaptations semi-
automatically. Changing a workflow requires a lot of knowledge about the process
and the current state it is in, and the implications a change would have. Therefore,
it is often necessary for a human administrator to specify and control the change.
Secondly, these kinds of workflow changes require a very strict definition of the
process, including for example data and control links. Ad-hoc changes of business
processes with normal orchestration languages like WS-BPEL (see [OASIS 2007]) is
very difficult [Karastoyanova et al. 2005]. [Dobson 2006] provides a mechanism to
overcome this difficulty through a compensation handler. Our approach provides a
more flexible solution for compensations which is orthogonal to the business pro-
cesses, concrete services, and transaction coordination.

Our compensation approach can be used in conjunction with the Enterprise Ser-
vice Bus (ESB) [Chappell 2004], a powerful messaging infrastructure for business
to business integration with Web services. The abstract service and adapter can
be integrated through the ESB flexible extension mechanism. In this way, ESB
can serve as a platform to exchange extended messages between business process,
abstract services and adapters involved in the compensation conversation. Our ap-
proach can be used independently of ESB, employing ESB on top of the introduced
infrastructure to integrate abstract services with workflow activities.

[Pires et al. 2003] introduces a notion of compensable Web services by specifying
operations which can revert the execution. In our approach, we allow for a more
complex specification of forward recovery compensations, which can be introduced
at the client side, mediator side, as well as provider side. Two related approaches
to a flexible compensation mechanism for business processes are proposed in [Yang
and Liu 2006; Lin and Liu 2005]. In both cases, the focus is put on backward
recovery. The compensation logic is treated as a part of coordination logic. In our
approach, we separate the coordination from the compensation logic to provide for
ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 33

more flexibility.
Last but not least, our work is built on top of the preliminary paper on engineering

compensations in web service environment [Schäfer et al. 2007]. In this paper we
provide further technical details, as well as a discussion on the rule engine and the
expressiveness of our rule based approach in contrast to practical needs together
with an example. We also provide more details on the protocol implemented in the
environment, and we introduce an extensive analytical evaluation together with
an analytical cost-benefit model which have not appeared elsewhere. Furthermore,
we consolidate other technical parts based on the experience we have gained from
additional experiments and the evaluation.

6. CONCLUSIONS AND FURTHER WORK

We have described a new design approach for complex compensation strategies in
current transaction standards. Two new components have been described, the ab-
stract service, which manages replacement services and compensation rules, and
the adapter, which separates the coordination protocol specific functions from the
generic definition of the abstract service. We have also presented the protocol that
handles the assessment and processing of externally triggered compensations. The
design and the protocol have been successfully validated in a prototype implemen-
tation. Several experiments we have performed show that the environment with
advanced compensations is beneficial. A net value model has been introduced,
which can be utilized for the evaluation of the new abstract service environment in
comparison to the standard environment, and thus to assess whether it is econom-
ical to apply the new design.

Regarding future work, we plan to run additional experiments with different com-
pensation scenarios. Moreover, it will be necessary to further analyze the impact of
the new compensation capabilities on the business process definitions. At the mo-
ment, it is only assumed that the business process is able to adapt to the signaled
compensations. It will be required to analyze possible extensions of existing orches-
tration languages like BPEL in order to include the new capabilities. The current
implementation will be extended to support the management of parallel request
processing, and the definition of compensation rules will be adapted accordingly.
We will also look on different properties and different formalisms to perform formal
analysis of our protocol in our future work.

REFERENCES

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. 2003. Web Services - Concepts, Archi-
tectures and Applications. Springer.

Alrifai, M., Dolog, P., and Nejdl, W. 2006. Transactions concurrency control in web service

environment. In ECOWS ’06: Proceedings of the European Conference on Web Services. Zürich,
Switzerland, IEEE Press Washington, DC, USA, 109–118.

Arjuna Technologies Ltd., BEA Systems, Hitachi Ltd., IBM Corporation, IONA Tech-

nologies, and Microsoft Corporation. 2005. Web Services Business Activity Frame-
work. Published online at ftp://www6.software.ibm.com/software/developer/library/

WS-BusinessActivity.pdf.

