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ON STABILITY OF FINITELY GENERATED SHIFT-INVARIANT SYSTEM S

MORTEN NIELSEN

ABSTRACT. We consider the problem of completely characterizing whena system of integer
translates in a finitely generated shift-invariant subspace of L2(Rd) is stable in the sense that
rectangular partial sums for the system are norm convergent. We prove that a system of inte-
ger translates is stable inL2(Rd) precisely when its associated Gram matrix satisfies a suitable
MuckenhouptA2 condition.

1. INTRODUCTION

A finitely generated shift-invariant (FSI) subspaces ofL2(Rd) is a subspaceS⊂ L2(Rd) for
which there exists a finite familyΦ of L2(Rd)-functions such that

S= S(Φ) := span{ϕ(·−k) : ϕ ∈ Φ,k∈ Zd}.
FSI subspaces are used in several applications. Wavelets and other multi-scale methods are
based on FSI subspaces [4, 5, 14], and FSI subspaces play an important role in multivariate ap-
proximation theory such as spline approximation [8] and approximation with radial basis func-
tions [9, 19]. The fundamental structure of FSI spaces has been studied in a number of papers,
see for example [1, 6, 7, 20]. Let us also mention the classical results on translates of functions
by Kolmogoroff [16] and Helson [13].

For many applications it is useful to have a stable generating set forS. Given the structure ofS,
it is natural to consider generating sets of integer translates. That is, a system with the following
structure,

(1.1) {ψ(·−k) : ψ ∈Ψ,k∈ Zd},
whereΨ = {ψ1, . . . ,ψN} ⊂ L2(Rd) is a finite subset. Often we takeΨ = Φ, but Ψ may be
different fromΦ, and the two sets need not have the same cardinality but we always require that
S(Ψ) = S(Φ).

We focus on the case where (1.1) has a unique bi-orthogonal system inS, i.e., there exist
{gψ

k } ⊂ Ssuch that

〈gψ̃
j ,ψ(·−k)〉= δψ,ψ̃δk, j , ψ, ψ̃ ∈Ψ; j,k∈ Zd.

For such systems, we can define the “rectangular” partial sumoperators by

(1.2) TN f := ∑
ψ∈Ψ

∑
k∈Zd:|ki |≤Ni

〈 f ,gψ
k 〉ψ(·−k),

for f ∈ SandN = (N1,N2, . . . ,Nd) ∈ Nd
0, with N0 := N∪{0}.

Key words and phrases.Shift-invariant space, Schauder basis, integer translates, vector Hunt-Muckenhoupt-
Wheeden theorem, Muckenhoupt condition.
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The main result of this paper, which is stated in Theorem 1.2 below, completely characterizes
when we have norm convergence

(1.3) TN f → f , as min
i

Ni →+∞, for all f ∈ S(Ψ).

For example, whenever (1.1) forms a Riesz basis forS(Ψ), (1.3) clearly holds true. However,
as Theorem 1.2 will show, we can have convergence in much moregeneral cases where (1.1)
fails to be a Riesz basis. It is known that Riesz basis properties of (1.1) can be completely
characterized in terms of the Gram matrix for the systemΨ. In fact, (1.1) forms a Riesz basis for
S(Ψ) precisely when the spectrum of the Gram matrix for the systemΨ is bounded and bounded
away from zero, see [7]. Therefore, it is only natural to expect that the convergence (1.3) can be
characterized in terms of the Gram matrix forΨ.

There is, in fact, onevery restricted case where the convergence (1.3) has already been char-
acterized. It was proved in [17] that in the univariate case (i.e., d = 1) with one generator (i.e.,
N = 1), (1.3) holds precisely when the Gram matrix (which is a scalar function in this case) is a
MuckenhouptA2 weight. The characterization basically boils down to an application of the cele-
brated Hunt-Muckenhoupt-Wheeden Theorem [15]. The restricted case indicates that some type
of Muckenhoupt condition on the Gram matrix is needed in order to obtain the wanted conver-
gence characterization in the general case. We introduce the needed generalized Muckenhoupt
condition in Definition 1.1 below.

Let us now state the main result of this paper precisely. First, we introduce some notation. We
define the Fourier transform by

(1.4) f̂ (ξ ) :=
∫

Rd
f (x)e−2π ix·ξ dx, f ∈ L2(Rd).

The Gram matrix forΨ = {ψ1, . . . ,ψN} is the Hermitian positive semi-definiteN×N-matrix
W := W(Ψ) given by

(1.5) W(Ψ) =
(

∑
k∈Zd

ψ̂i(·−k), ψ̂ j(·−k)
)N

i, j=1
.

The Gram matrix is an example of a matrix weight. In general, we say thatW : Td → CN×N,
Td = [−1/2,1/2)d, is a matrix weight if it is a measurable function whose values are positive
semi-definiteN×N-matrices.

To deal with the problem at hand, we introduce the following subclass of matrix weights.
Some examples of such weights can be found in Section 5.

Definition 1.1. Let W be aN×N matrix weight onTd, i.e., a periodic measurable function
defined onTd whose values are positive semi-definiteN×N matrices. We say thatW satisfies
the Muckenhoupt productA2-matrix-condition provided that

(1.6) sup
R

∥∥∥∥(
1
|R|

∫
R

Wdξ
)1/2( 1

|R|
∫

R
W−1dξ

)1/2∥∥∥∥ < ∞,

where the sup is over all rectanglesR= I1× I2×·· ·× Id ⊂Rd. The collection of all such weights
is denotedPA2(d).
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As far as we know, this is the first time that a product Muckenhoupt A2-condition for matrix
weights has been considered. However, non-product Muckenhoupt conditions have been con-
sidered by several authors in the matrix setting. The matrixA2 condition onT was put into
prominence by Treil and Volberg in their seminal papers [23,24] where they generalized the
Hunt-Muckenhoupt-Wheeden theorem to vector-valued functions. More recently, matrix Muck-
enhoupt conditions onRd, where the sup in (1.6) is taken over cubes and not rectangles, have
been considered in [10, 11, 21] in order to study vector-valued singular integral operators and to
construct vector-valued weighted Besov spaces. The product A2-condition for scalar weights has
a long history, see [3] and references therein. Schauder bases for Gabor systems were character-
ized in terms of scalarA2 product conditions by Heil and Powell in [12].

We can now state the main result of this paper.

Theorem 1.2.Let S(Ψ) be a FSI space in L2(Rd) for whichΨ has a bi-orthogonal system. Then
the following conditions are equivalent.

