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Abstract 

Airflow patterns and airflow rate have an important influence on contaminant distribution in 

livestock buildings. The objective of this paper is to model and evaluate the effect of airflow 

rates and airflow patterns effect on CO2 concentration distribution and emission rates in a 

scaled livestock building with slatted floor. Contaminant sources are assumed to be modelled 

as a constant concentration on the manure surface. Three different ventilation rates and two 

different deflector degrees are studied, in which the deflector is applied to change the airflow 

patterns. A CFD commercial software code has been applied to simulate the contaminant 

distribution. Experiments of tracer gas concentration distribution in the chamber are 

performed at Air Physic Lab of Aarhus University to validate CFD software. Simulation results 

and measurements show that ventilation rates and airflow patterns have an effect on the 

contaminant distribution within the room. The non-dimensional CO2 concentration along the 

horizontal direction above the slatted floor varies largely which means the emission rate is 



related to the local velocity. With increasing airflow rate, the emission rate of CO2 and average 

mass transfer coefficient will increase. The influence of the deflector on the emission rate is 

also shown.  
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1. Introduction 

Air quality in livestock buildings is becoming more and more concerned since it will affect 

workers’ health as well as animals. Ventilation, with appropriate air-handling processes, is 

used to create an indoor environment with acceptable air temperature, humidity, air velocity 

and to remove pollutants for better air quality. It removes heat, moisture and contaminants 

generated inside the buildings. Generally it is not easy to control the contaminants since 

contaminant distribution is related to the airflow rates and airflow patterns as well as 

depending on the type and location of contaminant sources (Xudong Yang et al, 2004). The 

emission rates of CO2 in livestock buildings are related to the concentration in manure, 

velocity profile, turbulence intensity, temperature profile, etc( Jiqin Ni et al, 1999; Heber A J et 

al, 1996; Zhang G et al, 2000). In order to simplify the problem, we assume that the air 

temperature and CO2 concentration on liquid surface keep constant in experiments.  

In this paper, we use a Computational Fluid Dynamics (CFD) model to simulate the impact 

of three ventilation rates and two deflector degrees on emissions from floor surface source. 

See Figure 1 for layout of the model. The studied ventilation rates include 100m3/h, 150m3/h 

and 200m3/h and two deflector degrees are 45 degree and 90 degree. The 45 degree 

deflector will generate a stronger jet to the space under the slatted floor while the 90 degree 

will issue a weaker one. For each ventilation rate and deflector degree, CO2 concentration in 

simulation are presented and compared with each other. Experimental measurements of CO2 

concentration conducted in the Air Physics Lab of Aarhus University are used to validate the 

CFD model (see Guohong Tong et al, 2008). It is assumed that CO2 of constant concentration 

is releasing from the entire floor surface.  

2. validation of the CFD model 

CFD has become a tool in indoor environment analysis since 1970s. Srebric and Chen 



(2002) suggested that the decision to use CFD must be firmly based on realistic expectations 

and it is necessary to validate the turbulence models since no turbulence models are 

universal to any cases. Nielsen (1998) also discussed the selection of an appropriate 

turbulence model to predict different room airflow patterns and ventilation systems. In this 

paper, the standard k ε−  model is adopted and validated with the experiments data from the 

Air Physics Lab of Aarhus University. More details about the measurements are stated in the 

paper by G. Tong et al. 

Figure 1 shows the sketch of the physical model in simulation. The model is 2.2m long, 

0.62m wide and 2.41m high. The air is supplied from the inlet with 100m3/h and exhausted 

from a circular outlet located at the left wall. Here we modeled the diffuser in detail as used in 

experiments because it is known that correct description of the flow and thermal information of 

an air supply diffuser is fatally important for a reliable prediction of room air distribution by 

using CFD simulation. The deflector is applied to change the airflow patterns on the right wall 

and a slatted floor is installed at the lower part of the model. It is an isothermal case and all the 

walls are adiabatic. On the surface below the slatted floor, the CO2 concentration is assumed 

to be constant and on other walls there is no emission of CO2. The results are presented in 

non-dimensional value to compare the measurements at five points ( see Figure 1, shown as 

‘﹡’ in yellow) above the slatted floor with the simulation results. The non-dimensional CO2 

concentration *c is defined as: 
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−
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*c , c , 0c  and rc  represent the non-dimensional CO2 concentration, the concentration at 

different points inside the room, the inlet concentration and the outlet concentration of CO2 

respectively.  

 



 
(a) Deflector with 45 degree 

 

(b) Deflector with 90 degree 

1－inlet, 2－outlet, 3－deflector, 4－slatted floor, ‘﹡’－measurement points 

Figure 1 sketch of physical model 

Fig.2 and Fig.3 shows the velocity distribution and CO2 concentration distribution 

respectively. From these two figures, it is seen that the basic velocity pattern is 

reasonable and it has an important influence on CO2 concentration distribution. Fig.4 

presents the comparison of *c  between simulation results and measurements along 

a line of y =0.51m through the five points above the slatted floor (see Figure 1). The 

simulation results are in good agreement with the measurements except for one point 

in the model with 90 degree deflector. All these simulation results show that standard 

k ε−  model can be applied in this kind of ventilation system simulations. 

