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Preface

This report presents the results of an experimental study of the wave energy converting abilities of the
Crest Wing wave energy converter (WEC). The Crest Wing is a WEC that uses its movement in matching the
shape of an oncoming wave to generate power.

Model tests have been performed using a scale model (length scale 1:30), provided by WaveEnergyFyn, in
regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as
used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept. of Civil Engineering, Aalborg
University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off
system, provided by WaveEnergyFyn, were measured and used to calculate total power take off.

The tests have been performed by Jens Peter Kofoed and Mike Antonishen, AAU, in co-operation with
Henning Pilgaard, WaveEnergyFyn, who was present in the laboratory during the tests. The testing took
place during the period June to August, 2008. The report has been prepared by Jens Peter Kofoed and Mike
Antonishen (tIf.: +45 9635 8474, e-mail: jpk@civil.aau.dk).

Aalborg, September, 2008
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1. Introduction

The Crest Wing Wave Energy Converter is currently being developed by Henning Pilgaard, of
WaveEnergyFyn, Denmark. It is meant to act like a carpet on the water, conforming to the shape of each
wave and using that movement to generate power. The thought of making a WEC that acts like a carpet
on top of the waves is not new; ongoing or past projects such as the Pelamis and Cockerel Raft were
designed with this thought in mind. The real difference with the Crest Wing is that it has skirt drafts, seen
in Figure 8, that extend down into the water and create suction; this increases the effective mass of the
WEC while minimizing the material use. Special attention was given to the design of the first and last
floaters as they are meant to act as a smooth transition between wave and machine. Their purpose is to
make sure that no air gets under the two middle floaters so that suction is not broken and the device
continues to function well. To get a feeling for how much these skirt drafts actually affect the device,
immerse a bucket in a pool of water and let it fill. Trying to pull the bucket out of the water while its open
end faces downwards is a surprisingly hard task!

In many WEC's there are two possible ways to actually harvest the power; movement of the WEC relative
to a fixed power take off (PTO) set up or with a PTO set up that captures the energy from the relative
movement of elements on the WEC. The fixed PTO set up corresponds to a fixed structure or a secondary
floating reference frame in the ocean that the WEC is attached to. Movement relative to this fixed point
generates power. Prior to testing it was hypothesized that a fixed reference PTO would generate more
power. The main question was whether it would produce such a great amount that it would be worth it to
build a long lasting fixed structure in the ocean. If all things are considered it is usually more efficient and
affordable to use a relative reference system since it can be quite expensive to construct a fixed structure
in the ocean that is meant to last a significant amount of time. The PTO system that uses relative motion of
elements on the WEC to generate power is a widely used concept in wave energy. Both the Pelamis and
Cockerel Raft are examples of WEC’s that use this type of PTO.

As a final note, every figure given in this paper will be at scale 1:30 unless otherwise noted.






2. TestSet Up

All testing was performed at a scale of 1:30 and all data points were recorded at a sample frequency of 25
Hz. Before taking any data, waves were run in order to observe the movement of this WEC qualitatively in
order to choose a reasonable model for anchoring. The converter is anchored at both ends with springs and
the characteristics of the anchoring system in calm water can be seen in Graph 1*. Data was taken on the
force that these anchors must withstand while the WEC is producing power but it is not yet processed since
it is not yet pertinent to the project at this stage. Waves were measured using 8 separate wave gauges
placed in front of and around the device. The PTO used for testing was supplied by the Client. It involves a
disc brake through which the loading provided to the system can be easily adjusted. In full scale this
represents a PTO including a generator. Loading the PTO was done by placing masses in a bucket hanging
vertically down from the hand control for the disc break.
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Figure 1: Anchoring characteristics for both set ups.

2.1. Fixed Reference

In the fixed point PTO case, measurements of the force, F, applied to the PTO system were collected using a
strain gauge equipped bone installed parallel to the third floater of the device as shown below. In order to
ensure pure 2-D motions of the device (to avoid damage to the bearings of the PTO) Plexiglas guide walls
were placed on either side of the device. Their purpose was to help guide its movement so that the only
forces measured were the ones affecting the displacement. Special attention was given to their installation
so that they did not in any way affect the movement of the device aside from their original purpose.

! An effort was made to make the anchoring characteristics as close as possible between fixed reference and relative
reference tests.



Figure 2: The bone set up connected to the fixed PTO. Values of H1, H2, and V are all known.

The two thinner parts of the bone marked m; and m;, are where the measurements are taken. Since the
distances H;, H,, and V are all known then using known equations it is easy to see that no matter what
direction the force is in,

—
Fros = J'FFI-I‘_F:

where F.. is the total force, F, is the vertical force on the bone, and F; is the horizontal force on the bone.
As in the picture, let the two moments be called m; and m,. Finding the bending moments at m;and m, and
solving for F,and F,gives

Figure 3: Set up of the Crest Wing WEC with fixed point PTO.



The displacement, d, is measured by an ASM draw wire displacement sensor as seen in Fig. 3. Using data
power generation was calculated using the simple equation

_ . Ad
Pit)=Fit)-—

At .
2.2. Relative Reference
The test set up for relative reference testing is shown in Figure 2. Displacement is measured electrically by
a non-contact ultrasonic displacement sensor while force measurements were taken by a bone installed
under the PTO model in a different orientation than before. Watching the movement of this device it was
hypothesized that F, should be very close to 0 because none of the force coming in this direction has any
effect on the displacement of the device and therefore it should not be included when calculating power
generated. Another thing that was noticed while looking at the results was that the displacement
measurement had a lot of noise in it. Due to this, results were filtered to ensure maximum reliability using
a low pass filter before any formal power calculations were made. In this case the power calculation was
done by taking

IF.m, +F.sz Ad
- 2 At

Where F"ml is the horizontal force calculated from moment 1 and F"M; is the horizontal force calculated
from moment 2.

Figure 4: Relative PTO set up.

It should be noted that during all relative reference testing the WEC was anchored by one elastic band on
each side of the device, this can be seen in figure 7.
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3. Test Program

In both fixed reference and relative reference testing the main goal is to establish the efficiency of the
device as well as an estimate for power production per year. Before testing in irregular wave states to find
the power production, the optimal loading conditions on the PTO must first be found. Optimal loading
conditions are found by running short 60 second tests in regular wave states similar to the irregular ones
that the power production will be later calculated for. The full scale wave states used in this lab testing can
be found in Frigaard et al. (2008). For lab testing these states were scaled down using a length scale of 30.
The report just mentioned also contains probabilities of each wave state occurring. Using the probability of
the wave state, the amount of energy per meter in each wave, and the efficiency of the device in the given
wave state it is then very simple to calculate the average power production per year as well as the
efficiency per year.

Sea H T Sea Hs Tp | Energy Prob.
State State Flux Occur
m s m s W/m %

R1 .026 1.02 I1 .037 1.02 | .49 46.8
R2 .052 1.28 12 .073 1.28 | 2.43 22.6
R3 .078 1.53 I3 110 1.53 | 6.6 10.8
R4 104 | 1.79 14 147 | 1.79 | 13.6 5.1

R5 .130 2.04 I5 .183 2.04 | 24.28 2.4

Figure 5: Regular (R) and irregular (1) sea states used in lab (Frigaard et al., 2008).

The numbers given in Fig. 5 represent the Danish sector of the North Sea, scaled to model scale using a

length scale of 1:30. The waves chosen for the regular sea states are chosen to maintain the energy
H,
H=—
contents of the corresponding irregular waves, ie. v2
3.1. Fixed Reference
Additional tests on the fixed reference PTO set up consisted of a period analysis where the period of the
waves was varied and the wave height was held constant, moving the connector arm from vertical to the

angle x as seen in Fig. 6, and connecting the two middle floaters.