(a) TN f → f , asminNi →+∞, for all f ∈ S(Ψ)
(b) {TN}N∈Nd

0
is a uniformly bounded family of operators on S

(c) The Gram matrix W(Ψ) is in the Muckenhoupt classPA2(d).

It is completely straightforward to verify that conditions(a) and (b) are equivalent in Theorem
1.2. The main difficulty is to prove that (b) and (c) are equivalent. This will follow directly from
Theorem 3.3, which will be proved in Section 3.

The structure of the paper is as follows. In Section 2 we explore the connection between
FSI subspaces and weighted vector-valuedL2-spaces, and we characterize when (1.1) has a bi-
orthogonal system inS(Ψ). Section 3 is devoted to studying Fourier partial sum operators in
the vector-valued setting, which through the Fourier transform gives an equivalent approach to
Theorem 1.2. The main result of Section 3 is Theorem 3.3 that gives a vector-valued Hunt-
Muckenhoupt-Wheeden type result for rectangular partial sums. In Section 4 we consider an
application of Theorem 1.2 to the problem of obtaining Schauder bases for FSI spaces. It is
proved that providedW ∈ PA2(d), then we can find an enumeration of the system (1.1) that
respects the rectangular partial sums considered in Theorem 1.2 and turns (1.1) into a Schauder
basis forS(Ψ). Section 5 contains a number of examples ofPA2(d) weights and related FSI
subspaces. Finally, there is an appendix containing two of the more technical proofs.

2. FINITELY GENERATED SHIFT INVARIANT SYSTEMS

In this Section we explore the connection between FSI subspaces and weighted vector-valued
L2-spaces, and we characterize when (1.1) has a bi-orthogonalsystem inS(Ψ). The main tool
to study expansions inS(Ψ) is the Fourier transform. As before, we assume that some ordering
Ψ = {ψ1,ψ2, . . . ,ψN} has been imposed.

Following [7], we introduce the so-called bracket product given by

[ f ,g] : Td → C : x→ ∑
k∈Zd

f (x+k)g(x+k),

for f ,g∈ L2(Rd). With this setup, we have the fundamental identity

(2.1) 〈 f ,g〉L2(Rd) = 〈 f̂ , ĝ〉L2(Rd) =
∫

Td
[ f̂ , ĝ]dξ , f ,g,∈ L2(Rd).
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Let us now consider a finite expansion inS(Ψ)

f =
N

∑
ℓ=1

∑
k∈Zd

cℓ,kψℓ(x−k),

relative to the system (1.1). An application of the Fourier transform yields

(2.2) f̂ (ξ ) =
N

∑
ℓ=1

(
∑

k∈Zd

cℓ,ke
−2π ik·ξ

)
ψ̂ℓ :=

N

∑
ℓ=1

τℓ(ξ )ψ̂ℓ.

The periodic functionsτℓ are not necessarily uniquely determined byf , but we can nevertheless
calculate the norm of̂f using the bracket product and (2.1). We form the vectorτ = [τℓ]Nℓ=1, and
we letτH denote the Hermitian transpose ofτ. We obtain

(2.3) ‖ f̂‖2
L2(Rd) =

∫
Td

[ f̂ , f̂ ] =
∫

Td

N

∑
i=1

N

∑
j=1

[ψ̂i , ψ̂ j ]τi(ξ )τ j(ξ )dξ =
∫

Td
τ(ξ )HW(ξ )τ(ξ )dξ ,

whereW := W(Ψ) is the Hermitian positive semi-definiteN×N-matrix given by

(2.4) W(Ψ) =
(
[ψ̂i, ψ̂ j ]

)N
i, j=1.

W is known as the Grammian matrix associated withΨ. Notice that the Cauchy-Schwarz in-
equality shows that each entry inW is contained inL1(Td) sinceΨ ⊂ L2(Rd).

Let us introduce the vector-valued weighted space

L2(Td;W) :=
{

f : Td → CN : ‖ f‖2
L2(Td;W) :=

∫
Td
|W1/2(ξ ) f (ξ )|2dξ < ∞

}
.

We need to factorize overN := {g : ‖g‖L2(Td,W) = 0} in order to turnL2(Td;W) into a Hilbert
space. However, it should be noted that we will mainly use this space in the case whereW is
positive a.e. For such weights,N only contains vector functions that vanish a.e.

The analysis so-far shows that the mapU : L2(Td;W)→ S(Ψ) given by

(2.5) U(τ) :=
( N

∑
ℓ=1

τℓ(ξ )ψ̂ℓ

)∨

is an isometric isomorphism betweenL2(Td;W) andS(Ψ).
Of special interest to our analysis is the trigonometric system

{e−2π ik·ξ ej}k∈Zd, j=1,...,N,

whereej , j = 1, . . . ,N, is the standard basis forCN. Notice thatU(e−2π ik·ξ ej) = ψ j(·−k). Below
we will use the isomorphismU to study metric properties of the shift invariant system (1.1) in
terms of equivalent metric properties of{e−2π ik·ξ ej}k∈Zd, j=1,...,N in L2(Td;W).

We begin by characterizing when (1.1) has a unique bi-orthogonal system inS(Ψ). This turns
out to be exactly whenW−1 ∈ L1, giving an extension of the scalar result obtained in [17]. We
have the following proposition.

Proposition 2.1. Let S(Ψ), Ψ = {ψ1, . . . ,ψN}, be a FSI space. The sequence

{ψ j(·−k)|k∈ Zd, j = 1, . . . ,N}
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has a bi-orthogonal sequence in S(Ψ) if and only if W is invertible a.e. and W−1∈ L1(Td;CN×N)
(in particular, W is strictly positive definite a.e.). If this is the case, the unique dual element to
ψ j(·−k) is given by

(2.6) U
(
e−2π ik·ξW−1ej

)
, k∈ Zd,

where U is defined by(2.5).

Proof. It suffices to study the system{e−2π ik·ξ ej}k∈Zd, j=1,...,N in L2(Td;W). SupposeW−1 ∈
L1(Td). We claim thate−2π ik·ξW−1ej is the dual functional toe−2π ik·ξ ej . Notice that

‖e−2π ik·ξW−1ej‖2
L2(Td;W) =

∫
Td
|e−2π ik·ξ |2eT

j W−1(ξ )W(ξ )W−1(ξ )ej dξ

=
∫

Td
(W−1) j , j(ξ ) < ∞,

soe−2π ik·ξW−1ej ∈ L2(Td;W). Moreover, fork,k′ ∈ Zd and j, j ′ ∈ {1,2, . . . ,N},
〈e2π ik·ξ ej ,e

2π ik′·ξW−1ej ′〉L2(Td;W) =
∫

Td
e2π i(k−k′)·ξ eT

j ′W
−1(ξ )W(ξ )ej dξ

=
∫

Td
e2π i(k−k′)·ξ eT

j ′ej dξ

= δ j , j ′δk,k′ .

