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Abstract

Speech enhancement and separation algorithms sometimes employ a

two-stage processing scheme, wherein the signal is first mapped to an

intermediate low-dimensional parametric description after which the

parameters are mapped to vectors in codebooks trained on, for exam-

ple, individual noise-free sources using a vector quantizer. To obtain

accurate parameters, one must employ a good estimator in finding the

parameters of the intermediate representation, like a maximum like-

lihood estimator. This leaves some unanswered questions, however,

like what metrics to use in the subsequent vector quantization process

and how to systematically derive them. This paper aims at answering

these questions. Metrics for this are presented and derived, and their

use is exemplified on a number of different signal models by deriving

closed-form expressions. The metrics essentially take into account in

the vector quantization process that some parameters may have been

estimated more accurately than others and that there may be depen-

dencies between the estimation errors.

PACS numbers: 4372Ar, 4372Dv
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I. INTRODUCTION

A common approach to solving various problems in speech processing is vector quanti-

zation (VQ). In speech separation, for example, a codebook is trained for each source, hence

also facilitating identification in the process, while in speech enhancement, codebooks are

trained for noise-free signals. These codebooks are then used for estimating the individual

speech sources from a mixture, or the speech signal from a noisy observation, whatever the

case may be. Instead of the time-domain or transform-domain signal, often low-dimensional

parameter vectors are used as an intermediate representation of the sources. There are

a number of reasons for doing this; firstly, this leads to better and faster training of the

codebooks, cf. the curse of dimensionality; secondly, it also leads to faster speech process-

ing algorithms, an important feature if they are to run in real-time. We here refer to such

methods as parametric. There are some notable examples of VQ-based enhancement1–5 and

separation6–10 methods that fall into this category. In finding the parameters of the interme-

diate representation, standard estimation algorithms such as maximum likelihood estimators

based on well-known metrics can be used. However, the question then arises what metric

to use in the vector quantization process. Much work has of course already been devoted to

this question in different contexts. In the field of speech coding, this has been a particularly

pressing issue as the coefficients of the widely used linear predictive coding are well-known

to be very sensitive to quantization errors. To complicate the matter further, the aim of

speech coding is of course to reconstruct the signals at a high perceived quality, which should

of course be reflected by whatever metric is used (note that similar arguments may apply

to speech enhancement too11). As a result, many different factorizations of linear predictive

coefficients have been proposed, as have various distortion measures12–18. The enhancement

and separation approaches cited above use a wide variety of different parametric or inter-

mediate descriptions, including log-spectral, sinusoidal, short-time Fourier transform-based,

harmonic, and auto-regressive parameters, and hence also employ a number of different esti-

mators and vector quantizers, with the metrics used often being found in a largely heuristic
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fashion. In the context of audio coding, many different distortion measures that operate

not on the time-domain samples but on intermediate parameters have been employed over

the years, including transform coefficients19 and sinusoidal parameters20,21, the latter two

employing approximate implementations of more complicated models22–24.

In this paper, we propose new metrics based on statistical arguments aimed at paramet-

ric VQ-based speech processing, more specifically at speech enhancement and separation.

They are obtained by making extensive use of the principle of maximum likelihood estima-

tion, its asymptotic optimality as well as its invariance under certain transformations25–28,

and the main contribution of the paper lies in showing how these principles can be applied

to VQ-based speech processing. The so-obtained metrics are different in nature from those

commonly employed in coding. Indeed, our objective here is not to minimize a reconstruc-

tion error, but rather to obtain good estimates in the sense of parameters having low bias

and variance. The metrics take on the form of weighted 2-norms for use in the vector quan-

tization process, with the weighting matrix depending on the particular model used. We,

therefore, exemplify its application using three different models, namely a sinusoidal model,

a harmonic modeling, and an auto-regressive model. These models have all been used in

the past in various forms for both speech enhancement and separation. The proposed met-

rics aim at finding the set of parameters from a codebook that are most likely to explain

the observed signal. They do so by taking into account that different parameters have dif-

ferent uncertainties associated with them (some parameters can be expected to have been

estimated more accurately than others) in the vector quantization process. Moreover, and

perhaps more importantly, it takes into account that there may be dependencies between

the various parameter.