Figure 6: Left: New angle with respect to vertical on the connector arm to a fixed point. The connector
arm is highlighted in tan. Right: Two middle floaters interconnected.
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3.2. Relative Reference
There were over 244 different tests of length one minute to thirty minutes taken in relative reference
testing. The overview of data gathered is shown in tables 1 and 2 below.

Load Wave Height Periodic Analysis  Inlet and Outlet
Optimization & Analysis Devices
Comparison

Original

Floaters Connected

Floaters Connected -PTO
Reversed’*

Floaters Connected -PTO
active both ways

Floaters Connected -PTO
Reversed - Original Skirt
Drafts

Floaters Connected -PTO
Reversed - Aluminum Skirt
Drafts

Table 1: Regular wave state testing matrix.

The original set up referred to in Table 1 (shown in fig. 7) is the case where the floaters remain free of each
other, the PTO is working in tension, and 40cm skirts are attached. It can be noticed that after a certain
point all tests were performed with the two outer sets of floaters connected. This was because it was
noticed very early on that connecting those sets of outer floaters greatly increased the efficiency of the
device. In the wave height analysis the period is held constant and wave height varied while in the periodic
analysis the wave height is held constant and the period varied.

> When it is said that the PTO is working in reverse it means that the PTO is active (the load is applied) in compression.
When the PTO is working “normally” it means that the PTO is active in tension.

*This set up is the same as the “Original Irregular” set up in Table 2.
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Figure 7: Left: “Original” set up. Right: Floaters connected — PTO Reversed.

The original skirt drafts referred to are the plastic skirts that can be seen in Fig. 8. For testing there were
lengths of 40cm, 20cm, 10cm, the mini skirt in Fig. 8, and nothing attached. To compare these skirts and
the aluminum skirts a full periodic analysis was done on each one at each skirt length. This was done in

order to isolate the natural frequency of the device as well as provide data on wave states near the ones
shown in Fig. 5.

Figure 8: Left: The mini skirt referred to in the text is the metal skirt attached to the bottom of the WEC.
It extends down approximately 8cm. Right: Original skirts extending down 40cm from the device.

For testing with aluminum skirt drafts, only a certain amount of material could be obtained so tests with
40cm skirt drafts could not be done. Instead tests with skirts of draft 30 cm, 20cm, 10cm, and nothing
attached were all performed. The aluminum skirts are much lighter than the plastic original skirts and all
friction between skirts is gone as well. The friction between the original skirts was never measured but it is
surely greater than the aluminum, this means that at least one factor of possible error was eliminated
when using aluminum skirts. The inlet and outlet devices are simple additions to the front and back of the
device that are meant to keep any air from getting under it. They can be seen in Fig. 9.

Figure 9: Both back and front attachments to the device, meant to keep it from lifting out of the water
and letting air break the suction.

13



Original Irregular

Original Irregular - No
Skirts

Original Irregular -
10cm Aluminum Skirts

Table 2: Irregular wave state testing matrix.

The original irregular set up referred to in Table 2 corresponds to the floaters connected with PTO reversed
and 40 cm skirt draft set up in the regular testing matrix. Two 3D sea state tests were performed in order
to give insight to any researcher planning future testing.

14



4. Results

Before looking at any results it should be noted that in lower wave states, regular and irregular, the forces
and displacements experienced are low enough so that electronic noise in the measurements can play a
relatively large role in the results. In order to ensure good results, some of the signals were run through
low pass filters. Very careful attention was given to the filtering of these results to ensure that it was done
well and only when needed. Another item to be noted is that the anchoring system used in relative
reference testing inhibited the movement of the second floater in wave states with lower energy content.
Because of this the results for regular testing show power production jumps at two major points of
resonance for the WEC; when wave length is equal to the size of the first floater and energy is sufficiently
low single body resonance is achieved due to the second floater not moving and when wave length is equal
to the total length of the device another two body resonance is achieved. In future testing the anchoring
system should be attached to the device at its hinges or another well thought out place that does not
inhibit the motion of the WEC.

4.1. Fixed Reference Results

4.1.1. Load Optimization, Regular Sea States

0.6

0.5 —4—Sea State 2
' ——Sea State 3

0.4 4 Sea State 4

Sea State 5

Efficiency
o
J

et
(]

O
[y

o

0 1 2 3, csaky] 4

Figure 10: Optimal loading conditions for each sea state. Data can be found in Appendix A.

In regular sea state 1 (R1) no displacement was observed, this means that with this device at this scale no
power can be produced in this sea state, thus the power curve for R1 is not included in this graph. Results
were even a little sporadic in wave state 2 as seen in Fig. 10. The error that caused this odd looking power
curve was probably the non-uniform resistance of the PTO model or electrical noise as mentioned earlier.
In the next sequence of tests on this WEC the scale or size of the device should be changed as well as the
PTO system redesigned for lower loads so that more power can be harvested from wave states 1 and 2 due
to their high probability of occurrence. In this round of laboratory testing many uncertainties arose from
the difficulty of the PTO system to provide uniform and repeatable loading conditions. As mentioned
earlier it also did not have a low enough loading range to let wave state 1 and 2 reach optimal power
production conditions.
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4.1.2. Power Production Data

m 3 W/m % % MWh
11 .037 1.02 49 46.8 0 0
12 .073 1.28 2.43 22.6 26.8 114.6
13 .110 1.53 6.6 10.8 19.8 109.5
14 147 1.79 13.6 5.1 13.0 70.2
15 .183 2.04 24.28 24 24.7 112.3
16 .220 2.30 39.34 1.4 0 0

Table 3: Power and efficiency values for The Crest Wing WEC.

In order to calculate the average annual power production tests of length 1800 seconds were run with the
irregular wave states given in Table 1. The waves in irregular wave state 1 (I11) were not large enough to
produce anything but noise so no power was recorded. Irregular wave state 6 (16) was not able to be
measured due to how large the forces were, when attempting to gather data in 16 all of the signals were
being clipped and the forces on the bone were well over what it is meant to handle.

After gathering the data from all of the other wave states the energy flux per meter was taken and adjusted
with the devices efficiency, a dimensionless constant, defined as the ratio between the average power
recorded (product of force and displacement in PTO model) and the wave power arriving at the width of
the device, and probability of occurrence in each wave state to give estimates on expected power
production in the Danish sector of the North Sea. The average annual power production of this device is
just the sum of all the values in the annual power production column, giving about 407 megawatt hours per
year. As mentioned earlier this number could be increased if the scale of the tests is changed so that the
real size of the WEC is smaller compared to the waves, this would help generate power in the most
probable sea state which will increase the overall performance of any device. In this case the overall
efficiency of the WEC across the wave states in table 3 is 15.8 percent.

16
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Figure 11: This graph shows the relation between the devices efficiency and the power available in each
wave state. The scaling of the device can be changed to move these curves so that the power production
is optimized for the set of sea states in a certain area. Data for all irregular testing can be found in
Appendix B.

4.1.3. Analysis of Efficiency With Respect to Wave Period
In order to determine how efficiency is related to wave period the wave height was fixed and the period of

waves was varied.

40

35 / —&—T=10s
30 e=T=1.255
25 ) J / —=T=15s

—}=T=1.75s

20 7

15 /
5

0 20 40 60 80 100 120 140 160 180
Fres Mean [N]

—8—T=2.0s

Efficiency [%]

Figure 12: This graph shows a sequence of tests where the wave height was held constant at 10 cm and
the period varied. Data for all supplemental testing can be found in Appendix C.

