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We present a general method for including prior knowledge in a nonnegative matrix factorization (NMF), based on Gaussian
process priors. We assume that the nonnegative factors in the NMF are linked by a strictly increasing function to an underlying
Gaussian process specified by its covariance function. This allows us to find NMF decompositions that agree with our prior
knowledge of the distribution of the factors, such as sparseness, smoothness, and symmetries. The method is demonstrated with

an example from chemical shift brain imaging.
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1. Introduction

Nonnegative matrix factorization (NMF) [1, 2] is a recent
method for factorizing a matrix as the product of two matri-
ces, in which all elements are nonnegative. NMF has found
widespread application in many different areas including
pattern recognition [3], clustering [4], dimensionality reduc-
tion [5], and spectral analysis [6, 7]. Many physical signals,
such as pixel intensities, amplitude spectra, and occurrence
counts, are naturally represented by nonnegative numbers.
In the analysis of mixtures of such data, nonnegativity
of the individual components is a reasonable constraint.
Recently, a very simple algorithm [8] for computing the NMF
was introduced. This has initiated much research aimed at
developing more robust and efficient algorithms.

Efforts have been made to enhance the quality of the
NMF by adding further constraints to the decomposition,
such as sparsity [9], spatial localization [10, 11], and smooth-
ness [11, 12], or by extending the model to be convolutive
[13, 14]. Many extended NMF methods are derived by
adding appropriate constraints and penalty terms to a cost
function. Alternatively, NMF methods can be derived in a
probabilistic setting, based on the distribution of the data
[6, 15-17]. These approaches have the advantage that the
underlying assumptions in the model are made explicit.

In this paper, we present a general method for using
prior knowledge to improve the quality of the solutions
in NME The method is derived in a probabilistic setting,
and it is based on defining prior probability distributions
of the factors in the NMF model in a Gaussian process
framework. We assume that the nonnegative factors in the
NMF are linked by a strictly increasing function to an
underlying Gaussian process, specified by its covariance
function. By specifying the covariance of the underlying
process, we can compute NMF decompositions that agree
with our prior knowledge of the factors, such as sparseness,
smoothness, and symmetries. We refer to the proposed
method as nonnegative matrix factorization with Gaussian
process priors, or GPP-NMEF for short.

2. NMF with Gaussian Process Priors

In the following, we derive a method for including prior
information in an NMF decomposition by assuming Gaus-
sian process priors (for a general introduction to Gaussian
processes, see, e.g., Rasmussen and Williams [18].) In our
approach, the Gaussian process priors are linked to the
nonnegative factors in the NMF by a suitable link function.
To setup the notation, we start by deriving the standard NMF
method as a maximum likelihood (ML) estimator and then
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move on to the maximum a posteriori (MAP) estimator.
Then, we discuss Gaussian process priors and introduce a
change of variable that gives better optimization properties.
Finally, we discuss the selection of the link function.

2.1. Maximum Likelihood NMF
The NMF problem can be stated as
X =DH+N, (1)

where X € RXX! is a data matrix that is factorized as the
product of two element-wise nonnegative matrices, D €
REM and H € RM*L, where R, denotes the nonnegative
reals. The matrix N € RX*Z is the residual noise.

There exists a number of different algorithms [8, 15-17,
19-21] for computing this factorization, some of which can
be viewed as maximum likelihood methods under certain
assumptions about the distribution of the data. For example,
least squares NMF corresponds to i.i.d. Gaussian noise [17],
and Kullback-Leibler NMF corresponds to a Poisson process
[6].

The ML estimate of D and H is given by

{Dmr, Hur} = argminLx p,a (D, H), (2)
D,H=0

where Lxpu(D,H) is the negative log likelihood of the
factors.