Conversely, let{b j ,k} ⊂ L2(Td;W) be the unique dual system to{e−2π ikξ ej}. Thus,

〈e−2π ik′·ξ ej ′,b j ,k〉L2(Td;W) =
∫

Td
b j ,k(ξ )HW(ξ )ej ′ e−2π ik′·ξ ,dξ

= δ j , j ′δk,k′ .

Notice thatb j ,k(ξ )HW(ξ )ej ′ ∈ L1(Td) sinceb j ,k(ξ ) ∈ L2(Td;W) andW ∈ L1(Td). The Fourier
transform is injective onL1(Td) so we conclude that for a.a.ξ ∈ Td,

b j ,k(ξ )HW(ξ ) = e2π ik·ξ eT
j , j = 1,2, . . . ,N.

It follows thatW has full rank a.e., and we may solve forb j ,k to get

b j ,k(ξ ) = e−2π ik·ξW−1(ξ )ej .

We putk = 0, and obtain

∞ > ‖b j ,0‖2
L2(Td;W) =

∫
Td

eT
j W

−1(ξ )ej dξ , j = 1,2, . . . ,N.

Hence trace(W−1) ∈ L1(Td). Recall that for a positiveN×N-matrix A, trace(A) ≤ ‖A‖ ≤ N ·
trace(A), so ∫

Td
‖W−1‖(ξ )dξ ≍

∫
Td

trace(W−1)(ξ )dξ < ∞.

�
We conclude this section by using the mapU to translate the problem of studying the rectan-

gular partial sum operators given by (1.2) to an equivalent problem for rectangular trigonometric
partial sums inL2(Td;W).
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For any FSI subspaceS(Ψ), Ψ = {ψ1, . . . ,ψN}, for whichW(Ψ)−1 ∈ L1(Td), we can define
the partial sum operators, forf ∈ L2(Td;W),

SNτ =
N

∑
j=1

∑
k:|ki |≤Ni

〈τ,e−2π ik·ξW−1ej〉L2(Td;W)e
−2π ik·ξ ej

=
N

∑
j=1

∑
k:|ki |≤Ni

〈τ,e−2π ik·ξ ej〉L2(Td;Id)e
−2π ik·ξ ej .(2.7)

We have the following corollary to Proposition 2.1.

Corollary 2.2. Let S(Ψ), Ψ = {ψ1, . . . ,ψN}, be a FSI space for which W(Ψ)−1 ∈ L1(Td). For
anyN ∈Nd

0, we have

(2.8) ‖SN‖L2(Td;W)→L2(Td;W) = ‖TN‖L2(Rd)→L2(Rd).

Proof. Let f ∈ S(Ψ) with f̂ = ∑N
j=1τ j ψ̂ j . Recall thatU(τ) = f andU(e−2π ik·ξ ej) = ψ j(·−k).

We now use (2.6) to obtain

U(SNτ) =
N

∑
j=1

∑
k:|ki |≤Ni

〈τ,e−2π ik·ξW−1ej〉L2(Td;W)U(e−2π ik·ξ ej)

=
N

∑
j=1

∑
k:|ki |≤Ni

〈Uτ,U(e−2π ik·ξW−1ej)〉L2(Rd)U(e−2π ik·ξ ej) = TN f .

This clearly implies that‖SNτ‖L2(Td;W) = ‖TN f‖L2(Rd), with ‖τ‖L2(Td;W) = ‖ f‖L2(Rd), so (2.8)
follows. �

3. ON A VECTOR HUNT-MUCKENHOUPT-WHEEDEN PRODUCT THEOREM

In this section we study boundedness properties of linear operators on vector-valued spaces.
In particular, we are interested in characterizing the matrix weightsW such that the partial sum
operators given by (2.7) on the spaceL2(Td;W) are uniformly bounded. A complete characteri-
zation of such matrix weights is given by Theorem 3.3 below.

Let us consider a linear operatorT on L2(Td). We may applyT to functionsf taking values
in CN by letting it act separately on each coordinate function, i.e.,

(3.1) (T f) j = T f j , j = 1,2, . . .N,

In caseT is a (singular) integral operator with scalar kernelS(x,y), the lifting of T to vector-
valued functions simply corresponds to multiplying the kernel S(x,y) by theN×N-identity ma-
trix.

A fundamental problem is to characterize the matrix weightsW : Td → CN×N for which cer-
tain families of singular integral operators extend to bounded operators on the weighted space
L2(Td;W). The vector-valued Hilbert transform was studied in the seminal paper by Treil and
Volberg [24], and this was later generalized to other types of singular integral operators by Gold-
berg [11].

Let us state the result by Treil and Volberg in details, sinceit will be essential for the proof
of Theorem 3.3. LetW be aN×N matrix weight onT. We say thatW satisfies the regular
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(periodic) MuckenhouptA2-condition if

(3.2) sup
I

∥∥∥∥(
1
|I |

∫
I
Wdξ

)1/2( 1
|I |

∫
I
W−1dξ

)1/2∥∥∥∥ < ∞,

where the sup is over all intervalsI ⊂ R. The collection of all such weights is denotedA2(T).
Also, notice thatA2(T) = PA2(1).

The Hilbert transformH is defined onL2(T) by

H( f )(x) := p.v.
∫

T
f (t)cot(π(x− t))dt.

We lift H using (3.1) to a linear operator onL2(T;W) for anyN×N matrix weightW onT. The
fundamental result by Treil and Volberg [24], see also [23],is the following.

Theorem 3.1( [24]). Let W : T → CN×N be a matrix weight. Then the Hilbert transform is
bounded on L2(T;W) if and only if W∈A2(T).

We recall that the univariate Dirichlet kernelDN is given by

(3.3) DN(t) =
sin2π(N+1/2)t

sinπt
, N ≥ 1,

and for f ∈ L2(T),

SN( f ) :=
N

∑
k=−N

f̂ (k)e2π ik· = f ∗DN :=
∫

T
f (t)DN(·− t)dt.

We have the following immediate corollary to Theorem 3.1.

Corollary 3.2. Let W : T → CN×N be a matrix weight inA2. Then the partial sum operators
f → f ∗DN are uniformly bounded on L2(T;W).