The rest of the paper is organized as follows. In Section II, we state the problem to be

solved and present and derive the proposed metrics along with some special cases of interest.

In the following section, Section III, we derive the explicit metrics for three different models,

after which we present simulation results in Section IV. Finally, we conclude on our work

in Section V.
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II. THEORETICAL DEVELOPMENT

We will now proceed to derive the theoretical background of the proposed metrics, but

first we will define the problem under consideration, and we will do this based on the

following signal model:

x =
K∑
k=1

s(θk) + e, (1)

where x ∈ RN is the observed signal, e the observation noise, and s(θk) the kth signal of

interest. Each signal of interest is characterized by (possibly nonlinear) parameters θk. Note

that, for simplicity, θk denotes both the true parameter vector and the unknown parameter

vector, depending on the context. When we refer to a specific estimate, this will be denoted

as θ̂k. The full parameter set is denoted θ = {θk}Kk=1 and similarly for estimates. The

problem of interest is then to find estimates {θ̂k} of {θk} from x where the parameters are

in a codebook, i.e., θ ∈ C, and this codebook is a subset of the full space, i.e., C ⊂ RM .

More specifically, we aim at finding parameter estimates as

θ̂ = argmax
θ∈C

ln p(x;θ), (2)

where p(x;θ) is the likelihood function of the observed signal parametrized by the parameters

θ. However, solving (2) directly is often not possible or computationally prohibitive and

alternative procedures must be sought out.

In relation to how parameter estimation relates to obtaining good signal estimates,

observe that for a continuous function s(·), the estimation error on the parameters θk can

be related to the error on the signal estimate as for every ε > 0 there is a δ > 0 such that

‖s(θk) − s(θ̂k)‖2 < ε whenever ‖θk − θ̂k‖2 < δ. In words, this means that good parameter

estimates also imply good signal estimates for signals that can be described as continuous

functions of a set of parameters, i.e., using parametric models. Moreover, for a bijective or

surjective function s(·), it follows directly that optimizing for the signal estimate is equivalent

to optimizing for its parametrization.

The model in (1) and the associated estimation problem covers a number of speech

processing problems. For K = 1 the problem amounts to that of speech enhancement when
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resynthesizing the source s(θ1) based on the parameters obtained from the noisy signal. For

K > 1 the problem covers that of speech separation, if one desires to operate on or synthesize

the individual sources s(θk) for all k. The problem statement covers also various kinds of

classification of speech, including speech recognition and speaker identification (albeit in

simple ways), via the quantization of the parameters using codebooks θ̂k ∈ Ck trained for

such purposes.

Some VQ-based speech processing algorithms work in a way, where, instead of finding

directly the codebook entries that best match the observation in some sense, as in (2), they

first go through an intermediate step wherein a parametrization of the signal is obtained.

In math, this can be described as

f : RN → RM , (3)

where f(·) is then the estimator. Using this estimator, intermediate parameters θ̃ are found

as θ̃ = f(x). This is often beneficial as the dimension of the parameter vector will be lower

(and often much lower) than the observation vector, i.e., M < N , whereby not only the

training procedure but also the separation or enhancement algorithm are simplified.

These intermediate parameters are then mapped to codebook entries via a vector quan-

tizer, here a function g(·), defined as

g : RM → C. (4)

The final estimates are then obtained as θ̂ = g(θ̃). The question to be answered is then

how the functions f(·) and g(·) relate and how they should be chosen. An estimator of

the intermediate parameters θ̃ should be chosen such that the found parameters are most

likely to explain the observation, i.e., it should take the characteristics of the noise e into

account. An obvious choice here that does this is the maximum likelihood estimator, which

is well-known to exhibit a number of desirable properties, including asymptotic optimality.