Example 1 (least squares NMF). An example of a maximum
likelihood NMF is the least squares estimate. If the noise is
1.1.d. Gaussian with variance 01%7, the likelihood of the factors
D and H can be written as

— 2
Pepu(XIDH) = — L exp ( _ HXlgHHF)
’ (mO'N) ZUN

3)

The negative log likelihood, which serves as a cost function
for optimization, is then

1
L5 p (D, H) o 252 1X - DH||}, (4)
OoN

where we use the proportionality symbol to denote equality
subject to an additive constant. To compute a maximum
likelihood estimate of D and H, the gradient of the negative
log likelihood is useful:

1
VuLypy(D,H) = G—ZDT(DH -X), (5)
N

and the gradient with respect to D, which is easy to derive, is
similar because of the symmetry of the NMF problem.

The ML estimate can be computed by multiplicative
update rules based on the gradient [8], projected gradient
descent [19], alternating least squares [20], Newton-type
methods [21], or any other appropriate constrained opti-
mization method.
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2.2. Maximum a Posteriori NMF

In this paper, we propose a method to build prior knowledge
into the solution of the NMF problem. We choose a prior
distribution pp (D, H) over the factors in the model, that
captures our prior beliefs and uncertainties of the solution
we seek. We then compute the maximum a posteriori (MAP)
estimate of the factors. Using Bayes’ rule, the posterior is
given by

pxip,a(X | D,H)pp x (D, H)
px(X) .

pouix(D,H | X) = (6)
Since the numerator is constant, the negative log posterior is
the sum of a likelihood term that penalizes model misfit, and
a prior term that penalizes solutions that are unlikely under
the prior:

Lpax(D,H) < Lxpu(D,H)+Lpy(D,H). (7)
The MAP estimate of D and H is

{Dmap, Huar} = argminLp px (D, H), (8)
D,H>=0

and it can again be computed using any appropriate opti-
mization algorithm.

Example 2 (nonnegative sparse coding). An example of a
MAP NMF is nonnegative sparse coding (NNSC) [9, 22],
where the prior on H is i.i.d. exponential, and the prior on
D is flat with each column constrained to have unit norm

pEYEC(D,H) = [ [Aexp (- AHy ), D[ =1 VK,
hj

(9)

where ||Dg]] is the Euclidean norm of the kth column of D.
This corresponds to the following penalty term in the cost
function:

LD, H) o< A> H; . (10)
ij

The gradient of the negative log prior with respect to H is
then

and the gradient with respect to D is zero, with the further
normalization constraint given in (9).

2.3. Gaussian Process Priors

In the following, we derive the MAP estimate under the
assumption that the nonnegative matrices D and H are inde-
pendently determined by a Gaussian process [18] connected
by alink function. The Gaussian process framework provides
a principled and practical approach to the specification of
the prior probability distribution of the factors in the NMF
model. The prior is specified in terms of two functions:
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FIGURE 1: Toy example data matrix (upper left), underlying noise-free nonnegative data (upper right), and estimates using the four methods
described in the text. The data has a fairly large amount of noise, and the underlying nonnegative factors are smooth in both directions. The
LS-NMF and CNMF decompositions are nonsmooth since these methods are not model of correlations in the factors. The GPP-NME, which
uses a smooth prior, finds a smooth solution. When using the correct prior, the soulution is very close to the true underlying data.

(i) a covariance function that describes corellations in the
factors and (ii) a link function, that transforms the Gaussian
process prior into a desired distribution over the nonnegative
reals.

We assume that D and H are independent, so that we may
write

Lpa(D,H) = Lp(D) + Ly (H). (12)

In the following, we consider only the prior for H, since the
treatment of D is equivalent due to the symmetry of the NMF
problem. We assume that there is an underlying variable
vector, h € R which is zero-mean multivariate Gaussian
with covariance matrix Xj:

—(1/2)NL

pr(h) = (272417 exp ( - %hTE;Ih), (13)

and linked to H via a link function, f;: Ry — R as

h = f;(vec (H)), (14)

which operates element-wise on its input. The vec(-)
function in the expression stacks its matrix operand column
by column. The link function should be strictly increasing,
which ensures that the inverse exists. Later, we will further
assume that the derivatives of fj, and f, ! exist. Under these

assumptions, the prior over H is given by (using the change
of variables theorem)

pu(H)
= pr(fi(vec (H))) | 4 (fu(vec (H))) |

oc exp (— %fh(vec (H))Tzh_lfh(vec (H)))H|f;{(vec H) |,
(15)

where g(-) denotes the Jacobian determinant and f, is the
derivative of the link function. The negative log prior is then