From The data on Graph 4 one can deduce that a longer period makes this device more efficient, just as
expected and qualitatively observed in the lab. Fres mean is a measurement of the actual forces on the
system as taken by the bone equipped with a strain gauge. It is shown in most graphs from here on
because it is the true measurement of how much loading the PTO is supplying. With the current PTO
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system it is hard to control this number. This is one of the largest causes of error in many of the tests
because in order for the tests to make sense the device must be working at maximum efficiency which
means optimal loading conditions must be found and reproduced easily.

0.4

0.35 ®

0.3

0.25

0‘2 P

0.15 =

Max Efficiency

0.1

0.05

0 T T T T 1

0.000 0.500 1.000 1.500 2.000 2.500
T[s]

Figure 13: This graph shows the relationship between max efficiency and period at a fixed wave height of
10 centimeters with scale 1:30.

The curve in Fig. 13 will most likely not be observed in reality because if the Crest Wing is installed at full
scale somewhere it will be attached to an anchoring system that floats with it as opposed to a fixed one.
The curve will not keeping going up with the period, it is merely approaching the natural frequency of the
anchoring system where it can produce the most power.

4.1.4. Analysis of Efficiency With Respect to Arm Angles

0.6

= === New Angle R4
0.5 F i
= Old Angle R4
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0
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Figure 14: New arm angle refers to the change in angle x from Figure 3. Old Arm angle refers to the arm
in its vertical position. The data for these graphs can be found in Appendix C.
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Fig. 14 suggests that the efficiency of the device is less with the arm angled as pictured in (Fig. 6, left). With

the same amount of average force over the time period there is much less efficiency and therefore less

power is generated. The exact angle does not matter at this stage because the one test performed was just

meant to see if the results changed. Since the results did change further testing is warranted to ensure

maximum efficiency of the WEC.

4.1.5. Analysis of Efficiency with Two Center Floaters Interconnected

Connected R3

= 4= = Connected R4

~ <A~ = Connected R5

Free R3

" @ Free R5

0.6
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3 / >< = \
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= == Free R4

0.2 .Q-..

@ T -\\
&7 I“"a@
0.1
0 T T T 1
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Fres Mean [N]

200

Figure 15: The data for the free sea states comes from corresponding load and sea state data from
Appendix A. The data for the connected cases comes from Appendix C.

It is quite easy to see from Graph 6 that when the two center floaters are connected, the efficiency of the

device is much lower. These results are complete enough so that no further testing is warranted here.
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Figure 16: A comparison of max efficiency to the ratio of floater length to wave length.
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The graph above shows a very clear relation between floater length and wave length. This result is only for
the PTO in one position on one floater though. In order to completely discard the idea of connecting
floaters in fixed reference testing, tests should be performed where the PTO is on other floaters in different
positions along the device.

4.2. Relative Reference Tests

During the course of relative reference testing, the test set up was changed two times due to more efficient
set ups being found. First there were 4 free floaters with 40 cm skirts, then it was noticed that if the two
sets of outer floaters were fixed to each other the efficiency went up significantly. Testing with the two
sets of outer floaters connected was carried out to completion and as a final test the skirts were cut down
in increments of 10cm to see if they had an effect on the efficiency. After processing the data it was
noticed that the floaters connected with no skirts on gave the highest efficiencies out of any set up
previously tried. More tests were carried out to confirm these results and since it was confirmed that a
more efficient set up had been found load optimization was done again as well as irregular testing. In the
end the most efficient set up was with the floaters connected and the skirts taken completely off.

4.2.1. Load Optimization, Regular Sea States

0.7000

0.6000

0.5000 - \ —4—Floaters Free, 40cm Skirt
>~ 0.4000
2
:3 0.3000 =@ Floaters Connected, 40cm
EE Skirt, PTO Reversed

0.2000

~ Floaters Connected, 00cm
0.1000 Skirt, PTO Reversed
0.0000
0 X 2 3 4 5 6 7
Wave State [Regular]

Figure 17: Maximum efficiency in each sea state shown for those set ups that were all considered at one
time to be the most efficient. The data used to make this graph can be found in Appendix D.

Obviously the floaters connected with 00cm skirt and PTO reversed was the most efficient so it was the set
up used to find total power production. In wave state 1 with floaters free, 40cm skirt there was no
displacement in the PTO so no power was generated and the load could not be optimized. In wave states 1
and 2 on the floaters connected, 00cm skirt, PTO reversed case load optimization did not need to be done
since in all other testing the efficiency was already as high as it could be with the PTO loaded minimally at 4
kilos. It is worth mentioning again that this project would seriously benefit from a PTO system that has a
larger range of loading conditions and is easily manipulated into certain Fres conditions.
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Figure 18: Load optimization for regular sea states 3-6 with floaters connected, 00cm skirt, and PTO
reversed. The data used to make this graph can be found in Appendix D.

4.2.2. PTO Set up Optimization
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o — 2P\
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Figure 19: Comparison of different possible set ups for the PTO. The data used to make this graph can be
found in Appendix D.

As described in the test program there are three different ways of setting up the PTO in relative reference
testing. In the graph above the PTO reversed and “normal” situations are both very close to each other
with the PTO reversed set up winning out by a small margin. The PTO reversed set up was the chosen set
up for irregular testing because of this but it should be noted that it is not necessarily better than the
normal situation since the difference between the two set ups is small enough that it easily lays within the
accuracy of the tests. As can be seen in the graph the PTO both ways situation gives many different

efficiency readings for a small range of force levels on the system. This, again, is due to the limited
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adjustment possibilities of the PTO. The desired loading condition for the PTO both ways tests was about
half of the loading used in the other set ups, this was far below the range of the PTO in use.

4.2.3. Analysis of Efficiency with Changing Wave Height and Period

0.4000 0.4000

0.3500 - 0.3500

0.3000 - 0.3000

0.2500 -~ 0.2500
50.2000 +#—Regular = 0.2000
] waves, Both pre

0.1500 - Floaters 0.1500

Connected, Fixed -=0—Regular waves, Both Floaters
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H, Variable T- PTO 000 Connected, Fixed T, Variable H - PTO
0.0500 - Reversed 0.0500 - Reversed
0.0000 - - - - - 0.0000
0.000 0.500 1.000 1.500 2.000 2.500 0.000 0.050 0.100 0.150 0.200
T[s] H[m]

Figure 20: Left: Efficiency compared to changing wave period, fixed wave height: 10 cm. Right: Efficiency
compared to changing wave height, fixed period: 1.5 seconds. Data can be found in Appendix F.

The results of both graphs shown above are the maximum efficiencies after load optimization in each
different wave state. In the efficiency compared to changing wave period graph a large drop in efficiency
can be seen between 1.5 and 1.75 second periods. This could be because at 1.5 second period the wave
length is approximately equal to twice the size of one connected floater of the WEC. Thus, wave period is
at one of the natural frequencies of the WEC spoken about earlier and the efficiency here should be one of
the highest since resonance is found easily in regular wave states. However, this result alone does not
suffice to explain the large drop in efficiency between the two periods. In theory it should be a much less
dramatic change but in the same overall direction.