Assuming that a maximum likelihood estimator f(·) is used and that the data satisfies

some regularity conditions, the so-obtained estimates θ̃ are asymptotically distributed as26

θ̃ ∼ N [θ, I−1(θ)] (5)
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where I(θ) is the Fisher information matrix, ∼ means distributed according to and

N [θ, I−1(θ)] denotes the normal probability density function (pdf) with mean θ and co-

variance matrix I−1(θ). Asymptotic here refers to the number of observed samples N . The

Fisher information matrix is defined as

I(θ) = −E
{
∂2 ln p(x;θ)

∂θ∂θT

}
. (6)

The regularity conditions mentioned above require that the derivatives exist and that I(θ) is

non-singular. For the fairly general case of Gaussian signals with x ∼ N [µ(θ),Q] where Q

is the noise covariance matrix, Slepian-Bang’s formula can be used for determining a more

specific expression for the Fisher information matrix. More specifically, it is given by

[I(θ)]nm =
∂µT (θ)

∂θn
Q−1

∂µ(θ)

∂θm
, (7)

which requires only that the partial derivatives of the mean with respect to all unknown

parameters ∂µT (θ)
∂θn

for all n be determined, something that is often fairly simple to do.

The above then also means that the estimation error θ̃−θ is distributed as N [0, I−1(θ)],

i.e., the estimates are asymptotically unbiased and attain the Cramér-Rao lower bound. It

then follows that the likelihood function for the intermediate parameters is given by

p(θ̃;θ) =
1

(2π)
M
2 det [I−1(θ)]

1
2

e−
1
2(θ̃−θ)

T
I(θ)(θ̃−θ), (8)

where the pdf can be seen to be parametrized by the unknown parameters θ. Choosing now

as our vector quantization function g(·) the maximum likelihood estimator, we obtain

θ̂ = g(θ̃) = argmax
θ∈C

ln p(θ̃;θ) (9)

= argmin
θ∈C

(
θ̃ − θ

)T
I(θ)

(
θ̃ − θ

)
. (10)

This criterion, which is a weighted squared error metric, essentially takes into account that

different parameters in θ may have different uncertainties associated with them in the vector

quantization process and that dependencies may exist between them. As can be seen,

the resulting estimator is a weighted least-squares estimator. One last difficulty remains,
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however. The metric in the estimator in (10) requires knowledge of the true parameters to

compute I(θ). Instead of using I(θ), we can use an approximation based on the intermediate

parameters θ̃ simply as I(θ̃). An alternative is to use the following approximation29:

I(θ) ≈ − ∂2 ln p(x;θ)

∂θ∂θT

∣∣∣∣
θ=θ̃

. (11)

At this point it should be noted that the exact behavior of the right hand side of this equation

and the speed at which it converges to the left hand side may depend on the particular signal

model29,30. Under some mild conditions, however, the following holds:

− 1

N

∂2 ln p(x;θ)

∂θ∂θT
− 1

N
I(θ)→ 0 as N →∞. (12)

Regardless of which of the estimates is used, we will henceforth denote the weighting matrix

by W. The above leads to the following estimator:

θ̂ = argmin
θ∈C

J, (13)

where J ,
(
θ̃ − θ

)T
W
(
θ̃ − θ

)
, which is the fundamental result that we promote here.

The key point is that the estimate obtained using (13) is an asymptotically valid approxi-

mation of the optimal estimate obtained using (2) and the estimates may even be identical

under certain conditions27,28. Simply stated, this happens when the Fisher information ma-

trix does not depend on any of the parameters of interest. The metric that is used in the

estimator in (13) essentially takes into account that the individual intermediate parameters

will have different uncertainties associated with them in the vector quantization process.

It should be noted that the obtained weighting matrix may also be valid for suboptimal

estimators that produce estimates that are not distributed according to (5) as long as the

covariance matrix is related to the inverse Fisher information matrix as κI−1(θ), where κ is

a positive sub-optimality constant.

In implementing the estimator in (13), it is advantageous to consider an alternative

formulation to that of (13). The weighting matrix W is positive-definite by construction

and hence has a Cholesky factorizationW = UTU withU being an upper triangular matrix.

8



This means that (13) can be written as

J =
(
θ̃ − θ

)T
W
(
θ̃ − θ

)
(14)

=
(
θ̃ − θ

)T
UTU

(
θ̃ − θ

)
. (15)

Defining θ̃
′
= Uθ̃ and θ′ = Uθ, we can instead operate on transformed parameters yielding

a simplified cost function, i.e.,

J = ‖θ̃′ − θ′‖22. (16)

To facilitate fast vector quantization, we must then simply design a transformed codebook

C ′ from C via the transformation U. Then, the estimator in (13) reduces to

θ̂ = argmin
θ∈C

(
θ̃ − θ

)T
W
(
θ̃ − θ

)
(17)

= arg min
θ′∈C′
‖θ̃′ − θ′‖22. (18)

This simplifies the vector quantization procedure as instead of using a non-trivial weighting

when measuring the error for each codebook entry, the parameters are now simply trans-

formed and matched with a simpler criterion. The so-obtained quantized parameter vector

must then be transformed back by the inverse transformation for signal reconstruction. Note,

however, that depending on the nature of W this may not always be practical as U may

depend on θ̃ or other signal-dependent quantities in which case the transformation to be

applied to the codebook cannot be known a priori or will differ from the one applied to the

estimated parameters θ̃.