Proof. We letP+ denote the Riesz projection ontoH2 for f ∈ L2(T;W). Recall thatH =−iP+ +
i(I−P+), so it follows immediately thatP+ is bounded onL2(T;W) sinceH is bounded according
to Theorem 3.1. Notice thatf → f e2π iM · is a unitary mapping onL2(T;W), just as in the scalar
case. Then we observe that

f ∗DN = e2π iN·(I −P+)e−2π i(2N)·P+( f e2π iN·),

and the result follows. �

We can now state the main result of this paper. Also notice that Corollary 2.2 and Theorem 3.3
give a direct proof of Theorem 1.2.

Theorem 3.3. Let W : Td → CN×N be a matrix weight with W,W−1 ∈ L1,loc(Rd). Then the
rectangular partial sum operators

SN f (ξ ) := ∑
k∈Zd:|ki |≤Ni

f̂ (k)e−2π ik·ξ , N ∈Nd
0,

are uniformly bounded on L2(Td;W) if and only if W∈ PA2(d).
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The proof of Theorem 3.3 is based on Corollary 3.2 and the following two lemmata, whose
proof can be found in Appendix A. Part (a) of Lemma 3.4 gives anequivalent formulation of
the productAP(d) condition in terms of integrals of certain non-negative functions. This type of
condition was first considered by S. Roudenko [21] for matrixAp-weights onRd associated with
cubes (and not rectangles as is needed for our results).

LetW : Td →CN×N be a matrix weight withW,W−1∈ L1,loc(Rd). For convenience, we define
the the following quantity for any rectangleR⊂Rd,

(3.4) M(R,W) :=
∥∥∥∥(

1
|R|

∫
R

Wdξ
)1/2( 1

|R|
∫

R
W−1dξ

)1/2∥∥∥∥.

We have the following lemma.

Lemma 3.4. Let W : Td →CN×N be a matrix weight with W,W−1 ∈ L1,loc(Rd). For a rectangle
R⊂Rd, we define M(R,W) by (3.4). Then the following holds.

(a) We have uniformly in R,

M(R,W)2 ≍ 1
|R|2

∫
R

∫
R
‖W1/2(ξ )W−1/2(η)‖2dηdξ .

(b) There exists a universal constant c> 0 such that for rectangles R⊆ R̃⊂Rd,

M(R,W)≤ c
|R̃|
|R|M(R̃,W).

(c) Suppose W∈ PA(d), then the univariate weightξ j →W(ξ ), obtained by fixing the vari-
ablesξk (k 6= j), is uniformly inA2(T).

Lemma 3.5 estimates the norm of integral operators onL2(Td;W) with very localized kernels.
This result for non-productAp-weights was proved by Goldberg [11].

Lemma 3.5. Suppose S f(ξ ) =
∫
Td S(ξ ,η) f (η)dη is an integral operator with a scalar kernel

S(ξ ,η) that satisfies|S(ξ ,η)| ≤ α|R|−1χR×R for some bounded rectangle R⊂ Rd. Then the
norm of S on L2(Td;W) is at most d·α ·M(R,W), with M(R,W) given by(3.4). Moreover, the
kernel|R|−1χR×χR induces an operator with norm exactly M(R,W) on L2(Td;W).

The proofs of Lemma 3.4 and Lemma 3.5 can be found in Appendix A. We can now give a
proof of Theorem 3.3.

Proof of Theorem 3.3.First we assume thatW ∈ PA2(d). The cased = 1 is exactly the con-
clusion of Corollary 3.2. Next we consider the cased = 2; the reader can easily verify that the
argument below generalizes to anyd≥ 3.

According to Lemma 3.4.(c),Wξ1
:= W(ξ1, ·) andWξ2

:= W(·,ξ2) satisfy uniform Mucken-
houpt A2-conditions onT. Pick any f ∈ L2(T2,W). By Fubini’s theorem,fξ1

:= f (ξ1, ·) ∈
L2(T,Wξ1

) and fξ2
:= f (·,ξ2) ∈ L2(T,Wξ2

) for a.e.[ξ1] and[ξ2], respectively.
Let DN be the univariate Dirichlet kernel given by (3.3), and we define

T1
N f := DN ∗ fξ2

:=
∫

T
fξ2

(t)DN(·− t)dt, T2
M f := DM ∗ fξ1

:=
∫

T
fξ1

(t)DM(·− t)dt.
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Notice thatTN,M f = T1
NT2

M f . We apply Corollary 3.2 to obtain∫
T
|W1/2

ξ1
(ξ2)T2

M fξ1
(ξ2)|2dξ2 ≤C

∫
T
|W1/2

ξ1
(ξ2) fξ1

(ξ2)|2dξ2, a.e.[ξ1].

An integration yields,∫
T

∫
T
|W1/2(ξ1,ξ2)T2

M f (ξ1,ξ2)|2dξ2dξ1 ≤C
∫

T

∫
T
|W1/2(ξ1,ξ2) f (ξ1,ξ2)|2dξ2dξ1.(3.5)

Similarly,

‖TN,M f‖2
L2(T2,W) =

∫
T

∫
T
|W1/2(ξ1,ξ2)T1

NT2
M f (ξ1,ξ2)|2dξ1dξ2

≤C
∫

T

∫
T
|W1/2(ξ1,ξ2)T2

M f (ξ1,ξ2)|2dξ1dξ2

≤C2
∫

T

∫
T
|W1/2(ξ1,ξ2) f |2dξ1dξ2.

It follows that{TN}N∈Nd
0

are uniformly bounded onL2(T2;W).

Now, let us assume that the operators{TN}N∈Nd
0

are uniformly bounded onL2(Td;W). We

have to prove thatM(R,W) given by (3.4) is uniformly bounded inR.
Let us first recall some elementary facts about the univariate Dirichlet kernel given by (3.3).

The kernelDN is real and‖DN‖∞ = 2N + 1 = DN(0). By Bernstein’s inequality,‖D′
N‖∞ ≤

(2N + 1)2. We can thus find an integerK (independent ofN) such that fort ∈ [− 1
KN , 1

KN ] we

haveDN(t)≥ (
1− 1

2d

)1/d‖DN‖∞.
Let a rectangleR= I1× I2×·· ·× Id be given. Forj = 1,2, . . . ,d, with |I j | > 1

2K , we define
Nj = 0 and replaceI j with [−1/2,1/2), and obtain a possibly larger rectangleR̃. By Lemma
3.4.(b) there is a universal constantc such thatM(R̃,W)≥ cM(R,W) since|R̃| ≤ (2K)d|R|. Next,
for eachj = 1,2, . . . ,d with |I j | ≤ 1

2K , we choose an integerNj ≥ 1 such that

(3.6)
1

4K
· 1
Nj

≤ |I j | ≤ 1
2K

· 1
Nj

.