In the changing wave height fixed period graph the relation shown also needs some explanation. In theory
the device should be less efficient the larger the waves get but once again there was too much internal
resistance in the PTO so the states with less energy could not be fully optimized in the smaller wave
heights.
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4.2.4. Analysis of the Effects of Skirt Drafts

0.8000

0.7000 -

0.6000 - “—P-0.1m
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Figure 21:Data for the affect of skirts on the Crest Wing WEC's efficiency. All points to the left of 1 second
have a wave height of .075m and all points to the right have a wave height of .1m. P denotes plastic
skirts and A denotes aluminum skirts. The data used to make this graph can be found in Appendix F.
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Figure 22:Data for the affect of skirts on the Crest Wing WEC's efficiency. All points to the left of 1 second
have a wave height of .075m and all points to the right have a wave height of .1m. P denotes plastic
skirts and A denotes aluminum skirts. The data used to make this graph can be found in Appendix F.

The data taken here suggests that there is more than one force changing when the skirts are changed. The
skirts are supposed to have a positive effect on the movement of the device because they create a suction
to the water surface, however another well known force is present that was not considered until now. As a
wave runs down the device, the parts running alongside it (as opposed to those running under it) turn in to
the device to compensate for the energy lost in the part of the wave under the device. When the skirt
drafts are present no energy can be drawn from this, but when the skirt drafts are absent it seems that this
energy is at least partially tapped. As the skirt drafts are decreased in size the amount of contribution from
the bending effect is increased while the positive contribution from the skirts is decreased. To explain the
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non-linearity within each curve, note that Fig. 21 shows two major peaks at periods around .8 seconds and
1.5 seconds for each curve. These periods correspond to wavelengths that allow the WEC to oscillate at its
natural frequencies, maximizing force and displacement. Because of these two interacting forces it is hard
to predict how the Crest Wing will act with a certain size of skirt. Because of this, irregular tests were run
with three different set ups; 40cm plastic skirts, 10cm aluminum skirts, and no skirts at all (00cm). The
results of these irregular tests are given in the next section.

4.2.5. Power Production Data, Irregular Wave States
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== TFixed Ref.

0.45 -
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Figure 23: This graph is a comparison of all irregular testing done on this device. In all three relative cases
the PTO is reversed and the outer sets of floaters are connected. The data used to make this graph can
be found in Appendix E.

The results are not so clear, but it seems that the Crest Wing WEC functions better in irregular wave states
with smaller or no skirt drafts. It is good to see that, regardless of skirts, the relative PTO can be just as
efficient as the fixed reference for it is much easier to install a floating internal reference device than one
that needs a fixed point to produce power.

Sea Hs | Tp | Energy Prob. Device Total Annual Power Production
State Flux Occur Efficiency (Full Scale)
m 3 W/m % % MWh
I1 .037 | 1.02 | .49 46.8 0.2193 38.74
12 .073 | 1.28 | 2.43 22.6 0.4544 193.8
13 .110 | 1.53 | 6.6 10.8 0.4452 245
14 147 |1 1.79 | 13.6 5.1 0.2733 147.3
I5 .183 | 2.04 | 24.28 2.4 0.1855 84.03
16 .220 | 2.30 | 39.34 1.4 0.1580 67.6

Table 4: Power production values for the Crest Wing WEC with outer floaters interconnected, PTO
reversed, and 00cm skirt.
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All power calculations were performed in exactly the same way as before. The efficiency of the WEC under
these new conditions is 30.2 percent.

4 - -~ 0.5000
3.5 F 0.4500
3 J - 0.4000
£ - 0.3500
2 25 L 03000 =
o [ : g
g 237 02500 §
& S
E —— Pwave*Prob - 0.1500
1 + ]
—4— Efficiency + 0.1000
03 L 0.0500
0 T -. - - - + 0.0000
0 1 2 3 4 5 6 7
SeaState [Irreg]

Figure 24: This graph shows the relation between the devices efficiency and the power available in each

wave state.
4.2.6. Inlet and Outlet Devices
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Figure 25: Data from the tests with front and back attachments to the WEC as seen in Fig. 9. The data
used to make these graphs can be found in Appendix D.

The data provided in Fig. 25 suggests that inlet and outlet devices on the Crest Wing do increase the power
production. In Fig. 25 (right) there was no displacement in the PTO below and at a period of 1 second. This
was partly because the inlet device was absorbing most of the energy in the waves and not passing it on in
a productive way to the rest of the WEC. This result does not need to be considered though because when
things are scaled up it turns out that waves of period less than 1 second (model scale) have an extremely
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low probability of occurrence for the seas being testing for. Finally, these results suggest that in the
future much more testing should be done on inlet and outlet devices and their combinations with different
skirt lengths in order to further investigate the potential of such changes.

4.2.7. Three Dimensional Wave States
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Figure 26: 3D Irregular wave state data (spreading 40) versus corresponding 2D irregular wave state data.

In the final days of testing it was decided that a few 3D wave states should be tested in order to assess the
Crest Wing's ability to deal with waves coming from more than just one direction. Both 3D tests have
slightly lower efficiency than their corresponding 2D tests but not by much. This suggests a promising
outcome of a full span of 3D testing when the time comes.
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4.2.8. Repeatability

4.5

5 )
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Power [W]
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Figure 27: Two identical testing runs with the same device performed one month apart for repeatability

statistics.

Even though optimization in low wave states, electronic noise, and other equipment short comings caused

some problems in testing, repeatability of tests was quite good. Fig. 27 indicates that there can be a
relatively high level of trust placed on the results obtained in testing throughout the test period.
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5. Conclusions
From examination of the results presented in Section 4 the following conclusions have been drawn:

e It has been experienced throughout the tests that the control of the loading on the PTO model has
not been as good as intended. This has lead to inaccuracies and sometimes made it hard to
compare across various performed tests, as it sometimes has been hard to establish exact same
loading conditions. Furthermore, due to internal friction in the PTO model the minimal obtainable
loading has not been low enough to identify the optimal loading for the smallest wave states.
However, in spite of these short comings it has been seen that repeatability of performed tests
have been reasonable, max. 15 % deviation, typically far less.

e Through the comparison between tests using fixed and relative references for the PTO it has been
found that the later is by far superior. For the best configuration using fixed reference, an overall
efficiency of 15.8 % has been found, while the corresponding value for the relative reference tests
has been found to 30.2 % (version with no skirts). Please note that these efficiencies does not
include the losses in the PTO, generators etc — it is the efficiency of the conversion of the wave
power into mechanical power available to the PTO.

e During the tests relative reference it has been found that optimal performance was obtained for a
configuration with the two foremost and the two rear floaters interconnected. In this configuration
the peak performance is found at a wave period of roughly 1.5 s (model scale), which corresponds
to a wave length of 2 times the length of two interconnected floaters, where resonance is expected
to occur. In the chosen model scale this wave period roughly corresponds to wave state between 2
and 3. Since these wave states statistically contributes the most to the average available wave
power, this scale has been well chosen, when focusing on obtaining maximum overall efficiency of
the device.

e One of the main features of the Crest Wing concept is the idea of equipping the floaters with skirts
to increase the effective weight of the floaters (the skirts will force a large amount of the water to
move along with the floaters). However, surprisingly it was found that reducing the skirt draft did
not consequently reduce the efficiency, but rather the opposite. To investigate if this effect was
due to the change in weight associated with the cutting off of the skirts, additional tests where
carried out with light weight skirts, minimizing this effect. Again, no clear trend was obvious. It is
concluded that the presence of the skirts have two effects changing the power production in
opposite directions — the skirts will tend to make the floaters follow the waves more closely, which
typically will lead to increased power production, but at the same time the presence of the skirts
obstructs diffraction of the waves along the structure, and hereby the device “misses” some energy
that is available when no or small skirts are present.

e Three different PTO direction setups where tested in the relative reference tests. Two where the
PTO was only active on one direction (tension or compression), and one where it was active in
both. For the two one direction setups no significant difference was seen. However, the
compression setting (also denoted ‘reversed’) was slightly superior, and there used in most of the
performed tests. In the ‘both way’ setting, the loading on the PTO model could not be made small
enough to establish the optimal loading (due to the internal friction), which is expected to near half
of the one for the ‘one way’ settings.
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o Afew tests were performed looking at the effect of having minor inlet/outlet devices attached to
the front and rear of the device. It was found that for the tested configurations with skirts attached
the inlet/outlet devices has a positive effect.

o Afew tests with directional wave spreading were performed, indicating some decrease of the
power production relative to pure 2-D waves. The decrease amounted to roughly 10 % for large
directional spreading.