It is often the case that the weighting matrix W exhibits a block-diagonal structure over

some subset of the parameters. This means that it can be written as

W =


W1 0

. . .

0 WL

 . (19)

When used in an estimator, the associated metric becomes additive over the sub-matrices.

This is, for example, the case for the parameters of individual sinusoids (as we will see later).
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Defining Jl ,
(
θ̃l − θl

)T
Wl

(
θ̃l − θl

)
, the diagonal structure in (19) yields the estimator

θ̂ = argmin
θ∈C

L∑
l=1

Jl, (20)

which can be seen to decouple the computation of the metric over l. Furthermore, when

codebooks for the parameter subsets θl are used so that θ̂l ∈ Cl, (20) simplifies further as

θ̂l = arg min
θl∈Cl

(
θ̃l − θl

)T
Wl

(
θ̃l − θl

)
, (21)

which means that the problem of quantizing these parameter subsets is decoupled. It should

be noted that the presence of any non-zero off-diagonal elements in W and Wl is an indica-

tion of statistical dependencies of the parameters, as the estimates are Gaussian distributed

according to (5). As a result, the outlined methodology leads to a weighting matrix that

takes mutual dependencies between the parameters into account as well as different expected

variances, i.e., uncertainties, of the individual parameters.

III. SOME EXAMPLES

A. Sinusoidal Model

We will now exemplify the use of the proposed methodology for deriving a metric with a

specific parametrization of the observed signal x. More specifically, we will use a sinusoidal

model that is characterized by frequencies {ωl}, amplitudes {Al}, and phases {φl}. In this

case, the signal model is given by

x = Za+ e, (22)

where Z ∈ CN×L is a Vandermonde matrix constructed from L complex sinusoidal vectors

as Z = [ z(ω1) · · · z(ωL) ] with z(ωl) = [ 1 ejωl · · · ejωl(N−1) ]T , and a ∈ CL a vector

containing the complex amplitudes as a = [ a1 · · · aL ]T where al = Ale
jφl . Moreover, as

before, we assume that we are here dealing with real signals, which means that the complex

sinusoid come in complex-conjugate pairs. The parameter vector for each sinusoid is defined

as θl = [ Al φl ωl ].
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Assuming that the noise e is white Gaussian with variance σ2, the Fisher information

matrix is fortunately well-known26. For sufficiently large N and a distinct set of frequencies,

it exhibits the block-diagonal mentioned previously. The sub-matrices are given by

Wl =
1

4σ2


2N 0 0

0 2NÃ2
l N2Ã2

l

0 N2Ã2
l

2
3
N3Ã2

l

 . (23)

At this point, a couple of comments are in order. First, the noise variance is multiplied

onto all elements and can therefore be ignored (this is also the reason the true value is not

replaced by an estimate). In a sub-band processing scheme, which would be one way to

remedy colored noise, this may not be the case, however, as the noise level may vary from

one sub-band to another, meaning that we would have an estimate σ̃2
l for each sub-band.

Second, it is quite common to omit the phase in speech enhancement and separation (using

instead the observation phase), we do, however, retain it here for completeness.

Using (23) along with the definition of the parameter vector θl, Jl can be expressed as

Jl =
(
θ̃l − θl

)T
Wl

(
θ̃l − θl

)
(24)

=
1

4σ2



Ãl

φ̃l

ω̃l

−

Al

φl

ωl



T

(25)

×


2N 0 0

0 2NÃ2
l N2Ã2

l

0 N2Ã2
l

2
3
N3Ã2

l




Ãl

φ̃l

ω̃l

−

Al

φl

ωl


 .

Interestingly, one can observe that not only W but also Wl is in fact also block-diagonal.