Arjuna Technologies Ltd., BEA Systems, Hitachi Ltd., International Business Machines

Corporation, IONA Technologies, and Microsoft Corporation. 2005. Web Services Co-
ordination. Published online at ftp://www6.software.ibm.com/software/developer/library/
WS-Coordination.pdf.

ACM Journal Name, Vol. V, No. N, January 2008.

34 · M. Schäfer, P. Dolog and W. Nejdl

Arjuna Technologies Ltd., BEA Systems, Hitachi Ltd., International Business Machines

Corporation, IONA Technologies, and Microsoft Corporation Inc. 2005. Web Services
Atomic Transaction. Published online at ftp://www6.software.ibm.com/software/developer/
library/WS-AtomicTransaction.pdf.

Barga, R. S. and Pu, C. 1995. A practical and modular implementation of extended transaction
models. In VLDB’95, Proceedings of 21th International Conference on Very Large Data Bases,
U. Dayal, P. M. D. Gray, and S. Nishio, Eds. Morgan Kaufmann, Zurich, Switzerland, 206–217.

Biliris, A., Dar, S., Gehani, N., Jagadish, H. V., and Ramamritham, K. 1994. ASSET: A sys-
tem for supporting extended transactions. In SIGMOD 1994: Intl. Conference on Management
of Data. ACM, Minneapolis, Minnesota, United States, 44–54.

Chappell, D. A. 2004. Enterprise Service Bus. O’Reilly Media, Inc.

Choi, S., Jang, H., Kim, H., Kim, J., Kim, S. M., Song, J., and Lee, Y.-J. 2005. Maintaining
consistency under isolation relaxation of web services transactions. In WISE, A. H. H. Ngu,
M. Kitsuregawa, E. J. Neuhold, J.-Y. Chung, and Q. Z. Sheng, Eds. Lecture Notes in Computer
Science, vol. 3806. Springer, 245–257.

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. 2001. Web Services
Description Language (WSDL) 1.1. W3C note, W3C. March.

Clarke, E. M. and Emerson, E. A. 1982. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Proceedings of Workshop Logic of Programs. Lecture
Notes in Computer Science, vol. 131. Springer, 52–71.

Dayal, U., Hsu, M., and Ladin, R. 1991. A transactional model for long-running activities.
In VLDB’1991: 17th International Conference on Very Large Data Bases, G. M. Lohman,
A. Sernadas, and R. Camps, Eds. Morgan Kaufmann, Barcelona, Spain, 113–122.

Dobson, G. 2006. Using WS-BPEL to implement software fault tolerance for web services. In EU-
ROMICRO ’06: Proceedings of the 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications. Dresden, Germany, IEEE Press Washington, DC, USA, 126–133.

Elmagarmid, A. K., Ed. 1992. Database transaction models for advanced applications. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., and Salem, K. 1991. Modeling
long-running activities as nested sagas. IEEE Data Eng. Bull. 14, 1, 14–18.

Garcia-Molina, H. and Salem, K. 1987. Sagas. In SIGMOD ’87: Proceedings of the 1987 ACM
SIGMOD international conference on Management of data. ACM Press, 249–259.

Gerth, R., Peled, D., Vardi, M. Y., and Wolper, P. 1996. Simple on-the-fly automatic
verification of linear temporal logic. In Proceedings of the Fifteenth IFIP WG6.1 International
Symposium on Protocol Specification, Testing and Verification XV. Chapman & Hall, Ltd.,
London, UK, UK, 3–18.

Gray, J. 1981. The transaction concept: virtues and limitations. In VLDB 1981: Intl. Conference
on Very Large Data Bases. Cannes, France, 144–154.

Greenfield, P., Fekete, A., Jang, J., and Kuo, D. 2003. Compensation is not enough. In
7th International Enterprise Distributed Object Computing Conference (EDOC 2003). IEEE
Computer Society, Brisbane, Australia, 232–239.