Ly (H)
o 2 filvec ()55 flvec (H)) — X log| f; (vec ()|,

(16)

This expression can be combined with an appropriate like-
lihood function, such as the least-squares likelihood in (4)
and can be optimized to yield the MAP solution; however,
in our experiments, we found that a more simple and robust
algorithm can be obtained by making a change of variable as
explained next.

2.4. Change of Optimization Variable

Instead of optimizing over the nonnegative factors D and H,
we introduce the variables 8 and #, which are related to D



Columns of D

<

5 4

oo

g

>

32 ‘

ks \ VAR .

54 \»—\\ N 7 AN
0 = — -

20 40 60 80 100

4

[

=

z

w

—

CNMF

20 40 60 80 100

GPP-NMF:
incorrect prior

20 40 60 80 100

GPP-NME:
correct prior

(a)

Computational Intelligence and Neuroscience

Rows of H

Underlying data

LS-NMF

CNMF

GPP-NMF:
incorrect prior

GPP-NMEF:
correct prior

FiGure 2: Underlying nonnegative factors in the toy example: columns of D (left) and rows of H (right). The factors found by the LS-NMF
and the CNMF algorithms are noisy, whereas the factors found by the GPP-NMF method are smooth. When using the correct prior, the

factors found are very similar to the true factors.

and H by

D = gu(8) = vec " (f;'(C]0)),

(17)
H = gi(n) = vec ™ (£, 1 (Cym)),
where the vec ~!(-) function maps its vector input into a
matrix of appropriate size. The matrices C; and C; are
the matrix square roots (Cholesky decompositions) of the
covariance matrices X4 and Xy, such that § and # are standard
i.i.d. Gaussian.

This change of variable serves two purposes. First of all,
we found that optimizing over the transformed variables
was faster, more robust, and less prone to getting stuck in
local minima. Second, the transformed variables are not
constrained to be nonnegative, which allows us to use ex-
isting unconstrained optimization methods to compute their
MAP estimate.

The prior distribution of the transformed variable # is
Pa(n) = pir (@) | 9 (@) | = —— 757 exp ( - lrfn>,
(2m)™ 2
(18)

and the negative log prior is

Ly(n) o< %M- (19)

To compute the MAP estimate of the transformed variables,
we must combine this expression for the prior (and a similar
expression for the prior of §) with a likelihood function, in
which the same change of variable is made

1 1
£5,q|x(8, 11) = £X|D,H(gd(8)>gh(’1)) + EST‘S + EWT”-
(20)
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Then, the MAP solution can be found by optimizing over &
and 5 as

{8Mmap; fyap} = argmindls ,x (0, 7), (21)
o1

and, finally, estimates of D and H can be computed using
(17).

Example 3 (least squares nonnegative matrix factorization
with Gaussian process priors (GPP-NMF)). If we use the
least squares likelihood in (4), the posterior distribution in
(20) is given by

~(on?]1X = ga(®)gu(m)||3 + 878 + 17 7).
(22)

Igsng(PP(a ’1)

The MAP estimate of § and # is found by minimizing this
expression, for which the derivative is useful

ISS”&PP((S ’1)
= oy’ (vec (g4(8)" (ga(®)gn) —X)) ©

(i) (Crm)) " Cu+a,
(23)

where © denotes the Hadamard (element-wise) product. The
derivative with respect to § is similar due to the symmetry of
the NMF problem.

2.5. Link Function

Any strictly increasing link function that maps the non-
negative reals to the real line can be used in the proposed
framework; however, in order to have a better probabilistic
interpretation of the prior distribution, we propose a simple
principle for choosing the link function. We choose the link
function such that £, ! maps the marginal distribution of the
elements of the underlying Gaussian process vector h into
a specifically chosen marginal distribution of the elements
of H. Such an inverse function can be found as f, '(h;) =
Py'(Py(h;)), where P(-) denotes the marginal cumulative
distribution functions (CDFs).