This means that the quantization of amplitudes on one hand and phases and frequencies on

the other can be separated. The matrix also shows, however, that quantization of phases

and frequencies cannot be separated.

It should be noted that under some circumstances, one would wish to match the phase in

a way that allows for phase wrapping. However, for large codebooks and accurate estimates,
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which would be the case for high N and/or high SNRs, this is not critical.

The question remains which estimators to use for the parameters of the sinusoidal model.

Our derivations were based on the assumption that the estimated parameters will be dis-

tributed according to (5). An asymptotically optimal estimator of the frequencies is the

periodogram while for the complex amplitudes, the least-squares estimator is efficient for

white Gaussian noise31.

B. Harmonic Model

Our next example is that of a harmonic model in which the frequencies of the model

in (22) are integral multiples of a fundamental frequency. Such models are commonly used

in processing of voiced speech and sounds produced by musical instruments. In this case,

the observed signal is characterized by a fundamental frequency ω0, amplitudes {Al}, and

phases {φl}, which results in the model

x = Za+ e, (26)

where Z ∈ CN×2L is a Vandermonde matrix constructed from 2L harmonics as

Z =

[
z(ω01) z∗(ω01) · · · z(ω0L) z∗(ω0L)

]
(27)

where ∗ denotes complex conjugation, and (as before) z(ω0l) = [ 1 ejω0l · · · ejω0l(N−1) ]T ,

and a ∈ C2L a vector containing the complex amplitudes as a = [ a1 a
∗
1 · · · aL a∗L ]T where

al = Ale
jφl . The parameter vector is now given by

θ =

[
ω0 A1 φ1 . . . AL φL

]T
, (28)
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and for white Gaussian noise having variance σ2, the associated weighting matrix is32,33

W =
1

4σ2



2
3
N3
∑L

l=1 Ã
2
l l

2 0 N2Ã2
1 · · · 0 N2Ã2

LL

0 2N 0

N2Ã2
1 0 2NÃ2

1 0

... . . .

0 2N 0

N2Ã2
LL 0 0 2NÃ2

L


. (29)

This leads to the following metric:

J =
1

4σ2



ω̃0 − ω0

Ã1 − A1

φ̃1 − φ1

...

ÃL − AL

φ̃L − φL



T 

2
3
N3
∑L

l=1 Ã
2
l l

2 0 N2Ã2
1 · · · 0 N2Ã2

LL

0 2N 0

N2Ã2
1 0 2NÃ2

1 0

... . . .

0 2N 0

N2Ã2
LL 0 0 2NÃ2

L





ω̃0 − ω0

Ã1 − A1

φ̃1 − φ1

...

ÃL − AL

φ̃L − φL


.

(30)

As before, we need to find appropriate initial estimates ω̃0, {Ãl}, and {φ̃l}. As mentioned

earlier, the complex amplitudes, and hence the real amplitudes and the phases, can be found

using least-squares31. Statistically efficient estimates of the fundamental frequency ω0 can

be found using the exact or approximate nonlinear least-squares (NLS) methods34 or the

WLS method35, all of which lead to estimates asymptotically distributed as in (5).

C. Auto-Regressive Model

Perhaps the most commonly employed signal model in speech processing is the auto-

regressive (AR) model36, wherein a segment of speech, denoted x, is written as

x = Xa+ e (31)

where a = [ a1 . . . aK ]T ∈ RK is a vector containing the K AR coefficients (i.e., it is a

Kth order AR model) and e is assumed to be white Gaussian noise (also sometimes referred
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to as the excitation). More specifically, the vector x ∈ RN and the matrix X ∈ RN×K are

given by

x =


x(N1)

...

x(N2)

 ,X =


x(N1 − 1) · · · x(N1 −K)

...
...

x(N2 − 1) · · · x(N2 −K)

 ,
where the number of samples N is given by N = N2 − N1 + 1 with N1 being the starting

sample and N2 the ending. In this example, we consider not only the unknown parameters

to be the AR coefficients {ak} but also the noise variance σ2. Consequently, our parameter

vector is now given by

θ =

[
a1 . . . aK σ2

]T
(32)

=

[
aT σ2

]T
. (33)

For N � K, the weighting matrix associated with this parametrization is given by37

W =
N

σ̃2

 R̃ 0

0 1
2σ̃2

 , (34)

where R is covariance matrix for x and R̃ its estimate (we will return to this shortly).