In summary the Crest Wing functions and is able to produce power with a good overall efficiency. The
configuration with relative reference PTO is superior. It has not been proven that the idea of mounting
skirts on the floaters is leading to a better performance.

Thus, the study leads to the conclusion that the idea of making a simple hinged raft type device is good, and
it is likely that the construction cost for a device of this type can be kept down. However, the study also
leaves the chance that some limited draft of skirts in combination with inlet/outlet devices, could prove
beneficial.

In case of further testing on this device, an effort should be made to design and construct a more easily and
accurately controlled PTO model in the test setup. This could greatly improve the quality of the output of
such tests.
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Appendix A- Regular Testing, Load Optimization- Fixed Ref.

For all tests:

Water Depth =.675 m

Skirt Draft =.4 m

Wave cond Load [kg] Meas. H [m] P_wave [W FresMean [N] FresStDev [N] P [W]

NN NNNDNDNDNNDNDN

R e e w w w w w

v o1 N

2

15

2.5

3.5

4.5

N o o W o b WN

N o o~

0.017

0.046
0.046
0.047
0.045
0.047
0.046
0.046
0.047
0.046
0.046

0.071
0.074
0.074
0.075
0.076

0.104
0.104
0.105
0.109
0.113

0.106
0.106
0.106
0.105

0.3

3.4
3.4
3.5
3.1
3.4
3.4
3.4
3.5
3.4
3.2

9.3
10.3
10.5
10.7
11.3

25.9

26
26.3
25.7
234

27.5
27.6
28.2
29.6

2.102

6.603
6.415
6.673
13.85
6.976
6.705
7.087
7.189
9.543
15.45

8.608
8.367
9.736
20.57
65.46

10.74
10.88
18.51

62.9
178.1

11.64
15.41
52.61
169.8

1.09

3.63
3.67
4.01
13.72
4.16
4.37
4.22
5.02
8.35
15.01

6.42
6.2
7.41
21.36
55.11

6.84
7.21
17.09
58.9
121.3

8.36
14.24
51.8
118.93

0.06

0.36
0.39
0.38
0.27

0.4
0.39
0.38
0.38
0.33

0.3

1.66
1.72
1.95
2.71

2.82

4.08
8.19
2.79

2.94
2.99
6.26
2.07

Eff. [ -]

0.306

0.179
0.196
0.186
0.146
0.197
0.197
0.191
0.184
0.166
0.157

0.3
0.28
0.311
0.422
0.147

0.181
0.192
0.258
0.531
0.198

0.178

0.18
0.369
0.116
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Appendix B- Irregular Sea States Data, Fixed Ref.

For all tests:

Water Depth =.675 m
Skirt Draft =.4 m

Wave cond.

1

w w W w

ol U1 U1 U

Load [kg]
0

U B~ W N

Meas. H [m]
0.018

0.044

0.101
0.102
0.103
0.103

0.137

0.164
0.164
0.165
0.165

P_wave [W]
0.2

1.2

7.6
1.7
1.6
7.8

16.2

25.9

26
26.2
26.3

FresMean [N]
57.46

13.53

14.93
10.15
11.82
19.26

12.17

27.4
48.73
111.7
103.6

FresStDev [N]
9.1

10.72

16.85
6.86
6.91

19.35

7.99

29.55
51.08
97.19
97.13

P [W]

0

0.18

0.82
0.68
0.73
0.94

1.26

2.77
341
3.89
3.27

Eff. [-]

0.268

0.18
0.148
0.158
0.198

0.13

0.178
0.218
0.247
0.207
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Appendix C-Supplemental Testing Data, Fixed Ref.

For all tests:

Water Depth =.675 m
Skirt Draft=.4 m

New Angles on Arm

Regular waves
Wave cond. Load [kg] Meas.H[m] P_wave[W] FresMean[N] FresStDev[N] P [W] Eff.[-]

3 4.5 0.07 9.09 15.79 14.98 1.55 0.285
3 5 0.072 9.09 15.53 14.78 1.53 0.281
3 55 0.072 9.09 32.59 32.76 1.62 0.297
4 5.5 0.108 23.49 51.7 49.02 2.58 0.183
4 6 0.111 24.8 69.07 63.44 4.67 0.313
4 6.5 0.111 25.29 161.48 125.87 245 0.161

Two middle floaters interconnected

Regular waves
Wave cond. Load[kg] Meas.H[m] P_wave [W] FresMean[N] FresStDev [N] P [W] Eff.[-]

3 4.5 0.075 9.95 10.27 5.98 0.77 0.129
3 5 0.077 10.32 32.74 32.22 1.21 0.196
3 5.5 0.076 10.33 59.98 52.44 1.08 0.174
4 5.5 0.109 24.33 58.87 55.57 3.8 0.26
4 6 0.109 24.22 57.35 56.28 4.4 0.303
4 6.5 0.112 26 118.26 107.95 4.22 0.27
5 5.5 0.11 24.785 56.69 58.34 4.53 0.305
5 6 0.108 26.66 56.01 60.28 4.71 0.294

5 6.5 0.107 26.26 139.67 119.83 4.82 0.306



Floaters back to reqular

Reqgular waves, Fixed Height, VariablePeriod

Inp. H [m_Inp. T [s] Load [kg] Meas. H [m]P_wave [W FresMean [N] FresStDev [N] P [W]

0.100
0.100
0.100

0.100
0.100
0.100

0.100
0.100
0.100

0.100
0.100
0.100

0.750
0.750
0.750

1.000
1.000
1.000

1.250
1.250
1.250

1.500
1.500
1.500

5
5.5
6

5.5

5.5

5.5
6

0.094
0.094
0.097

0.093
0.092
0.093

0.103
0.105
0.105

0.0977175
0.09914
0.098865

6.2
6.13
6.55

9.08
8.83
8.94

14.84
15.38
15.35

16.46
16.7
16.72

7.35
5.3
53

13.95
23.66
61.95

12.66
60.65
114.06

17.3
120.7
121.38

4.75
3.04
3.46

13.81
34.9
71.63

13.18
54.86
86.97

13.77
96.8
98.34

0.09
0.06
0.06

0.62
0.32
0.81

1.11
1.13
1.55

1.94
1.73
1.47

Eff. [ -]
0.024
0.018
0.016

0.114
0.061
0.15

0.125
0.122
0.168

0.196

0.173
0.146
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Appendix D- Regular Testing, Load Optimization- Relative Ref.