Since the marginals of a Gaussian process are Gaussian,
Py (h;) is the Gaussian (CDF), and, using (13), the inverse link
function is given by

St (hy) = P! <1 1@(}"01)) (24)

where o7 is the ith diagonal element of £; and ®@(-) is the
error function.

Example 4 (exponential-to-Gaussian link function). If we
choose to have exponential marginals in H, as in NNSC
described in Example 2, we select Py as the exponential CDF.
The inverse link function is then

_ 1 1 1 h;
fhl(hi):_A108<2_2®<\/§0i>)3 (25)

where A is an inverse scale parameter. The derivative of the
inverse link function, which is needed for the parameter
estimation, is given by

(i) (hy) = r 5] exp (Afh (h;) - 212;2)- (26)

i

Example 5 (rectified-Gaussian-to-Gaussian link function).
Another interesting nonnegative distribution is the rectified

Gaussian given by
22
— 55 | = 0)
p(x) =4 ~/27s xp ( 252) x (27)

0, x < 0.

Using this pdf in (24), the inverse link function is

St () = V250! ( + q)(fha,))’ (28)

and the derivative of the inverse link function is

G ) = 5 e (B )

i

(29)

2.6. Summary of the GPP-NMF Method

The GPP-NMF method can be summarized in the following
steps.

(i) Choose a suitable negative log-likelihood function
Lxp,a(D, H) based on knowledge of the distribution
of the data or the residual.

(ii) For each of the nonnegative factors D and H, choose
suitable link and covariance functions according to
your prior beliefs. If necessary, draw samples from the
prior distribution to examine its properties.

(iii) Compute the MAP estimate of § and # by (21) using
any suitable unconstrained optimization algorithm.

(iv) Compute D and H using (17).

Our Matlab implemention of the GPP-NMF method is
available online [23].

3. Experimental Results

We will demonstrate the proposed method on two examples,
first a toy example, and second an example taken from the
chemical shift brain imaging literature.

In our experiments, we use the least squares GPP-NMF
described in Example 3 and the link functions described in
Examples 4-5. The specific optimization method used to
compute the GPP-NMF MAP estimate is not the topic of this
paper, and any unconstrained optimization algorithm could
in principle be used. In our experiments, we used a simple
gradient descent with line search to perform a total of 1000
alternating updates of & and #, after which the algorithm
had converged. For details of the implementation, see the
accompanying Matlab code [23].



3.1. Toy Example

We generated a 100 X 200 data matrix, Y, by taking a random
sample from the GPP-NMF model with two factors. We
chose the generating covariance function for both & and %
as a Gaussian radial basis function (RBF)

. N2
8, j) = exp ( -G 5 ) ) (30)
where i and j are two sample indices, and the length-scale
parameter, which determines the smoothness of the factors,
was 32 = 100. We set the covariance between the two factors
to zero, such that the factors were uncorrelated. For the
matrix D, we used the rectified-Gaussian-to-Gaussian link
function with s = 1; and for H, we used the exponential-
to-Gaussian link function with A = 1. Finally, we added
independent Gaussian noise with variance o = 25, which
resulted in a signal-to-noise ratio of approximately —7 dB.
The generated data matrix is shown in Figure 1.

We then decomposed the generated data matrix using the
following four different methods:

(i) LS-NMF: standard least squares NMF [8]. This algo-
rithm does not allow negative data points, so these
were set to zero in the experiment.

(ii) CNMF: constrained NMF [6, 7], which is a least
squares NMF algorithm that allows negative observa-
tions.

(iii) GPP-NMF: correct prior: the proposed method with
correct link functions, covariance matrix, and param-
eter values.

(iv) GPP-NMF: incorrect prior: to illustrate the sensitivity
of the method to prior assumptions, we evaluated the
proposed method with incorrect prior assumptions:
we switched the link functions, such that for D we
used the exponential-to-Gaussian, and for H we used
the rectified-Gaussian-to-Gaussian. We used an RBF
covariance function with 2 = 10 and 2 = 1000 for D
and H, respectively.