It can be observed from (34) that the AR coefficients and the noise variance estimate are

independent and can be treated separately. This may sound somewhat curious as the noise

variance estimate obviously depends on the estimated AR coefficients. The weighting matrix

in (34) leads to the following metric:

J =
(
θ̃ − θ

)T
W
(
θ̃ − θ

)
(35)

=
N

σ̃2


 ã

σ̃2

−
 a

σ2



T

(36)

×

 R̃ 0

0 1
2σ̃2



 ã

σ̃2

−
 a

σ2


 .

Writing this out, we obtain

J =
N

σ̃2
(ã− a)T R̃ (ã− a) +

N (σ̃2 − σ2)
2

2σ̃4
. (37)
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As before, the question remains which estimator to use. Under certain conditions, the well-

known least-squares method with appropriately chosen N1 and N2 will result in estimates

that are asymptotically distributed according to (5) for both the AR coefficients and the

noise variance estimates37,38. As for the covariance matrix R, the usual sample covariance

matrix is well-known to be the maximum likelihood estimator for Gaussian signals38 and

can hence be used in lieu of R̃. Note that even if the signal is not Gaussian, the Gaussian

assumption is still optimal in a min-max sense when nothing is known about the true pdf39.

We note in passing that for related parametriziations17,40, like the reflection coefficients,

cepstral coefficients, log area ratios (LAR), or line spectral frequencies (LSF), the Fisher

information matrix can be obtained by transforming the Fisher information matrix of the

auto-regressive coefficients, akin to the transformation of the sensitivity matrix18,41 for cep-

stral coefficients and LSF. For the case of reflection coefficient, a recursive formula for

determining the Fisher information matrix exists42.

IV. EXPERIMENTAL RESULTS

A. Methodology

In the sections to follow, we will present some simulations results. The aim of the first

simulations is to demonstrate how the loss incurred by the use of an intermediate pamet-

ric description in the VQ process is minimized using the proposed methodology. For each

experiment we will among others compare to a naive approache ignoring the different uncer-

tainties associated with the intermediate parameters, corresponding to using W = I. This

results in a least-squares (LS) estimator in the vector quantization process. Additionally, we

will compare to the upper bound performance obtained as follows: for each codebook entry,

a signal is reconstructed and the 2-norm of the error between this signal and the observed

signal is measured. The codebook entry that leads to the lowest error is then chosen as

the estimate. This approach, which we refer to as analysis-by-synthesis (AbS) is optimal

in the sense that it chooses the codebook entry that best explains the observed signal (and
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FIG. 1. Results for the sinusoidal model: Percentage of correctly estimated codebook entries

as a function of the SNR for N = 50.
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FIG. 2. Results for the sinusoidal model: Percentage of correctly estimated codebook entries

as a function of the number of samples N for an SNR of 10 dB.

reconstructs it the best). In fact, it is an implementation of (2) for white Gaussian noise.

It is, however, also computationally expensive as it measures distances of N -dimensional

signals rather than the M -dimensional parameter vectors. The experiments are carried out

by generating a signal x from a set of parameters from the codebook after which noise is

added. In the experiments to follow, the performance is measured as the percentage of cor-

rectly estimated codebook entries. For each reported data point, 1000 Monte Carlo trials
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are run. If, as has been hypothesized, the proposed metrics are good, it should lead to better

estimates than the simple least-squares estimates and to estimates close to those obtained

with the AbS method. We note that the estimation errors in the intermediate parameters

may cause the selection of a wrong codebook entry when the noise is so large that it causes

the estimated parameters to be far from the true parameters, which, in turn, causes the se-

lection of a wrong codebook entry. We note that since a high number of Monte Carlo trials

is required to determine the percentages at the desired accuracy, we keep the dimensionality

of parameter sets, the codebooks sizes and the number of samples N moderate in size to

keep the complexity at a reasonable level. The chosen parameter sets are, however, still

within the same order of magnitude as those commonly employed in the literature.