For all tests:

Water Depth =.675 m

Regular waves, Floaters Not Connected, 40cm Plastic Skirt

Wave cond. Load [kg] Meas. H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

2
2
2

w

4
4.5
5

4
4.5
5

4
4.5
5

4
4.5
5

4
4.5
5

0.059
0.059
0.059

0.102
0.1
0.1

0.137
0.137
0.137

0.14
0.14
0.14

0.133
0.133
0.133

2.5
2.5
2.5

9.3
8.8
8.8

19.6
19.6
19.5

22.3
22.4
22.5

20.5
20.7
20.7

1.38
1.12
1.48

1.96
2
3.12

1.77
2.11
5.4

1.83
2.38
7.68

2.27
4.16
6.27

Regular waves, Both Floaters Connected, 40 cm Plastic Skirt

1.74
2.39
1.99

1.44
1.72
2.03

1.36
1.48
2.51

1.19
1.71
3.00

1.50
2.61
3.55

0.05
0.05
0.03

0.05
0.04
0.05

0.04
0.04
0.08

0.05
0.04
0.11

0.09
0.08
0.14

Wave cond. Load [kg] Meas. H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W]

w w w ww

(SN0, RO N, |

4
4.5
5
5.5
6

5.5

6.5

0.099
0.099

0.1
0.102
0.098

0.137
0.142
0.141
0.142

8.6
8.6
8.9
9.1
8.4

21.1
22.8
22.8
22.9

5.83
7.57
12.07
16.35
20.99

12.49
16.78

25.8
41.42

2.95
4.64
10.84
12.48
16.75

9.64
12.80
19.69
29.55

0.96
1.16
1.51
1.75
1.21

1.22
1.43
1.39
0.88

0.034
0.030
0.020

0.009
0.007
0.010

0.003
0.003
0.007

0.003
0.003
0.008

0.007
0.006
0.011

Eff. [ -]
0.184
0.223
0.280
0.318
0.239

0.096
0.104
0.101
0.064
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Regular waves, Both Floaters Connected- PTO Reversed, 40cm Plastic Skirt

Wave cond. Load [kg] Meas. H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

1
1

w w w w w N N NN

H DD DD

9]

4
4.5

4
4.5

5
5.5

4
4.5
5
5.5
6

4
4.5
5
5.5
6

5.5

5.5

0.032
0.031

0.066
0.067
0.067
0.067

0.099
0.098
0.1
0.099
0.1

0.139
0.14
0.14
0.14
0.14

0.14
0.141
0.142

0.138
0.138
0.137

0.5
0.5

3.1
3.2
3.2
3.2

8.6
8.5
8.8
8.6
8.9

20.1
20.3
20.2
20.3
20.2

22.4
22.7
22.7

22.5
22.6
21.9

Regular waves, Both Floaters Connected- PTO

4.45
5.15

8.29
9.71
11.79
13.8

9.05
12.79
17.01
22.14
34.14

9.85
13.70
20.66
25.74
37.63

19.41
25.91
44.92

17.04
24.52
40.47

3.00
2.69

4.87
6.17
8.43
9.30

5.16
10.86
13.85
17.53
27.10

5.41
8.90
15.19
18.67
27.65

14.29
21.16
31.29

14.21
19.63
31.92

0.13
0.12

0.87
0.78
0.63
0.44

1.38
1.61
1.72
1.27
0.56

1.23
1.53
1.77
1.27
0.62

1.61
1.56
0.88

1.92
2.02
1.64

0.388
0.381

0.469
0.398
0.323
0.227

0.266
0.315
0.326
0.244
0.104

0.102
0.125
0.146
0.104
0.051

0.120
0.114
0.064

0.141
0.149
0.125

Working Both Ways, 40cm Plastic Skirt

Wave cond. Load [kg] Meas. H[m] P_wave [W]

w w w w ww

[S2 IV, IV, Ry

1
2
2.5
3
3.5
4

2.5

3.5

0.1
0.098
0.099
0.097
0.097
0.096

0.139
0.139
0.141
0.139

8.9
8.5
8.7
8.4
8.3
8.2

21.5
21.83
22.7
21.8

F_h Mean [N] F_h StDev [N] P [W] EFff.[-]

25.22
25.15
24.95
25.02
26.19
26.49

30.17
29.73
29.74
29.53

8.17
8.51
8.60
8.80
8.76
9.03

10.39
10.33
11.87
13.96

1.44
1.48
1.47
1.43
1.18
1.05

2.21
2.05
1.62
1.18

0.268
0.288
0.281
0.284
0.234
0.214

0.171
0.156
0.119
0.090
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Regular waves, Both Floaters Connected- PTO Reversed- Additional Devices, 40cm Plastic Skirt
Wave cond. Load [kg] Meas. H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

5 4.5 0.155 26.9 29.86 18.22 2.18 0.135

5 5 0.151 25.4 34.36 20.96 1.63 0.106

Regular Testing, PTO Reversed, Floaters Connected, 00cm Plastic Skirt
Wave cond. Load [kg] Meas. H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

3 4 0.101 9 20.80 9.87 3.25 0.596
3 4.5 0.103 9.2 24.93 14.37 3.11 0.559
3 5 0.102 9.2 29.53 19.44 2.19 0.395
3 5.5 0.103 9.3 30.25 21.89 1.38 0.248
4 4 0.135 18.6 19.29 856 291 0.260
4 4.5 0.135 18.6 24.76 12.43 2.13 0.190
4 5 0.135 18.7 32.11 17.43 2.82 0.250
4 5.5 0.134 18.3 34.75 22.87 1.36 0.123
5 4 0.162 29.7 19.68 889 292 0.163
5 4.5 0.161 29.1 22.37 12.56 3.51 0.201
5 5 0.161 29.4 28.27 17.06 3.80 0.215
5 5.5 0.159 28.2 33.78 23.00 2.40 0.142
6 4 0.177 37 16.49 9.29 3.38 0.152
6 4.5 0.178 37.3 18.65 14.00 3.65 0.163
6 5 0.179 37.6 24.83 17.41 4.37 0.193
6 5.5 0.179 37.5 32.80 24.28 5.76 0.255
6 6 0.18 37.9 43.32 24.83 6.03 0.265
6 6.5 0.179 37.4 53.02 30.66 5.88 0.262
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Appendix E- Irregular Testing Data, Relative Ref.

For all tests:

Water Depth =.675 m

Irregular Testing- PTO Reversed, Floaters Connected, 40cm Plastic Skirt

Wave cond. Load [Kg] Meas. H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

1 3.7
2 4
3 5
4 5
5 5
6 5

0.030 0.45
0.071 3.38
0.107 9.39
0.142 19.62
0.162 28.59
0.186 39.25

4.47
10.72
21.24
28.39
32.93
37.55

3.35
6.91
15.33
20.83
23.34
25.72

Irregular Testing- PTO Reversed, Floaters Connected, 00cm Plastic Skirt

0.07
0.47
1.20
1.69
2.77
3.56

0.256
0.232
0.212
0.144
0.162
0.151

Wave cond. Load [Kg] Meas. H[m]P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

1 4

a b~ WN
o u b~ b s

0.032 0.48
0.074 3.40
0.105 8.50
0.142 17.95
0.171 28.74
0.197 40.45

4.54
11.53
16.53
18.35
27.67
43.22

3.46
7.49
9.51
10.20
18.90
32.73

0.06
0.93
2.27
2.94
3.20
3.83

Irregular Testing- PTO Reversed, Floaters Connected, 10cm Aluminum SKirt

0.219
0.454
0.445
0.273
0.186
0.158

Wave con Load [Kg] Meas. H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

1 4

v b~ WN
(S T~

0.03 0.38
0.07 2.77
0.10 7.30
0.13 14.74
0.16 24.32

6.65
12.11
17.50
20.26
32.12

4.56
10.26
13.51
15.08
25.38

0.09
0.75
1.96
2.58
2.53

0.389
0.451
0.447
0.292
0.173

Irreqular Testing- PTO Reversed, Floaters Connected, 10cm Aluminum Skirt -- 3D Waves (Spreading 40)

Wawe cond. Load [Kg] Meas. H[m] P_wave [W]
0.11 11.35
0.12 11.95

4
4

F_h Mean [N]

F_hStDev[N] P [W]
177
177

Eff. [ -]
0.261
0.247
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Appendix F- Supplemental Testing Data, Relative Ref.