Notice that fort,u∈ I j , we havet−u∈ I j − I j ⊂ [− 1
KNj

, 1
KNj

] so

(3.7) DNj (t−u)≥
(

1− 1
2d

)1/d

‖DNj‖∞.

For notational convenience we putD0 := 1, and form the product kernel

DN(ξ ) =
d

∏
j=1

DNj (ξ j).

The plan of attack is to use the simple fact thatf → χR̃TN(χR̃ f ) is uniformly bounded in both
R andN ∈Nd

0. We notice thatf → χR̃TN(χR̃ f ) has integral kernel

S2(ξ ,η) := χR̃(η)χR̃(ξ )DN(η −ξ ).

We wish to estimate the operator norm ofS2 from below. For that purpose we first consider the
operator with kernel

S(ξ ,η) := S1(ξ ,η)−S2(ξ ,η) := ‖DN‖∞χR̃(ξ )χR̃(η)−χR̃(ξ )χR̃(η)DN(ξ −η).
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Notice that the estimate (3.7) implies the following size estimate

|S(ξ ,η)|= ∣∣‖DN‖∞χR̃(ξ )χR̃(η)−χR̃(ξ )χR̃(η)DN(ξ −η)
∣∣

≤ ‖DN‖∞
2d

χR̃(ξ )χR̃(η)

=
|R̃| · ‖DN‖∞

2d
|R̃|−1χR̃(ξ )χR̃(η)

According to Lemma 3.5, the kernelSinduces an operator of norm at most1
2|R̃| ·‖DN‖∞M(R̃,W)

on L2(Td;W). At the same time, Lemma 3.5 shows that the operator with kernel S1(ξ ,η) =
|R̃|‖DN‖∞ · |R̃|−1χR̃(ξ )χR̃(η) has norm exactly|R̃| · ‖DN‖∞M(R̃,W) on L2(Td;W). The triangle
inequality for operator norms implies that

1
2
|R̃| · ‖DN‖∞M(R̃,W)≥ ‖S1−S2‖ ≥ |‖S1‖−‖S2‖| ≥ |R̃| · ‖DN‖∞M(R̃,W)−‖S2‖,

so‖S2‖ ≥ 1
2|R̃| · ‖DN‖∞M(R̃,W). Moreover, by (3.6), we see that|R̃| · ‖DN‖∞ ≥ (4K)−d, so we

may conclude that

M(R,W)≤CM(R̃,W)

≤ 2C(4K)d‖S2‖
= 2C(4K)d sup

‖ f ‖L2(Td;W)=1
‖χRTN(χR f )‖L2(Td;W)

≤C′ sup
‖ f ‖L2(Td;W)=1

‖TN f‖L2(Td;W)

≤C′′.

with constantC′′ independent ofR. Thus, we can finally conclude thatW ∈ PA2(d). �
Remark3.6. As the reader may notice, modulo the complications added by the vector-valued
setup, the “kernel localization” technique used to prove the only if part of Theorem 3.3 is in fact
very similar to the original technique introduced by Hunt, Muckenhoupt, and Wheeden in [15].

4. SCHAUDER BASES FORFSI SPACES

In this section, we consider an application of Theorem 1.2 tothe problem of obtaining Schauder
bases for an FSI spaceS(Ψ). Let us first recall some elementary facts about Schauder bases in a
Hilbert space. We refer to [22] for more details.

A family B= {xn : n∈N} of vectors in a Hilbert spaceH is a Schauder basis forH if for every
x∈H there exists a unique sequence{αn := αn(x) : n∈ N} of scalars such that

lim
N→∞

N

∑
n=1

αnxn = x

in the norm topology ofH. The unique choice of scalars implies thatx → αn(x) is a linear
functional, for everyn∈ N. Furthermore, for everyn∈ N, there exists a unique vectoryn such
thatαn(x) = 〈x,yn〉. It follows that

(4.1) 〈xm,yn〉= δm,n, m,n∈ N.
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A pair of sequences({un}n∈N,{vn}n∈N) in H is a bi-orthogonal systemif 〈um,vn〉 = δm,n,
m,n∈ N. We say that{vn}n∈N is adual sequenceto {un}n∈N, and vice versa.

A dual sequence is not necessarily uniquely defined. In fact,it is unique if and only if the
original sequence is complete inH (i.e., if the span of the original sequence is dense inH).

SupposeB = {xn : n ∈ N} is complete, and has a unique dual sequence{yn}. ThenB is a
Schauder basis forH if and only if the partial sum operatorsSN(x) = ∑N

n=1〈x,yn〉xn are uniformly
bounded onH.

4.1. A particular enumeration of Z2. Expansions relative to Schauder bases need not converge
unconditionally, and the ordering of the Schauder basis elements becomes crucial. To study
Schauder basis properties of (1.1), we therefore first have to impose an ordering of the system
(1.1) that is compatible with the result on rectangular partial sums given by Theorem 1.2.

Our starting point is to consider enumerations ofZd, i.e., bijective mapsσ : N→ Zd. In order
not to cloud the picture by complicated notation, we restrict our attention to enumerations ofZ
andZ2. ForZ, we simply pick the enumerationσ1 given by

0,1,−1,2,−2, . . .

Let Λ(1) := {σ1}. Ford = 2, we follow Heil and Powell [12], and consider the followingclass
of enumerations.

Definition 4.1. Let Λ(2) be the set containing all enumerations{(k j ,n j)}∞
j=1 of Z2 defined in

the following recursive manner.
(1) The initial terms(k1,n1) . . .(kJ1,nJ1) are either

(0,0),(1,0),(−1,0), . . .(A1,0),(−A1,0)

or
(0,0),(0,1),(0,−1), . . .,(0,B1),(0,−B1),

for some positive integersA1 or B1.
(2) If {(k j ,n j)}Jk

j=1 has been constructed to be of the form{−Ak, . . . ,Ak}×{−Bk, . . . ,Bk}
for some non-negative integersAk, Bk, then terms are added to either the top and bottom
or the left and right sides to obtain either the rectangle

{−Ak, . . . ,Ak}×{−(Bk +1), . . . ,Bk +1}
or

{−(Ak +1), . . . ,Ak +1}×{−Bk, . . . ,Bk}.
For example, terms would first be added to the left side ordered as

(−(Ak +1),0),(−(Ak+1),1),(−(Ak +1),−1), . . . ,(−(Ak +1),Bk),(−(Ak +1),−Bk),

and likewise for the right side. Top and bottom proceed analogously.