B. Sinusoidal Model

We will now report the results obtained for the various models, and we will start out

with the sinusoidal model. For the sinusoidal model, the intermediate parameters are then

found using a 8192 point FFT periodogram estimate and these are then quantized using

the different metrics. We here use the model, the metric, and the estimators discussed

earlier. Moreover, we use a random codebook of size 4096 which has been populated by

realization of uniformly distributed phases and frequencies between 0 and 2π and Rayleigh

distributed amplitudes. The results are depicted in Figures 1 and 2 as functions of the

signal-to-noise ratio (SNR) with N = 50 and the number of samples N with SNR = 0 dB,

respectively. The SNR is here defined as 10 log10A1/σ
2. The figures show that the proposed

metric outperforms least-squares in the regions of interest. It can be seen from Figure 1

that for extremely low and high SNRs, the performance of the methods tend to 0 and 100

%, respectively, and similar conclusions hold for low and high N , although either extreme is

not always achieved for all methods for the region shown. This means that if the estimation

error is sufficiently small, which is the case for high SNRs and high N , the correct codebook

entry will be chosen, and how small it has to be depends on the method in question. It can

17
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FIG. 3. Results for the harmonic model: Percentage of correctly estimated codebook entries

as a function of the SNR for N = 100.
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FIG. 4. Results for the harmonic model: Percentage of correctly estimated codebook entries

as a function of the number of samples N for an SNR of 10 dB.

also be seen that the proposed metric leads to results that are very close to those obtained

using the AbS approach, and this is done at a significantly reduced computation time.

C. Harmonic Model

Proceeding now with reporting the results for the harmonic model, the experimental

setup is as follows: the fundamental frequency is found using the so-called approximate

18



nonlinear least-squares method34, which is asymptotically efficient, where after the ampli-

tudes and phases are found using approximate least-squares. Note that these estimators are

suboptimal for small N and are bound to cause errors. We do, however, use them anyway to

provide realistic results. We will use L = 5, i.e., five harmonics throughout the experiment,

and, as before, we use a randomly generated codebook for generating the observed signal. In

this case, the fundamental frequency is generated uniformly on the interval (0, 2π/L], phases

on the interval (0, 2π] and with Rayleigh distributed amplitudes. For this experiment, we

use a codebook of size 2048. In each iteration of the Monte Carlo simulations, a new re-

alization is picked and white Gaussian noise is added. In this case, the factor determining

the performance, aside from the number of samples N , is the SNR, which for this model is

given by

SNR = 10 log10

∑L
l=1A

2
l l

2

σ2
[dB]. (38)

The results are shown in Figures 3 and 4, with the first figure showing the performance as

a function of the SNR for N = 100 and the second figure showing the performance as a

function of the number of samples, N , for an SNR of 10 dB. The results and conclusions are

similar to those of the previous experiment, only there is now a sub-optimality gap between

the performance of the proposed method and the AbS method. This can be attributed

to the use of suboptimal estimators in finding the intermediate parameters. The proposed

method is, though, still better than the straightforward least-squares approach and this

demonstrates the validity of the approach.

D. Auto-Regressive Model

The final model, for which we will report results, is the auto-regressive one. In the

experiments, we employ a codebook trained from 10 different speakers with two utterances

of approximately 5 s length for each speaker, all from the Danish EUROM.1 database. Auto-

regressive parameters of a 10th order model were extracted from 20 ms segments (non-speech

segments were ignored) and a codebook of size 1024 was trained using the LBG algorithm43.
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FIG. 5. Results for the auto-regressive model: Percentage of correctly estimated codebook

entries as a function of the number of samples N .
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FIG. 6. Model used for generating the test signals for the auto-regressive model.
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FIG. 7. Results for the auto-regressive model: Percentage of correctly estimated codebook

entries as a function of the SNR for N = 250.

As the codebook is kept fixed for all methods, uniform weighting is used in the training

so as to not favor any particular method. Note that the quality of the codebook is not of
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vital importance here, as ability to find the right entries in it is the subject of the present

study. Aside from comparing to the AbS and LS methods, as before, we also compare the

proposed method to a method employing LSFs17. To keep the experiment fair, all methods

operate on the same codebook and that the LSFs are one-to-one mappings of each entry

in the codebook. Moreoever, it should be stressed that the so-called analysis-by-synthesis

method does not measure differences in the parameter space and hence does not suffer from

this problem; indeed it would perform exactly the same if LSF or some other factorization

were used since these are one-to-one mappings. The experiments are then carried out as

follows: an entry in the codebook is picked randomly, a signal is synthesized by filtering white