For all tests:

Water Depth =.675 m

Fixed H/Variable T, 40cm Plastic Skirt

Inp. H[m] Inp. T [s] Load [kg] Meas. H [m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

0.100
0.100
0.100
0.100
0.100
0.100

1.000
1.250
1.500
1.750
2.000
2.250

4.5
4.5
4.5
4.5
4.5
4.5

0.145
0.137
0.130
0.137
0.106
0.106

Fixed T/Variable H, 40cm Plastic Skirt

Inp. H[m] Inp. T[s] Load [kg] Meas. H[m]

0.075
0.100
0.125
0.150

1.500
1.500
1.500
1.500

4.5
4.5
4.5
4.5

0.091
0.129
0.161
0.195

10.75
12.93
14.61
18.81
12.59
13.38

P_wave [W]
7.08

14.37

22.00

32.36

5.12
5.01
5.75
4.82
3.94
4.23

F_h Mean [N]
4.09

6.27

7.40

10.78

2.90
3.70
3.57
2.74
2.06
3.21

0.32
0.30
0.21
0.12
0.08
0.10

0.049
0.038
0.024
0.011
0.011
0.012

F_h StDev [N] P [W] Eff.[-]

2.15
4.60
4.55
6.76

0.13
0.26
0.27
0.46

0.031
0.030
0.021
0.024
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Floaters Connected- Fixed H/Variable T- PTO Reversed, 40cm Plastic Skirt

Inp. H[m] Inp. T [s] Load [kg] Meas. H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

0.100
0.100
0.100

0.100
0.100
0.100

0.100
0.100
0.100

0.100
0.100
0.100

0.100
0.100
0.100

0.100
0.100
0.100

Floaters Connected- Fixed T/Variable H- PTO Reversed, 40cm Plastic Skirt

1.000
1.000
1.000

1.250
1.250
1.250

1.500
1.500
1.500

1.750
1.750
1.750

2.000
2.000
2.000

2.250
2.250
2.250

4
4.5
5

4.5

4.5
5
5.5

4.5
5
5.5

4.5
5
5.5

4.5
5
5.5

0.128
0.133
0.138

0.139
0.136
0.133

0.121
0.119
0.118

0.135
0.134
0.136

0.109
0.109
0.109

0.112
0.113
0.112

8.29
8.90
9.69

13.31
12.76
12.25

12.66
12.33
12.02

18.12
18.08
18.59

13.08
13.10
13.07

14.93
15.06
14.75

17.75
19.00
22.20

21.67
22.58
24.52

26.32
28.93
31.45

24.18
27.22
29.67

21.94
23.87
27.13

24.27
27.67
30.96

8.77
10.40
12.93

9.59
13.60
15.84

14.67
18.29
20.92

14.70
17.21
19.69

12.74
14.13
18.39

14.00
17.58
18.63

Inp. H[m] Inp. T[s] Load [kg] Meas. H[m]P_wave [W] F_h Mean [N] F_h StDev [N]

0.050
0.050

0.075
0.075
0.075

0.100
0.100
0.100

0.125
0.125
0.125

0.150
0.150
0.150

1.500
1.500

1.500
1.500
1.500

1.500
1.500
1.500

1.500
1.500
1.500

1.500
1.500
1.500

4
4.5

4.5

4.5

5.5

4.5

5.5

4.5

5.5

0.058
0.058

0.092
0.093
0.093

0.126
0.124
0.125

0.158
0.159
0.159

0.198
0.195
0.191

2.94
2.88

7.36
7.46
7.55

13.75
13.38
13.44

21.41
21.69
21.79

33.52
32.53
31.48

12.91
14.07

18.26
18.65
21.67

25.92
27.90
30.60

31.03
33.50
37.36

32.23
36.72
42.64

5.50
6.57

8.85
11.10
14.38

12.44
17.85
21.32

13.98
17.50
27.31

15.27
20.52
27.02

1.72
1.79
1.10

2.68
1.88
1.54

2.66
1.91
1.43

1.19
1.13
1.08

0.71
0.70
0.43

0.78
0.72
0.56

P[W]
0.46
0.34

1.32
1.25
0.93

2.71
1.82
1.46

4.35
3.93
2.51

5.48
5.83
5.58

0.346
0.335
0.190

0.336
0.246
0.210

0.350
0.259
0.199

0.109
0.104
0.097

0.090
0.089
0.055

0.087
0.079
0.063

Eff.[-]
0.262
0.195

0.299
0.279
0.206

0.328
0.227
0.181

0.339
0.302
0.192

0.272

0.299
0.295
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Floaters Connected- PTO Reversed, 40cm Plastic Skirt

Inp. H[m] Inp. T [s]

0.075 0.75 4 0.076 2.08
0.075 0.875 4 0.095 3.91
0.075 1 4 0.096 4.69

Floaters Connected- PTO Reversed, 20cm Plastic Skirt

11.76 7.82
20.33
18.80 11.48

0.29

1.10

Load [kg] Meas. H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

0.236

13.39 1.44 0.616

0.392

Inp. H[m] Inp. T[s] Load [kg] Meas.H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff. [ -]

0.075 0.75 4 0.094 3.26
0.075 0.875 4 0.096 4.04
0.075 1 4 0.099 5.00
0.100 1.000 4.5 0.137 9.57
0.100 1.250 4.5 0.146 14.81
0.100 1.500 4.5 0.131 14.82
0.100 1.750 4.5 0.148 21.82
0.100 2.000 4.5 0.121 16.17
0.100 2.250 4.5 0.124 17.97

Floaters Connected- PTO Reversed, 10cm Plastic Skirt
Inp. H[m] Inp. T[s] Load[kg] Meas.H[m] P_wave [W]

0.075 0.75 4 0.095 3.25
0.075 0.875 4 0.097 4.04
0.075 1 4 0.103 5.36
0.100 1.000 4.5 0.139 9.76
0.100 1.250 4.5 0.148 15.18
0.100 1.500 4.5 0.133 15.33
0.100 1.750 4.5 0.133 17.51
0.100 2.000 4.5 0.125 17.26
0.100 2.250 4.5 0.132 20.21

Floaters Connected- PTO Reversed, mini Skirt
Inp. H[m] Inp. T[s] Load[kg] Meas.H[m] P_wave [W]

0.075 0.75 4 0.091 3.06
0.075 0.875 4 0.095 3.87
0.075 1 4 0.094 4.45
0.100 1.000 4.5 0.125 7.89
0.100 1.250 4.5 0.141 13.72
0.100 1.500 4.5 0.134 15.44
0.100 1.750 4.5 0.152 22.96
0.100 2.000 4.5 0.120 16.11
0.100 2.250 4.5 0.123 17.78

15.08 10.91
18.57 11.38
18.29 10.43
32.83 21.49
28.46 20.03
35.41 28.21
35.80 27.02
30.65 21.26
34.64 22.07

