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Abstract— Positioning solutions in infrastructure-based wire-
less networks generally operate by exploiting the channel in-
formation of the links between the Wireless Devices and fixed
networking Access Points. The major challenge of such solutions
is the modeling of both the noise properties of the channel
measurements and the user mobility patterns. One class of
typical human being movement patterns is the segment-wise
linear approach, which is studied in this paper. Current tracking
solutions, such as the Constant Velocity model, hardly handle
such segment-wise linear patterns. In this paper we propose a
segment-wise linear model, called the Drifting Points model. The
model results in an increased performance when compared with
traditional solutions.

I. INTRODUCTION

During the last decades, location information has been con-
sidered an interesting and intensively investigated topic of re-
search. Primarily considered as a vital information for vehicle
tracking and military strategies [1], [2], [3], it has nowadays
been introduced in common wireless communication networks
[4], [5], [6]. Typically, radio-localization solutions for wireless
networks rely on robust algorithms that estimate information
of position based on indirect measurements of the physical
length of the communication links. Since these solutions do
not require integration of additional hardware into the mobile
nodes, they are cheap and simple to implement. As a price
to pay, accuracy is typically lower in comparison to dedicated
systems such as the Global Positioning System (GPS).

The general problem of tracking mobile devices can be de-
scribed as the problem of estimating a quantity X , traditionally
a vector of position and its derivatives, based on measurements
of a communication channel dependent vectorial quantity Z.

Ẋ = f
(
X,U,w

)
w ∼ Norm

(
0, Q

)
(1)

Z = h
(
X, v

)
v ∼ Norm

(
0, R

)
(2)

In eq.(1) and eq.(2), the functions f and h are respectively
the evolution and the observation models. The variable U
represents and external excitation of the system, not necessar-
ily known, and w and v represent random noise components
commonly approximated by zero mean Gaussian random
variables with covariance matrices Q and R respectively.

Particular movement models for tracking mobile users can
be either simple as non-maneuvering models [1], [7] or more
complex with multiple models [8], maneuver detections [3]
or variable dimension state estimation [9]. The choice of the

Fig. 1. Infrastructure-base network of wireless Access Points.

positioning method depends on the properties of the target
to be tracked and in particular on the characteristics of U in
eq.(1). Concerning the uncertainty in the model, i.e. the noise
component w, it can be either uncorrelated or correlated noise
[10], [11]. Regarding the user mobility, it is common to model
user position and its derivatives. A typical example is the
Constant Velocity (CV) model [1]. In this paper we propose
a different approach for modeling the user trajectory. We
assume that the user moves according to a segment-wise linear
trajectory (Fig. 1) at constant velocity. The main difference
is in the state space X and subsequent model of eq.(1).
Practically, instead of estimating at every time step the kinetics
of the user, as it is done in the CV model, in this model,
called the Drifting Points (DP) model, we attempt to localize
segments of movement as a whole. To do that we assume the
position derivatives constant and not corrupted by noise along
each entire segment. Subsequently, the current position of the
user has a well defined relation with its position at the time
when the segment has started, i.e. when the last maneuver has
occurred. The noise is instead only assumed in the beginning
of the segment and the current position. Thus, we estimate
both the current position of the user and the position when the
segment started, given the measurements until present time.
The start of new segments is discovered using a maneuver
detector. By comparing the DP model with the standard CV
model [1], we could see a considerable higher performance
for the proposed solution. An advantage of this model is that
it does not increase the computational complexity.

The paper is organized as follows: in Section II, the problem
is formulated and the scenario is defined. Then, in Section
III, the common CV model is presented and in Section IV
the proposed approach is introduced. Finally, performance is
compared in Section V and the final conclusion is drawn in
Section VI.
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Fig. 2. Estimation algorithm using the Constant Velocity model.