Remark4.2. We leave it to the reader to verify that the above technique can be generalized to
obtain admissible enumerations ofZd recursively as follows. We always start at0. Then at each
step in the process where a rectangle

R= {−N1, . . . ,N1}×{−N2, . . . ,N2}×· · ·×{−Nd, . . . ,Nd}, Ni ∈ N0,

has been reached, we proceed by only adding terms to two opposing “faces” ofR. The terms are
added to each of the two faces using an admissible enumeration of Zd−1.
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4.2. A characterization of Schauder bases for FSI subspaces.We considerΨ = {ψ1, . . . ,ψN}⊂
L2(Rd), d ∈ {1,2}, such that the system

(4.2) F = {ψ(ℓ,k, ·) := ψℓ(·−k)}k∈Zd,ℓ=1,...,N

has a unique dual system{g(ℓ,k, ·)} in S(Ψ). Givenσ ∈ Λ(d), we lift σ to an enumeratioñσ of
{1,2, . . . ,N}×Zd defined as follows

(1,σ(1)),(2,σ(1)), . . .,(N,σ(1)),(1,σ(2)), . . .,(N,σ(2)),(1,σ(3)), . . .

With this ordering, we define the partial sum operators

Tσ
J f :=

J

∑
j=1
〈 f ,g(σ̃( j), ·)〉ψ(σ̃( j), ·), f ∈ S(Ψ).

We also need to consider the associated partial sum operatorin L2(Td;W). Pute(ℓ,k) := e−2π ik·ξ eℓ,
andẽ(ℓ,k) := U(e−2π ik·ξW−1(ξ )eℓ), with U defined by (2.5). Then

Sσ
J τ :=

J

∑
j=1
〈τ, ẽ(σ̃( j)〉L2(Td;W)e(σ̃( j)), τ ∈ L2(Td;W),

satisfiesU(Sσ
J τ) = Tσ

J f for U(τ) = f ∈ S(Ψ).
It is now immediate from our general discussion of Schauder bases that the following condi-

tions are equivalent:

(i) The systemF given by (4.2) is a Schauder basis forS(Ψ) with the ordering induced by
σ ∈ Λ(d)

(ii) The partial sum operatorsTσ
J are uniformly bounded onS(Ψ).

With the notation in place, we can state our main result on Schauder bases for FSI subspaces.
The following result is a corollary of Theorem 1.2.

Corollary 4.3. We consider a FSI subspace S(Ψ) in L2(Rd), with d∈{1,2}, andΨ = {ψ1, . . . ,ψN}.
Assume that the system given by(4.2) has a unique dual system in S(Ψ), and let W(Ψ) be the
Gram-matrix forΨ. Then the following statements are equivalent

(a) supσ∈Λ(d) supJ‖Tσ
J ‖< ∞.

(b) W ∈ AP(d).

Proof. (a)⇒ (b): Ford = 1, we notice thatTσ1

(2J+1)N = TJ, with TJ given by (1.2), so supJ‖TJ‖<

∞, andW ∈A2(T) by Theorem 1.2. We turn tod = 2. Given a rectangle

R= {−N1, . . . ,N1}×{−N2, . . . ,N2}, N1,N2 ∈ N0,

we can use Definition 4.1 to construct an enumerationσ ∈ Λ(2) such thatσ({1, . . . ,J}) = R for
someJ ∈ N. ThenTσ

N·J = T(N1,N2), and therefore supN1,N2≥0‖T(N1,N2)‖ < ∞. Hence,W ∈ AP(2)
by Theorem 1.2.

(b)⇒ (a): Assume thatd = 2. Fix f ∈ S(Ψ), and pickσ ∈ Λ(2). For anyJ we letNJ be the
largest integerNj ≤ J for which Tσ

NJ
f = TL,K f , for some integersL,K. Now, by Theorem 1.2,

‖Tσ
J f‖L2(Rd) ≤ ‖TL,K f‖L2(Rd) +‖(Tσ

J −TL,K) f‖L2(Rd) ≤C‖ f‖L2(Rd) +‖(Tσ
J −TL,K) f‖L2(Rd).
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Hence, it suffices to bound the norm of the term

(4.3) (Tσ
J −TL,K) f =

J

∑
j=NJ

〈 f ,g(σ̃( j), ·)〉ψ(σ̃( j), ·).

According to Definition 4.1, the sum (4.3) contains terms that have been added to the top and
bottom or left and right side of an rectangle. The cases are treated in a similar fashion. For
definiteness, assume that (4.3) adds terms to the top of the rectangle.

We study the equivalent problem inL2(Td;W). Pickτ with U(τ) = f , soU(Sσ
J τ) = Tσ

J f . The
sum(Sσ

J −SL,K)τ contains to at mostN−1 terms of the type

(4.4)
M

∑
n=−M

〈τ,e2π inξ1e2π i(K+1)ξ2ej〉e2π inξ1e2π i(K+1)ξ2ej ,

and at mostN−1 terms of the type,

(4.5)
M+1

∑
n=−M

〈τ,e2π inξ1e2π i(K+1)ξ2ej〉e2π inξ1e2π i(K+1)ξ2ej .

We observe that, in general,

‖〈τ,e2π ik·ξ ej〉e2π ik·ξ ej‖L2(Td;W) ≤ ‖W‖L1(Td)‖W−1‖L1(Td)‖τ‖L2(Td;W),

which follows from Hölder’s inequality. We can thus use brute force to estimate (4.5) in terms
of ‖τ‖L2(Td;W) and the norm of (4.4). We turn to the estimate of (4.4),∥∥∥∥ M

∑
n=−M

〈τe−2π i(K+1)ξ2,e2π inξ1ej〉e2π inξ1eje
2π i(K+1)ξ2

∥∥∥∥
L2(Td;W)

=
∥∥∥∥ M

∑
n=−M

〈τe−2π i(K+1)ξ2,e2π inξ1ej〉e2π inξ1ej

∥∥∥∥
L2(Td;W)

≤C‖τe−2π i(K+1)ξ2‖L2(Td;W) = C‖τ‖L2(Td;W),

where we have used the uniform boundedness of the one-dimensional Hilbert transform, see (3.5).
Collecting the estimates, we conclude that

‖(Tσ
J −TL,K) f‖L2(Rd) = ‖(Sσ

J −SL,K)τ‖L2(Td;W) ≤C′‖τ‖L2(Td;W) = C′‖ f‖L2(Rd),

with C′ independent ofJ. The proof in the cased = 1 is similar. �

Remark4.4. As in Remark 4.2, we leave it to the reader to verify that the proof of Corollary 4.3
can be generalized to arbitraryd by defining admissible enumerations ofZd following the outline
in Remark 4.2. Then(b) ⇒ (a) in the proof of Corollary 4.3 can be used as the first step in an
induction argument ond.