F_h Mean [N] F_h StDev [N]
11.66 6.23
17.69 11.79
14.21 8.07
19.13 13.71
28.08 23.98
36.37 25.98
35.08 25.11
30.07 21.11
33.09 20.35
F_h Mean [N] F_h StDev [N]
15.06 8.03
17.93 11.78
15.29 10.45
19.41 14.22
28.50 24.53
38.63 28.43
38.40 27.22
30.72 21.30
34.59 21.96

0.38 0.194
0.53 0.218
0.38 0.128
0.93 0.162
1.05 0.118
1.18 0.133
0.91 0.069
0.70 0.072
1.09 0.101
P [W] Eff.[-]
0.35 0.181
0.95 0.391
0.34 0.105
0.62 0.107
1.86 0.204
2.12  0.231
1.02  0.097
0.69 0.067
0.74 0.061
P [W] Eff.[-]
0.22 0.120
0.63 0.273
0.35 0.130
0.70 0.148
1.80 0.219
2.18 0.235
1.12  0.081
0.74 0.077
0.71 0.066
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Floaters Connected- PTO Reversed, 00cm Plastic Skirt

Inp. H[m] Inp. T[s] Load [kg] Meas.H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

0.075
0.075
0.075

0.100
0.100
0.100
0.100
0.100
0.100

0.75
0.875
1

1.000
1.250
1.500
1.750
2.000
2.250

4
4
4

4.5
4.5
4.5
4.5
4.5
4.5

0.097
0.100
0.114

0.143
0.157
0.136
0.136
0.126
0.131

3.37
4.40
6.64

10.26
17.04
15.95
18.47
17.49
20.17

11.48
16.58
14.59

18.97
32.12
38.32
39.23
31.43
33.19

Floaters Connected- PTO Reversed, 30cm Aluminum SKkirt

Inp. H[m] Inp. T [s]

0.08
0.08
0.08

0.10
0.10
0.10
0.10
0.10
0.10

0.75
0.88
1.00

1.00
1.25
1.50
1.75
2.00
2.25

5.94
10.23
8.83

10.67
27.44
21.92
27.71
21.20
18.91

0.24
0.74
0.46

0.47
1.58
4.60
1.56
0.72
1.07

0.117
0.280
0.116

0.077
0.154
0.481
0.140
0.069
0.089

Load [kg] Meas. H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

4.00
4.00
4.00

4.50
4.50
4.50
4.50
4.50
4.50

0.07
0.06
0.06

0.08
0.11
0.09
0.08
0.08
0.09

3.34
3.59
3.98

7.14
15.90
13.82
13.11
15.06
17.23

9.78
12.30
13.58

17.58
23.28
24.52
24.34
19.02
19.95

5.36
6.00
6.55

8.22
13.32
13.47
13.64
10.12
10.90

0.36
0.93
1.32

2.19
4.03
4.61
2.20
0.91
0.84

Floaters Connected- PTO Reversed, 30cm Aluminum Skirt with Inlet/Outlet Devices

Inp. H[mM] Inp. T [s] Load [kg] Meas. H [m] P_wave [W]

0.08
0.08
0.08

0.10
0.10
0.10
0.10
0.10
0.10

0.75
0.88
1.00

1.00
1.25
1.50
1.75
2.00
2.25

4.00
4.00
4.00

4.50
4.50
4.50
4.50
4.50
4.50

0.07
0.06
0.08

0.09
0.11
0.09
0.08
0.08
0.08

3.48
3.67
6.06

7.94
15.16
13.72
13.20
15.51
16.74

0.182
0.434
0.551

0.512
0.423
0.556
0.280
0.101
0.081

F_h Mean [N] F_h StDev[N] P [W] Eff. [ -]

13.42
15.66
17.48

16.56
25.32
26.55
25.89
20.27
20.47

7.53
10.90
10.94

9.81
15.52
15.34
13.67
12.15
11.88

0.00
0.00
0.00

1.69
5.00
5.52
2.36
0.94
0.84

0.000
0.000
0.000

0.356
0.550
0.671
0.298
0.101
0.083
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Floaters Connected- PTO Reversed, 20cm Aluminum Skirt

Inp. H[m] Inp. T [s] Load [kg] Meas. H[m] P_wave [W] F_h Mean [N] F_h StDev [N] P [W] Eff.[-]

0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08

0.10
0.10
0.10
0.10
0.10
0.10

Floaters Connected- PTO Reversed, 10cm Aluminum SKkirt

0.75
0.88
1.00
1.25
1.50
1.75
2.00
2.25

1.00
1.25
1.50
1.75
2.00
2.25

4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00

4.50
4.50
4.50
4.50
4.50
4.50

0.06
0.06
0.06
0.08
0.06
0.05
0.06
0.07

0.08
0.11
0.09
0.08
0.08
0.09

2.71
3.54
3.57
7.98
6.13
5.87
9.01
10.44

6.76
15.61
13.04
12.96
15.46
17.29

10.27
13.20
13.28
19.32
20.75
17.78
14.25
13.85

16.18
24.48
26.53
26.40
20.77
20.86

Inp. H[m] Inp. T[s] Load [kg] Meas. H[m] P_wave [W] F_h Mean [N]

0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08

0.10
0.10
0.10
0.10
0.10
0.10

Floaters Connected- PTO Reversed, 00cm Skirt

0.75
0.88
1.00
1.25
1.50
1.75
2.00
2.25

1.00
1.25
1.50
1.75
2.00
2.25

4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00

4.50
4.50
4.50
4.50
4.50
4.50

0.06
0.07
0.06
0.08
0.06
0.05
0.06
0.07

0.08
0.10
0.08
0.08
0.08
0.09

2.69
4.42
4.02
8.25
6.49
5.76
8.91
10.16

6.79
14.89
12.37
11.87
14.97
17.22

10.35
11.93
11.79
20.28
21.21
19.61
14.64
14.46

14.30
24.52
26.30
25.82
22.93
22.39

Inp. H[m] Inp. T [s] Load [kg] Meas. H[m] P_wave [W] F_h Mean [N]

0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08

0.75
0.88
1.00
1.25
1.50
1.75
2.00
2.25

4.00
4.00
4.00
4.00
4.00
4.00
4.00
4.00

0.06
0.06
0.07
0.08
0.06
0.06
0.06
0.07

2.80
3.65
4.58
7.96
6.93
6.87
8.83
10.29

10.51
11.36
11.81
21.96
21.49
18.78
14.89
15.09

6.12
8.38
7.56
11.63
10.56
10.95
8.79
8.14

9.80
15.10
15.44
15.05
13.25
12.52

0.30
0.90
0.86
2.47
2.19
1.21
0.58
0.53

1.57
3.58
4.23
2.08
0.96
0.87

0.187
0.424
0.402
0.516
0.594
0.345
0.108
0.085

0.387
0.383
0.540
0.268
0.103
0.084

F_hStDev [N] P [W] Eff.[-]

6.44
7.20
7.02
11.92
11.58
14.46
10.15
10.98

9.22
17.12
16.98
16.59
16.32
14.86

0.33
0.74
0.73
2.97
2.91
1.36
0.66
0.58

1.39
4.98
5.02
2.22
1.05
0.94

0.203
0.279
0.301
0.601
0.747
0.393
0.124
0.095

0.341
0.558
0.676
0.311
0.117
0.091

F_h StDev [N] P [W] Eff.[-]

6.80
6.97
8.74
13.34
12.86
10.04
10.17
10.94

0.32
0.71
0.73
3.96
3.16
1.79
0.67
0.65

0.191
0.324
0.265
0.830
0.762
0.434
0.126
0.105
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