The results of the decompositions are shown as recon-
structed data matrices in Figure 1. All four methods find
solutions that visually appear to fit the underlying data. Both
LS-NMF and CNMF find nonsmooth solutions, whereas
the two GPP-NMF results are smooth in accordance with
the priors. In the GPP-NMF with incorrect prior, the dark
areas (high-pixel intensities) appear too wide in the first axis
direction and too narrow in the section axis direction, due
to the incorrect setting of the covariance function. The GPP-
NMF with correct prior is visually almost equal to the true
underlying data.

Plots of the estimated factors are show in Figure 2. The
factors estimated by the LS-NMF and the CNMF methods
appear noisy and are nonsmooth, whereas the factors esti-
mated by the GPP-NMF are smooth. The factors estimated
by the LS-NMF method have a positive bias, because of the
truncation of negative data. The GPP-NMF with incorrect
prior has too many local extrema in the D factor and too few
in the H factor due to the incorrect covariance functions.

Computational Intelligence and Neuroscience

6 -
5 - — —
4 -
m
=
2 3
2 -
0 . [l WEc-
Noisy data Noise free data ~ Underlying factors
Bl NMF [ GPP-NMF: incorrect prior
[ CNMF [ GPP-NMF: correct prior

Figure 3: Toy example: root mean squared error (RMSE) with
respect to the noisy data, the underlying noise-free data, and
the true underlying nonnegative factors. The CNMF solution fits
the noisy data slightly better, but the GPP-NMF solution fits the
underlying data much better.

There are only minor difference between the result of the
GPP-NMEF with the correct prior and the underlying factors.

Measures of root mean squared error (RMSE) of the four
decompositions are given in Figure 3. All four methods fit the
noisy data almost equally well. (Note that, due to the additive
noise with variance 25, a perfect fit to the underlying factors
would result in an RMSE of 5 with respect to the noisy data.)
The LS-NMF fits the data worst due to the truncation of
negative data points, and the CNMF fits the data best, due
to overfitting. With respect to the noise-free data and the
underlying factors, the RMSE is worst for the LS-NMF and
best for the GPP-NMF with correct prior. The GPP-NMF
with incorrect prior is better than both LS-NMF and CNMF
in this case. This shows that in this situation it is better to
use a prior which is not perfectly correct, compared to using
no prior as in the LS-NMF and CNMF methods, (which
corresponds to a flat prior over the nonnegative reals and no
correlations).

3.2. Chemical Shift Brain Imaging Example

Next, we demonstrate the GPP-NMF method on 'H decou-
pled *'P chemical shift imaging data of the human brain. We
use the data set from Ochs et al. [24], which has also been
analyzed by Sajda et al. [6, 7]. The data set, which is shown
in Figure 4, consists of 512 spectra measured on an 8 X 8 X 8
grid in the brain.

Ochs et al. [24] use PCA to determine that the data set
is adequately described by two sources (which correspond to
brain and muscle tissue). They propose a bilinear Bayesian
approach, in which they use a smooth prior over the
constituent spectra, and force to zero the amplitude of the
spectral shape corresponding to muscle tissue at 12 positions
deep inside the head. Their approach produces physically
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FIGURE 4: Brain imaging data matrix (top) along with the estimated decomposition and residual for the CNMF (middle) and GPP-NMF
(bottom) methods. In this view, the results of the two decompositions are very similar, the data appears to be modeled equally well and the

residuals are similar in magnitude.
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FIGURE 5: Brain imaging data: random draw from the prior distribution with the parameters set as described in the text. The prior
distribution of the constituent spectra (left) is exponential and smooth, and the spatial distribution (right) in the brain is exponential,

smooth, and has a left-to-right symmetry.

plausible results, but it is computationally very expensive and
takes several hours to compute.