5. SOME EXAMPLES

In this final section, we consider some examples ofPA2(d) weights, and some associated FSI
subspaces.
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5.1. The caseN = 1. First, we consider the scalar caseN = 1 with d arbitrary. Our prime
example in this case will be polynomials. LetB = {x∈ Rd : |x| ≤ 1}. Then for any polynomial
P(x) = ∑α cαxα of degreen onRd, we have the following estimate by Ricci and Stein [18],

(5.1)
∫

B
|P(x)|−µdx≤ cµ,n

(
∑
α
|cα |

)−µ
,

for µn < 1. The constantcµ,n is uniform for all polynomials of degreen. We observe that for the
unit cubeR= {x : |xi| ≤ 1}, we have the trivial fact thatd−1/2R⊂ B, so using (5.1),

d−d/2
∫

R
|P(x)|−µdx=

∫
d−1/2R

|P(d1/2x)|−µdx≤ c̃µ,n

(
∑
α
|cα |

)−µ
.

Also,
∫

R|P(x)|dxand∑α |cα | are norms on the polynomials of degreen, and they are thus equiv-
alent as norms on a finite dimensional space. Hence,

(5.2)
∫

R
|P(x)|−µdx≤Cµ,n

(∫
R
|P(x)|dx

)−µ
.

Then we observe that the polynomials of degreen are invariant under affine transformations, so it
follows that (5.2) holds for any rectangleRonRd. From this, we deduce that for any polynomial
of degreen, |P|a is a (scalar)PA2(d) weight provided−1 < na< 1.

5.2. Arbitrary N and d. Let us expand the example of Section 5.1 to arbitraryN. We notice
that given polynomialsP1,P2, . . . ,PN onRd, the matrix

G := diag(|P1|a1, . . . , |PN|aN) ∈ PA2(d)

provided−1< deg(Pi)ai < 1 for i = 1, . . . ,N. We letQ= [−1/2,1/2)d, and defineΨ = {ψ1, . . . ,ψN}
by

ψ̂i(ξ ) = χQ(ξ −ki)
√
|Pi|ai , i = 1, . . . ,N,

where{ki} is a collection of distinct integers inZd. An easy calculation shows thatW(Ψ) = G.
We thus have the norm convergence given by (1.3). However, the spectrum ofW(Ψ) is bounded
away from zero precisely when all polynomialsPi have no roots onQ. Thus, for this example,

(i) We always have the norm convergence given by (1.3)
(ii) For d = 1,2, we obtain Schauder bases forS(Ψ) using Corollary 4.3

(iii) The system (1.1) is a Riesz basis forS(Ψ) onlywhen eachPi has no roots onQ.
ThatW(Ψ) is diagonal is a reflection of the fact that the principal shift-invariant subspaces

S({ψi}), i = 1,2, . . . ,N, are pairwise orthogonal, and one can argue that the exampledoes not
truely belong in the matrix setting. We conclude this section with a more “genuine” matrix
example ford = 1 andN = 2.

5.3. The cased = 1 and N = 2. Let us consider the following example by Bownik [2]. For
t ∈ [−1/2,1/2) we define

G(t) = U(t)∗
[
1 0
0 b(t)

]
U(t), U(t) =

[
cosα(t) −sinα(t)
sinα(t) cosα(t)

]
,

whereα(t) = sign(t)|t|δ ,b(t) = |t|ε , with −1 < ε < 1, andδ satisfying−2δ ≤ ε ≤ 2δ . Then
G(t) ∈ AP(1), see [2].
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Defineψ1,ψ2 ∈ L2(R) by

ψ̂1(ξ ) =
√

G1,1(t)χ[0,1)

ψ̂2(ξ ) = v1(t)χ[0,1) +v2(t)χ[1,2),

where [
v1(t)
v2(t)

]
=

[
cosβ (t) −sinβ (t)
sinβ (t) cosβ (t)

][√
G2,2(t)

0

]
,

with β : T → [0,2π) measurable such that
√

G1,1(t)v1(t) = G1,2(t) = G2,1(t). We notice that
this is always possible since detG(t) ≥ 0. Then a direct calculation shows thatΨ = {ψ1,ψ2}
satisfiesW(Ψ) = G(t).

The spectrum ofG(t) is not bounded away from zero, so Corollary 4.3 gives us an example of
a conditional Schauder basis forS(Ψ).
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APPENDIX A. PROOF OF SOME TECHNICAL LEMMAS

In this section we give the proof of Lemma 3.4 and Lemma 3.5. Let us first consider some
general facts.

LetW : Td → CN×N be a matrix weight. For any fixed vectore∈ Cd, we have

1
|R|

∫
R
|W1/2(η)e|2dη =

1
|R|

∫
R
〈W1/2(η)e,W1/2(η)e〉dη

=
1
|R|

∫
R
〈W(η)e,e〉dη

= |ARe|2, with AR :=
(

1
|R|

∫
R

W(η)dη
)1/2

.(A.1)

Similarly, we denote
(|R|−1∫

RW−1(η)dη
)1/2

by A#
R.

For self-adjoint operatorsA andB onCN, we have

(A.2) ‖AB‖= ‖(AB)∗‖= ‖B∗A∗‖= ‖BA‖.

Also, for an orthonormal basis{ej} for Cd, and any matrixA∈ Cd×d,

(A.3) ‖A‖2 ≤
d

∑
j=1

|Aej |2 ≤ d · ‖A‖2.
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Proof of Lemma 3.4.For (a), we follow [21] and calculate, using (A.1), (A.2), and (A.3) repeat-
edly,

1
|R|2

∫
R

∫
R
‖W1/2(ξ )W−1/2(η)‖2dηdξ

=
1
|R|2

∫
R

∫
R
‖W−1/2(η)W1/2(ξ )‖2dηdξ

≍ 1
|R|2

∫
R

∫
R

N

∑
j=1

|W−1/2(η)W1/2(ξ )ej |2dηdξ

=
1
|R|

∫
R

N

∑
j=1

|A#
RW1/2(ξ )ej |2dξ =

1
|R|

∫
R
‖A#

RW1/2(ξ )‖2dξ =
1
|R|

∫
R
‖W1/2(ξ )A#

R‖2dξ

≍ 1
|R|

∫
R

d

∑
j=1

|W1/2(ξ )A#
Rej |2dξ =

N

∑
j=1

|ARA#
Rej |2

≍ ‖ARA#
R‖2 = ‖A#

RAR‖2 = M(R,W)2.