Günthör, R. 1993. Extended transaction processing based on dependency rules. In RIDE-
IMS’1993: Third International Workshop on Research Issues in Data Engineering: Interoper-
ability in Multidatabase Systems. IEEE, Vienna, Austria, 207–214.

Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F., and Buchmann, A. P. 2005.
Extending BPEL for run time adaptability. In Ninth IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2005). IEEE Computer Society, Enschede, The Nether-
lands, 15–26.

Klein, J. 1991. Advanced rule driven transaction management. In Compcon Spring ’91. Digest
of Papers. IEEE, San Francisco, CA, USA, 562–567.

Lin, L. and Liu, F. 2005. Compensation with dependency in web services composition. In
International Conference on Next Generation Web Services Practices (NWeSP 2005). IEEE
Press, Seoul, KOREA, 183–188.

McMillan, K. L. 1993. Symbolic Model Checking. Kluwer.

ACM Journal Name, Vol. V, No. N, January 2008.

An Environment for Flexible Advanced Compensations of Web Service Transactions · 35

Merlin, P. and Farber, D. Sep 1976. Recoverability of communication protocols–implications

of a theoretical study. IEEE Transactions on Communications 24, 9, 1036–1043.

Meyer, B. 1992. Applying ”Design by Contract”. IEEE Computer 25, 10, 40–51.

Nielsen, H. F., Mendelsohn, N., Moreau, J. J., Gudgin, M., and Hadley, M. 2003. SOAP
version 1.2 part 1: messaging framework. W3C recommendation, W3C. June.

OASIS 2007. Web Services Business Process Execution Language Version 2.0. Published online
at http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf.

Pires, P. F., Benevides, M. R., and Mattoso, M. 2003. Building reliable web services composi-
tions. In Web, Web-Services, and Database Systems: NODe 2002, Web- and Database-Related
Workshops, Erfurt, Germany, October 7-10, 2002. Revised Papers. LNCS, vol. 2593. Springer,
Enschede, The Netherlands, 59–72.

Pu, C. and Kaiser, G. E. 1988. Split-transactions for open-ended activities. In Proceedings of the
14th Conference on Very Large Databases, Morgan Kaufman pubs. (Los Altos CA), Bancilhon
and DeWitt (Eds), Los Angeles.

Pullum, L. L. 2001. Software Fault Tolerance — Techniques and Implementation. Artech House,
Inc., Norwood, MA, USA.

Reichert, M. and Dadam, P. 1998. ADEPTflex: supporting dynamic changes of workflow with-
out loosing control. Journal of Intelligent Information Systems 10, 2, 93–129.

Reichert, M., Rinderle, S., Kreher, U., and Dadam, P. 2005. Adaptive Process Management
with ADEPT2. In ICDE. IEEE, 1113–1114.

Rinderle, S., Bassil, S., and Reichert, M. 2006. A Framework for Semantic Recovery Strategies
in Case of Process Activity Failures. In ICEIS, Y. Manolopoulos, J. Filipe, P. Constantopoulos,
and J. Cordeiro, Eds. 136–143.

Schäfer, M., Dolog, P., and Nejdl, W. 2007. Engineering compensations in web service
environment. In ICWE2007: International Conference on Web Engineering, P. Fraternali,
L. Baresi, and G.-J. Houben, Eds. LNCS, vol. 4607. Springer Verlag, Como, Italy, 32–46.

Weikum, G. and Schek, H.-J. 1991. Multi-level transactions and open nested transactions. IEEE
Data Eng. Bull. 14, 1, 60–64.

Yang, Z. and Liu, C. 2006. Implementing a flexible compensation mechanism for business pro-
cesses in web service environment. In ICWS ’06. Intl. Conference on Web Services. IEEE
Press, Salt Lake City, Utah, USA, 753–760.

Zuberek, W. M. 1985. Extended d-timed petri nets, timeouts, and analysis of communication
protocols. In ACM ’85: Proceedings of the 1985 ACM annual conference on The range of
computing : mid-80’s perspective. ACM, New York, NY, USA, 10–15.

ACM Journal Name, Vol. V, No. N, January 2008.