II. PROBLEM AND SCENARIO DEFINITION

Consider a wireless network, as the one in Fig 1, composed
of N Access Points (APs) at known geographic positions
{Λn = [an, bn]T : n = 1, . . . , N}, and a single Wireless
Device (WD), in a 2-dimensional scenario. Let the position
and velocity of the WD at time t be denoted by the 2-
dimensional column vectors s(t) ∈ R

2 and ṡ(t) ∈ R
2,

respectively. The velocity vector is assumed to be a piece-
wise constant function of t. The maneuvers U , defined as
jumps experienced in ṡ, are assumed to happen at unknown
times. The result is a segment-wise trajectory defined by the
following differential equation.

Ẋ = f
(
X,U

)
(3)

where X is a vector of positions and velocities, commonly
considered as X = [sT , ṡT ]T . Note that in eq.(3) it is assumed
that the movement is not corrupted by noise, so that the only
uncertainly in the model is when maneuvers U happen.

We assume that the WD is able to respond to commu-
nication requests from only one AP at the time. Let nk ∈
{1, . . . , N} be the index of the AP active at time tk, k =
0, 1, . . .. Without loss of generality, we use the convention
t0 = 0. We assume at time tk the AP index nk is picked at
random and that the APs are equiprobable.

During the WD-AP communication, the AP is able to
obtain measurements of signal strength {Zk} on the incoming
packets. Thus, it is possible to relate {Zk} with the distance
AP-WD, at the instant when the WD moves along the position
sk = s(tk). Note that, since only a single WD-AP link is
available at each time tk, only one measurement is available,
and hence Zk is scalar. Finally, Zk is corrupted by a noise
component vk. We model vk, k = 0, 1, 2, . . . as independent
Gaussian random variables with zero mean and standard
deviation σZ :

Zk = α − 10β log
(
‖sk,Λnk

‖
)

+ vk vk ∼ Norm
(
0, σZ

)
(4)

where α and β are constant propagation parameters (de-
termined through a calibration phase) and ‖sk,Λnk

‖ is the
Euclidean distance between sk and Λnk

.

III. THE STANDARD CONSTANT VELOCITY MODEL

For performance comparison we introduce in this section the
typical solution for the application in Section II: the Constant
Velocity (CV) model (Section III-A) applied in the prediction
phase of an Extended Kalman Filter (Section III-B). The
unknown maneuvers are estimated using a maneuver detector

(Section III-C), which continuously evaluates the innovation
process in order to adapt the system. The uncertainty in the es-
timated position is externally controlled by a noise adaptation
module (Section III-D). Figure 2 shows the algorithm.

A. Constant Velocity Model

Since we are interested to localize devices in a 2 dimen-
sional plane, moving at a constant speed, we can define the
hidden state X as the position s as well as the speed ṡ. Thus,
at time tk:

Xk =
[
sT

k ṡT
k

]T
(5)

The evolution of the system is modeled according to eq.(3).
Although the movement model as defined in eq.(3) considers
no noise in the trajectory, the estimation algorithm has to
assume noise in order to account with some uncertainty on
that models. Thus, disregarding maneuvers (treated in Section
III-C) at this point:

Ẋ = f
(
X

)
+ w (6)

Given X0 = X(t0), determining the first moment of the
differential equation of eq.(6) with state space given by eq.(5),
the evolution model can be calculated as:

Xk = AkXk−1, Ak =
[
I2 TkI2

0 I2

]
(7)

where Tk = tk − tk−1 and I2 is the 2 × 2 identity matrix.
Concerning the process noise, it is considered as uniquely

introduced in the acceleration. Calculating the second moment
of eq.(6), it is possible to obtain the covariance matrix:

Qk = δkTkσ2
s̈

[
T 2

k /3I2 Tk/2I2

Tk/2I2 I2

]
(8)

where δk is an adaptation parameters defined in Section III-
D. Additionally, in eq.(8), the parameter σs̈ corresponds to
the standard deviation of the zero mean gaussian noise in any
of the acceleration coordinates. Finally, the observation model
is given by eq.(4). Note here that since Zk is a single entry
vector, the covariance matrix R equals the variance of the
measurements σ2

Z .

B. Extended Kalman Filter

The EKF is an extension of the optimal Kalman filter that
approximates nonlinear models by their Taylor series expan-
sion. In particular for the presented scenario, the observation
model of eq.(4) is the subject of this linearization. The filter
presents a recursive sequence of consecutive predictions and
corrections. The prediction is based on the evolution model
and the correction is based on the observation model. We refer
to [12] for the details and the mathematical formulation.