Gaussian noise using the auto-regressive parameters and, from this signal, the parameters

are again estimated using the autocorrelation method38. Then, the various factorizations

and metrics are used for finding the codebook entry that is the best match to the estimated

parameters. Here it should be stressed that the accuracy at which it is possible to determine

the parameters depends on the nature of R. The results are shown as a function of the

number of samples N in Figure 5. It can be seen that, as expected, direct quantization of the

parameters without appropriate weighting performs the poorest, as expected. Then follows

the method employing LSFs. It can be seen that the proposed method performs almost as

well as the AbS method, which means that the method is close to the optimal performance

for this task. It can also generally be observed that all the methods improve as a function of

N as the quality of the involved estimates improves. In the next experiment, everything will

be carried out as before, except that the assumptions under which the proposed method was

derived will be violated by an additional, additive white Gaussian noise source, as depicted

in Figure 6. The performance of the methods will then be observed as a function of the SNR

between the variance of the output of the filter and that of the noise source. The results are

shown in Figure 7. The general conclusions are the same as for the previous experiment:

the LS approach performs the worst, then the LSF-based method follows, and the proposed

approach performs similarly to the AbS approach. Interestingly, it can be observed that as

the SNR is worsened, the performance of the various methods appear to perform similarly,
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with the LSF, AbS and the proposed method having almost equal performance for SNRs

below 20 dB. Note that it may be difficult to distinguish the last two methods as the curves

coincide. The general conclusion is that the proposed method performed essentially without

loss compared to the optimal estimator, the AbS method, and this at a significantly reduced

computational complexity.

E. Weighting Matrix

In deriving the closed-form expression for the weighting matrix, it was assumed that

the parameter estimates will be distributed according to the Fisher information matrix. It

remains then to quantify whether this is actually the case, and we will address this in our

final experiment. In this experiment, a random realization of a parameter set is used to

compute the weighting matrix for the various models in Section III. Then, the observed

signal is generated from those parameter sets and noise is added according to the respective

models. The sample covariance matrix of the estimation errors obtained with the various

estimators used in these experiments is then computed over 1000 realizations for each data

point. In theory, the so-obtained covariance matrices should tend to the optimal weighting

matrix as N is increased, however, since suboptimal estimators are used, their finite sample

length performance cannot be known beforehand. Consequently, we measure the distance

between the two matrices using the Frobenius normalized by the size of the matrix squared

resulting in a mean squared error. Note that since the matrices may differ by a constant

factor without affecting the result, the optimal scaling that minimizes the Frobenius norm

of the difference between the two is found and applied for each pair of matrices. The results

are shown in Figure 8 as N is increased. It can be seen that for all the three models used

and their estimators, the estimation errors tend toward the closed-form expression for the

weighting matrix, albeit computed for the true parameters instead of the estimated ones.

In this connection we note that the relation between the weighting matrix obtained for the

true and estimated parameters, respectively, does not lend itself to a simple investigation
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sample covariance matrix for the estimation errors for the three models.

due to the complicated manner in which they converge29.

V. CONCLUSIONS AND FUTURE WORK

In this paper, metrics for VQ-based speech enhancement and separation have been pro-

posed. The metrics were derived based on statistical arguments and expressions for the

asymptotic distribution of maximum likelihood estimators. It essentially takes the uncer-

tainties and dependencies of different parameters into account in the quantization process.

This was then demonstrated to lead to superior estimates in Monte Carlo simulations with

a vector quantizer as compared to the commonly used squared error measure. Moreover,

the proposed metrics perform close to the optimal performance (in the sense of maximum

likelihood) under good conditions like a high number of samples and high signal-to-noise

ratios, showing that only a small loss is incurred by operating on intermediate parameters

in the process. It remains to be seen, of course, firstly, whether it is possible to obtain

such simple closed-form expressions for the many different signal models employed in speech

processing, aside from the few treated here, and, secondly, how these differ from the ones

currently in use. Moreover, an interesting question is whether and, if so, how the proposed
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methodology can be extended to account for the quality of the reconstructed signal using

state-of-the-art perceptual measures, rather than finding the most likely explanation for the

observed signal.
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