Sajda et al. [6, 7] propose an NMF approach that is
reported also to produce physically plausible results. Their
method is several orders of magnitude faster, taking less than
a second to compute. The disadvantage of the method of
Sajda et al. compared to the Bayesian approach of Ochs et al.

is that it provides no mechanism for using prior knowledge
to improve the solution.

The GPP-NMF approach we propose in this paper
bridges the gap between the two previous approaches, in
the sense that it is a relatively fast NMF approach, in which
priors over the factors can be specified. These priors are
specified by the choice of the link and covariance functions.
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Figure 6: CNMF decomposition result. The recovered spectra are physically plausible, and the spatial distribution in the brain for the muscle
(top) and brain (bottom) tissue is somewhat separated. Muscle tissue is primarily found near the edge of the skull, whereas brain tissue is
primarily found at the inside of the head.
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FIGURE 7: GPP-NMF decomposition result. The recovered spectra are very similar to the spectra found by the CNMF method, but they are
slightly more smooth. The spatial distribution in the brain is highly separated between brain and muscle tissue, and it is more symmetric
than the CNMEF solution.
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We used prior predictive sampling to find reasonable settings
of the the function parameters: we drew random samples
from the prior distribution and examined properties of the
factors and reconstructed data. We then manually adjusted
the parameters of the prior to match our prior beliefs. An
example of a random draw from the prior distribution is

shown in Figure 5, with the parameters set as described
below.

We assumed that the factors are uncorrelated, so the
covariance between factors is zero. We used a Gaussian RBF
covariance function for the constituent spectra, with a length
scale of f = 0.3 parts per million (ppm), and we used the
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exponential-to-Gaussian link function with A; = 1. This gave
a prior for the spectra that is sparse with narrow smooth
peaks. For the amplitude at the 512 voxels in the head, we
used a Gaussian RBF covariance function on the 3D voxel
indices, with length scale § = 2. Furthermore, we centered
the left-to-right coordinate axis in the middle of the brain,
and computed the RBF kernel on the absolute value of this
coordinate, so that a left-to-right symmetry was introduced
in the prior distribution. Again, we used the exponential-
to-Gaussian link function, and we chose 1, = 2 - 107* to
match the overall magnitude of the data. This gave a prior
for the amplitude distribution that is sparse, smooth, and
symmetric. The noise variance was set to o%= 10 which
corresponds to the noise level in the data set.

We then decomposed the data set using the proposed
GPP-NMF algorithm and, for comparison, reproduced the
results of Sajda et al. [7] using their CNMF method. The
results of the experiments are shown in Figure 4. An example
of a random draw from the prior distribution is shown in
Figure 5. The results of the CNMF is shown in Figure 6,
and the results of the GPP-NMF is shown in Figure 7. The
figures show the constituent spectra and the fifth axial slice
of the spatial distribution of the spectra. The 8 X 8 spatial
distributions are smoothed in the illustration, similar to the
way the results are visualized in the literature.

The results show that both methods give physically
plausible results. The main difference is that the spatial
distribution of the spectra corresponding to muscle and
brain tissue is much more separated in the GPP-NMF result,
which is due to the exponential, smooth, and symmetric
prior distribution. By including prior information, we obtain
a solution, where the factor corresponding to muscle tissue is
clearly located on the edge of the skull.

4. Conclusions

We have introduced a general method for exploiting prior
knowledge in nonnegative matrix factorization, based on
Gaussian process priors, linked to the nonnegative factors
by a link function. The method can be combined with
any existing NMF cost function that has a probabilistic
interpretation, and any existing unconstrained optimization
algorithm can be used to compute the maximum a posteriori
estimate.

Experiments on toy data show that with a suitable
selection of the prior distribution of the nonnegative factors,
the GPP-NMF method gives much better results in terms of
estimating the true underlying factors, both when compared
to traditional NMF and CNMFE.

Experiments on chemical shift brain imaging data show
that the GPP-NMF method can be successfully used to
include prior knowledge of the spectral and spatial distri-
bution, resulting in better spatial separation between spectra
corresponding to muscle and brain tissue.
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