C. The Maneuver Detector

As mentioned in [3], a possible maneuver detection scheme
for the present tracking problem is the so called White Noise
Model with Adjustable Level. The detection of a maneuver
is verified when a sequence of “large” innovations happen,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.
978-1-4244-2324-8/08/$25.00 © 2008 IEEE.



what can be discovered by using the normalized innovations
squared:

εk = Z̃T
k S−1

k Z̃k (9)

where Z̃k = Zk − h(Xk, 0) is the innovation process and Sk

its covariance matrix. The maneuver detector then considers
an exponential discounted average with forgetting factor γ:

εγ
k = γεγ

k−1 + εk, 0 < γ < 1, εγ
0 = 0 (10)

where εγ
k is, by first moment approximation, chi-squared dis-

tributed with l/(1−γ) degrees of freedom (l is the dimension
of the observation vector Z). For additional details see [3].

When a maneuver is detected, i.e., εγ
k has exceeded a

predefined threshold Γ, the level of process noise is mo-
mentarily increased (to δhigh as mentioned in Section III-
D). Inversely, when εγ

k gets below the threshold Γ, the noise
adaptation schemes in Section III-D starts operating. Although
this scheme of adapting the system is commonly accepted
as standard, we have decided to introduce an additional
quarantine period once a maneuver is detected. The quarantine
block disables the maneuver detector right after one detection
and reactivates it once the system regains observability.

D. Noise Adaptation

The noise adaptation method used in the current system
defines an upper bound threshold δhigh, a lower bound thresh-
old δlow and a decay parameter 0 < ς < 1. The value δhigh

represents the maximum value of δk used in eq.(8), the value
δlow is the lowest value allowed for δk and ς dictates how fast
δk decays from δhigh to δlow along time. Thus:

δk = max
(
δlow, ςδk−1

)
where δ0 = δhigh (11)

In order to obtain the process noise Qk, the value of eq.(11)
has to be included in eq.(8). In eq.(11), the initial threshold
identifies the initial value for the process noise. Then, at every
time step, by using eq.(11), the noise is gradually reduced
according to the decay parameter ς . Once the process noise
reaches the threshold σlow, it keeps that value for the rest of
the estimation procedure. Additionally, everytime a maneuver
is detected by the module in Section III-C, the value δk is
reset to δhigh.

IV. A NOVEL APPROACH ON THE MOTION MODEL

In this section we introduce a new model which complies
with the main idea of estimating a segment-wise linear tra-
jectory. The algorithm, shown in Fig. 3, differs from the CV
algorithm shown in Fig. 2 on the DP model (Section IV-A)
and the “Transformation Model” (Section IV-B). Regarding the
remaining blocks in Fig. 3, the Filter, the Noise Adaptation
and the Maneuver Detector are exactly the same as those used
in Sec. III. Note that though the filter is the same for both CV
and DP model, the state space and the external adaptation of
the filter are different.

Extended
Kalman Filter

Quarantine
Maneuver
Detector

Transform.
Model

delay

{Xk, Pk}{Xk-1, Pk-1}

(ti,xi,yi)Noise
Adpatation

{Qh}

{Qk}

DP model

Fig. 3. Estimation algorithm using the Drifting Points model.

A. Drifting Points Model

Before starting to define the model we introduce the defi-
nition of Drifting Point: a Drifting Point (DP) is the position
where the target was placed at the precise moment when a
maneuver occurs. The process noise w between maneuvers
is assumed to be zero. For this paper, we assume that the
maneuvers occur only at a subset of the observation times
tj , j = 0, 1, ..., and the very first observation at t0 is assumed
to be a maneuver point.

The main idea of the following model is to estimate both the
position sk at time tk and the position si|k of the previous DP
detected at time ti (i < k), given measurements until time tk.
In order to not complicate the presentation with technicalities,
the following explanation of the approach is referring to the
very first segment starting at t0 = 0.