For (b), we notice that

M(R,W)2 ≍ 1
|R|2

∫
R

∫
R
‖W1/2(ξ )W−1/2(η)‖2dηdξ

≤ |R̃|2
|R|2

1

|R̃|2
∫

R̃

∫
R̃
‖W1/2(ξ )W−1/2(η)‖2dηdξ

≍ |R̃|2
|R|2M(R̃,W)2.

Now we turn to the proof of (c). It suffices to considerW̃(t) := W(t,ξ2, . . . ,ξd) for (ξ2, . . . ,ξd) ∈
Td−1 fixed. Given an intervalI ⊂ R, we form Rε = Iε(ξ2)× ·· · × Iε(ξd), whereIε(ξ j) is an
interval of length 2ε centered atξ j . SinceW ∈ PA(d) there exists a constantCW independent of
I ×Rε such that

C2
W ≥ M(I ×Rε ,W)2 ≍ 1

|Rε |2
∫

Rε

∫
Rε

(
1
|I |2

∫
I

∫
I
‖W1/2(t,u)W−1/2(w,v)‖2dtdw

)
dudv.

Hence, by Lebesgue’s differentiation theorem,

C2
W ≥ lim

ε→0+
M(I ×Rε ,W)2 =

1
|I |2

∫
I

∫
I
‖W̃1/2(t)W̃−1/2(w)‖2dtdw≍M(I ,W̃)2,

where the constants are independent ofI and(ξ2, . . . ,ξd). HenceW̃ is uniformly inA2(T). �

We now give a proof of Lemma 3.5. The proof is an adaptation of atechnique introduced by
Goldberg [11].
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Proof of Lemma 3.5.We begin by estimatingW1/2(ξ )S f(ξ ). Notice that

|W1/2(ξ )S f(ξ )|=
∣∣∣∣W1/2(ξ )

∫
R

S(ξ ,η) f (η)dη
∣∣∣∣

=
∣∣∣∣∫

R
S(ξ ,η)W1/2(ξ ) f (η)dη

∣∣∣∣
≤ α|R|−1

∫
R
|W1/2(ξ ) f (η)|dη

≤ α|R|−1
(∫

R
‖W1/2(ξ )W−1/2(η)‖2dη

)1/2

· ‖ f‖L2(Td;W).

We have the estimate,

(∫
R
‖W1/2(ξ )W−1/2(η)‖2dη

)1/2

≤
( d

∑
j=1

∫
R
|W−1/2(η)W1/2(ξ )ej |2dη

)1/2

=
( d

∑
j=1

|R| · |A#
RW1/2(η)ej |2

)1/2

≤ d1/2|R|1/2‖A#
RW1/2(ξ )‖,

which yields the pointwise estimate

(A.4) |W1/2(ξ )S f(ξ )| ≤ d1/2α|R|−1/2‖A#
RW1/2(ξ )‖ · ‖ f‖L2(Td;W).

We use the estimate (A.4) for‖ f‖L2(Td;W) ≤ 1 to obtain

‖S f‖L2(Td;W) ≤ d1/2α
(
|R|−1

∫
R
‖A#

RW1/2(ξ )‖2dξ
)1/2

≤ d1/2α
( d

∑
j=1

|R|−1
∫

R
|W1/2(ξ )A#

Rej |2dξ
)1/2

≤ d1/2α
(

∑
j
|ARA#

Rej |2
)1/2

≤ dα‖ARA#
R‖= dαM(R,W).

For the second part, we use (A.1) to calculate theL2(Td;W) norm ofχR|R|−1∫
R f dξ ,

1

|R|1/2

(
1
|R|

∫
R

∣∣∣∣W1/2(η)
∫

R
f (ξ )dξ

∣∣∣∣2dη
)1/2

=
1

|R|1/2

∣∣∣∣AR

(∫
χR(ξ ) f (ξ )dξ

)∣∣∣∣.
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Hence,

sup
‖ f ‖L2(Td;W)=1

∥∥χR|R|−1
∫

R
f dξ

∥∥
L2(Td;W) = sup

‖ f ‖L2(Td;W)=1

1

|R|1/2

∣∣∣∣AR

(∫
χR(ξ ) f (ξ )dξ

)∣∣∣∣
= sup

‖ f ‖
L2(Td;W)=1

sup
e∈Cd:|e|=1

1

|R|1/2

∣∣∣∣∫ 〈χR(ξ )ARe, f (ξ )〉dξ
∣∣∣∣

= sup
e∈Cd:|e|=1

1

|R|1/2
‖χRARe‖L2(Td;W−1)

= sup
e∈Cd:|e|=1

|A#
RARe|= M(R,W),

where we have used thatL2(Td;W)∗ = L2(Td;W−1) in the third equality. �
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ON STABILITY OF FINITELY GENERATED SHIFT-INVARIANT SYSTEMS 19

[20] A. Ron and Z. Shen. Frames and stable bases for shift-invariant subspaces ofL2(Rd). Canad. J. Math.,
47(5):1051–1094, 1995.

[21] S. Roudenko. Matrix-weighted Besov spaces.Trans. Amer. Math. Soc., 355(1):273–314 (electronic), 2003.
[22] I. Singer.Bases in Banach spaces. I. Springer-Verlag, New York, 1970. Die Grundlehren der mathematischen

Wissenschaften, Band 154.
[23] S. Treil and A. Volberg. Continuous frame decomposition and a vector Hunt-Muckenhoupt-Wheeden theorem.

Ark. Mat., 35(2):363–386, 1997.
[24] S. Treil and A. Volberg. Wavelets and the angle between past and future.J. Funct. Anal., 143(2):269–308,

1997.

DEPARTMENT OF MATHEMATICAL SCIENCES, AALBORG UNIVERSITY, FREDRIK BAJERS VEJ 7G, DK-
9220 AALBORG EAST, DENMARK

E-mail address: mnielsen@math.aau.dk