 

(a) Deflector with 45 degree 

 

(b) Deflector with 90 degree 

Figure 2 velocity distribution at the middle plane with z =0.31m 



 

(a) Deflector with 45 degree 

 

(b) Deflector with 90 degree 

Figure 3 CO2 concentration distribution at the middle plane of z =0.31m 

 

(a) Deflector with 45 degree 

 

(b) Deflector with 90 degree 

Figure 4 comparison of non-dimensional CO2 concentration between measurements 

and simulation results at line of y =0.51m in the middle plane 

3. Results and discussion 

In this part, we simulated the two models with three ventilation rates to investigate 

the influence of ventilation and deflector on emission rate, concentration distribution 

as well as the relation between mass transfer coefficient and the velocity.  

 CO2 concentration distribution 

Figure 5 shows CO2 concentration distribution along a horizontal line of y =0.51m 

above the slatted floor in the middle plane with various airflow rates. From the graphs, 

it is seen that the non-dimensional CO2 concentration varies largely in horizontal 

direction. The *c  increases with distance as the velocity level decreases both in 45 

degree deflector and in 90 degree deflector. The difference of *c between graph (a) 

and graph (b) in Figure 5 is caused by the deflector which changes the airflow 



patterns, see figure 2 and figure 3.  

 
(a) Deflector with 45 degree 

 

(b) Deflector with 90 degree 

Figure 5 Non-dimensional CO2 concentrations versus horizontal distance with various 

airflow rates 

Figure 6 and Figure 7 show typical boundary layer profiles of the middle plane at 

z =0.31m. It is seen that the boundary layer is thin and almost the same at the three 

airflow rates in figure 6(b) and figure 7(a). The reason for the similar and thin 

boundary layer in figure 6(b) and figure 7(a) is that the relatively fresh air from the inlet 

is supplied directly to the space below the slatted floor where the two positions are 

located. Then the boundary layers below the slatted floor are becoming thicker along 

the direction of velocity, see Fig.6 (a) and Fig.7 (b).  

 

(a) Boundary layer profile at x =0.29m  

 

(b) Boundary layer profile at x =1.1m  

Figure 6 Typical boundary layer profiles at the middle plane with 45 degree deflector 

(the slatted floor is located at y =0.275m) 

 



 

(a) Boundary layer profile at x =0.29m 

 

(b) Boundary layer profiles at x =1.91m 

Figure 7 typical boundary layer profiles at the middle plane with 90 degree deflector 

(the slatted floor is located at y =0.275m) 

 Influence of airflow rate on emission rate 

Figure 8 shows the emission rates in the scale model from CFD simulations at 

various ventilation rates and deflector degrees. It is calculated as airflow rate 

multiplying with the difference of CO2 concentration between outlet and inlet. The 

graph shows that the emission rate increases when the airflow rates increase. The 

emission rate is higher when the 90 degree deflector is applied. However, when the 

ventilation rate is increasing, the difference of emission rate between the two models 

is becoming smaller which means that the function of the deflector to change the 

emission from the floor surface below the slatted floor is not so obvious at higher 

ventilation rate. 

 
Figure 8 emission rates at various ventilation rates with different deflector degrees 



 influence of airflow rate on mass transfer coefficient 

Figure 9 presents the relation between mass transfer coefficients ck and 

ventilation rate for two different deflections. The mass transfer coefficient is calculated 

based on the emission rate and the difference of CO2 concentration between the 

surface concentration below the slatted floor and the outlet concentration; it is 

therefore the average transfer coefficient for the emitting surface. It is seen that there 

is a substantial increase in mass transfer coefficient with ventilation rate in two models 

with different degree of deflection.  

 

Figure 9 relations between mass transfer coefficient and airflow rate with two different 

deflectors 

4. Conclusions 

This paper presents numerical simulation results made in a scale model of swine 

buildings. The influence of airflow rates and airflow patterns on emission rate from a 

surface contaminant source is investigated and CO2 concentration distributions of the 

middle plane are also shown in the paper. Experimental data is used to validate the 

CFD model in two different settings of a deflector.  

From the results, it is found that the non-dimensional CO2 concentration varies 

along the horizontal direction which means that the emission rate is related to the 

local airflow. On the one hand, the emission rate increases with larger ventilation rate. 



On the other hand, the setting of the deflector also has an influence on emission rate 

which is higher with 90 degree deflector than that with 45 degree deflector, but the 

function of the deflector to affect the emission rate is decreasing with increasing the 

airflow rate.  

The concentration distribution is strongly depending on the airflow patterns. The 

boundary layer below the slatted floor is becoming thicker along the direction of 

velocity. The mass transfer coefficient also increases with increasing the airflow rate 

as expected.  
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