As the velocity vector is constant and not corrupted by noise
in between maneuvers, it is possible to relate this velocity with
the current position at time tk and the initial position at time
t0 by: [

sk

ṡ

]
= Ξk

[
sk

s0|k

]
, Ξk =

[
I2 0
1
tk

I2 − 1
tk

I2

]
(12)

By applying eq.(12) in eq.(7), it is possible to obtain a state
space that models at time k, the position of the previous DP
and the current position of the target at time k.[

sk+1

s0|k+1

]
= Φk+1

[
sk

s0|k

]
, Φk+1 = Ξ−1

k+1Ak+1Ξk (13)

Thus, one can see that for the DP model the state space is
now defined as:

Xk =
[
sT

k sT
0|k

]T

(14)

while the transition matrix is given by:

Φk =
[
φkI2 (1 − φk)I2

0 I2

]
, φk =

tk
tk−1

(15)

Note that if the last DP has occurred at time ti with ti < tk−1,
the quantity φk shall be replaced by φk = (tk−ti)/(tk−1−ti)
and s0|k defined as si|k.

Concerning the covariance of the uncertainty in the move-
ment we simply define a diagonal matrix with an exponential
decay factor.

Qk = δkTkσ2
sI4 (16)

where, δk, similarly to the CV model, is obtained from Section
III-D.
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B. Transformation of Movement Moments

Similarly to the CV model, in the present case, the filtering
method is an EKF. Based on DP model just presented in
Section IV-A, we can see that the state space is composed
by the previous DP and the location of the target at time
k. For this reason, when a change of direction (maneuver)
happens, a new DP is created and thus the state space has to be
manipulated. Additionally, the covariance matrix P has to be
redesigned as well. As we can see in Fig. 3, this manipulation
is made in the block “Transformation Model”. Assuming that
at time ti = tk, a maneuver is detected, a new DP is added to
the system and the estimated moments are changed such that:

Xk =
[

0 0
I2 0

]
Xk−1 +

[
I2 0
0 0

]
Xk (17)

Pk =
[

0 0
I2 0

]
Pk−1

[
0 I2

0 0

]
+

[
I2 0
0 0

]
(18)

Regarding the uncertainty in the user mobility, the transfor-
mation is:

Qk =
[

0 0
I2 0

]
Qk−1

[
0 I2

0 0

]
+

[
δhighTkσ2

sI2 0
0 0

]
(19)

When a maneuver is detected, the knowledge of the second
moment (i.e. covariance) of the current position is erased. This
is because at time ti when the maneuver is detected, we do
not know the direction chosen by the target.

It is important to mention here that the final trajectory
estimation will be given by si|l (i < l), where si|l is the
drifting point estimated at time ti, given the time until the
subsequent drifting point at time tl. To determine the position
of the target at different times than ti, it is only necessary to
interpolate the several estimated drifting points. This means
that the trajectory is uniquely defined by the points where
maneuvers were estimated.

V. PERFORMANCE COMPARISON

For performance comparison we have developed a simula-
tion framework in MATLAB, in which the estimated target
trajectories of the DP model and CV model were compared
in terms of Root Mean Square Error (RMSE).

A. The Simulation Framework

The simulation framework was designed according to the
structure shown in Fig. 4. The generation block is responsible
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Fig. 5. Example of a maneuvering trajectory estimation for a single run.

for generating the measurements Zk at deterministic frequency
fm ≡ 1/Tk according to the previously defined models.
Additionally, it is responsible for determining the real position
of the target at the times {tk} equivalent to the timestamps
of the measurements. Though the maneuvers U are set de-
terministically in the generation block, they are not known at
the estimation block. The estimation block is responsible for
running the EKF coupled with the maneuver detector and one
of the movement models (CV or DP). The APs were placed in
a grid with edges length of 10 m. The remaining parameters
used in the generation block are stated in Table I and the
ones used in the estimation block are stated in Table II. For
trajectory estimation, the parameters α, β and σZ are assumed
known. In practice these values could be determined in a pre-
calibration phase.

B. Accuracy Results

For comparing both models we have started by considering
a straight trajectory as the simplest case. The measurements
were simulated according to the simulation framework previ-
ously presented. We have first compared the estimation result
for a single run of the two models, in order to have practical
insight regarding the behavior of each model. We saw that the
DP model clearly outperformed the CV model. For evaluating
a more complex trajectory with actual maneuvers, we have
defined a second trajectory, named cross trajectory. For a single

TABLE I

GENERATION STEP PARAMETERS FOR THE SIMULATION FRAMEWORK

α β σZ fm s0 ‖ṡ0‖
–50 dBm 2.5 6 dBm 15 Hz See Fig. 5 1.4 m/s

TABLE II

PARAMETERS FOR THE ESTIMATION ALGORITHMS. THE SETTINGS OF α, β

AND σZ ARE THE SAME AS IN TABLE I

σs σs̈ δhigh δlow ς Γ γ

12 m 5 m/s2 1 0 0.95 95 % 0.9
EKF/DP EKF/CV Noise Adaptation Maneuver
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Fig. 6. Empirical CDF of the RMSE of both models (left) and the gain
of the DP versus the CV model (right). The results regard 1000 runs of the
estimation algorithms performed for the cross trajectory depicted in Fig. 5.

run, the results are shown in Fig. 5. We can see that the
trajectory estimated using the DP model is considerably less
noisier and it shows a smaller error than the one produced by
the CV model. Additionally, in Fig. 5 we can also see that,
while the initial guess in the CV model has a clear impact in
the final trajectory estimation, for the DP model, that influence
is dramatically reduced.

After analyzing performance for a single run, 1000 different
runs of the same simulation were executed in order to evaluate
the statistical behavior of the RMSE metric. The RMSE metric
is calculated upon the timewise pair of real and estimated
position of the user. After plotting the empirical CDF of the
RMSE in Fig. 6 (left) we have confirmed that for the tested
scenarios, the performance is considerably higher for the DP
model than for the CV model. In Fig. 6 (left), results for an
Extended Kalman Smoother (EKS) are also presented as a
comparison case where tracking is performed in an offline
manner and all data is used for estimating each point of the
trajectory. A great advantage of the DP model with EKF upon
the CV model with the EKS is that computational complexity
is considerably lower, i.e. linear in contrast to quadratic.

To study the influence of the threshold level, we plot the
threshold level vs. the gain of the DP model with respect to the
CV model. The gain is calculated as (zdp

h − zcv
h )/zcv

h , where
zdp
h (zcv

h ) is the inverse of the empirical RMSE cumulative
density function at h% for the DP (the CV) model. As we can
see in Fig. 6 (right), the DP model outperforms the CV model
for several different threshold levels. We can see that there is
a trend for lower gains, the higher the maneuver threshold is.
This is because maneuvers do exist, so when the threshold
is increased above a certain level, the number of detected
maneuvers decreases and from some threshold value onwards,
a single segment results from the estimation. On the other
hand, for the straight trajectory, we have seen an inverse trend.

To understand performance beyond segment-wise linear
trajectories, the two models were applied to a circle and
a zigzag trajectory. The results have shown that the DP
model outperformed the CV model. In this case, curves were
estimated as sequences of linear segments.

VI. CONCLUSION

Regarding wireless positioning, this paper has studied
segment-wise linear patterns to model user mobility. Since cur-
rent positioning/tracking solutions hardly handle this segment-

wise linear approach, we have introduced the Drifting Points
model. The proposed Drifting Points solution, based on a
Bayesian filter and a maneuver detector, assumes that the
user moves in a segment-wise linear fashion and that noise
is only existent in the positions where maneuvers occur.
Contrarily to traditional solution, which estimate the user
kinetics at each time step, the DP model estimates segments
of movement as a whole. The solution presents an increased
performance of about 20% or 30% according to the RMSE
metric. Additionally, the computational complexity of the DP
model equals the one of the CV model, however, it cannot
be used in real-time estimation since the final estimation of
the DP model is based on all observations in a segment.
One drawback is that the model requires a transformation
of the state space and covariance matrix, what provokes a
discontinuity in the propagation of the measurement history
when maneuvers are detected.
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