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A modified critical state two-surface plasticity model for sand
- theory and implementation

C. LeBlanc1,2,∗ O. Hededal3 and L. B. Ibsen1

1 Department of Civil Engineering, Aalborg University, 9000 Aalborg, Denmark
2 Department of Offshore Technology, DONG Energy, 2450 Copenhagen SV, Denmark

3 Department of Civil Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Danmark

SUMMARY

This paper provides background information and documentation for the implementation of a robust
plasticity model as a user-subroutine in the commercial finite difference code, FLAC3D by Itasca.
The plasticity model presented is equal to the 3 dimensional critical state two-surface plasticity
model for sands by Manzari et al., but uses a modified multi-axial surface formulation based on a
versatile shape function prescribing a family of smooth and convex contours in the π-plane. The
model is formulated within the framework of critical state soil mechanics and is capable of accurately
simulating volumetric and stress-strain behaviour under monotonic and cyclic loading and thereby
related observations like accumulation of pore pressure, cyclic mobility and cyclic liquefaction. The
plasticity model is implemented with an integration scheme based on the general return mapping
algorithm. The integration scheme faces convergence difficulties, primarily at very low mean effective
stresses. The convergence problems are addressed by suitable correction strategies designed to add
robustness, stability and efficiency to the integration scheme. An outline of all model parameters is
given with suggestions for parameter reductions.

key words: constitutive modeling; granular materials; critical state; bounding surface; return

mapping method; implementation strategy

1. INTRODUCTION

Over the last decades, plasticity models that accurately simulate stress-strain behaviour
of materials have been successfully used within several engineering disciplines. However,
for granular materials, only simple classical elasto-plastic models are supported by most
commercial engineering codes, e.g. Mohr-Coulomb and Cam-Clay. While these models are
useful for many geotechnical problems, they are insufficient for more complex problems. More
advanced models may be required to accurately simulate the response of soil under a wide
range of relative densities and mean effective stress levels. Also, advanced models are required
to simulate the response to cyclic loading and related observations such as accumulation of

∗Correspondence to: C. LeBlanc, Dept. of Offshore Technology, DONG Energy, A.C.Meyers Vænge 9, 2450
Copenhagen SV, Denmark, E-mail: chrle@dongenergy.com
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pore pressure, cyclic mobility and cyclic liquefaction. Continuum-based constitutive models
simulating the cyclic behaviour of soil are primarily developed and applied within the
framework of earthquake engineering in which the degradation of strength and stiffness is
essential for the prediction of seismic performance of structures. The models are complex as
several geotechnical features, e.g. characteristic states, critical states and failure envelopes,
must be successfully simulated while accounting for a strong influence of the third stress
invariant and the isotropic stress level.

The critical state soil mechanics (CSSM) [27, 28] provide a broad framework to explain
the fundamental behaviour of granular materials. The success and broad recognition of the
CSSM has lead to widespread application in constitutive models. The Norsand model [19]
initially adopted the CSSM in a model formulation. Later notable critical state models include
[3, 7, 13, 25, 31] and more complex models, also accounting for anisotropic stress-strain
behaviour, are presented by [6, 10]. A versatile and yet simple model, formulated by within the
framework of CSSM, is the critical state two-surface plasticity model for sands presented by
Manzari et al. [23, 24]. The model has proved to successfully simulate drained and undrained
stress-strain behaviour of non-cohesive sands under monotonic and cyclic loading in a wide
range of confining stresses and densities [24, 30]

This paper provides background information and documentation for the implementation of a
robust plasticity model as a user-subroutine in the commercial finite difference code FLAC3D
(Fast Lagrangian Analysis of Continua in Three Dimensiobs) by Itasca. The constitutive model
presented is equal to the two-surface critical state plasticity model for sands by Manzari et
al. [23, 24], except for minor modifications. Thus, the model is denoted the modified two-
surface critical state plasticity model for sands. The major modification is the introduction
of an alternative multi-axial surface formulation based on a versatile shape function used to
prescribe a family of smooth and convex contours in the π-plane. Emphasis is made to outline
the physical interpretation of the plasticity model. An outline of all model parameters is given
with suggestions for parameter reductions.

An efficient integration scheme based on a general return mapping algorithm originally
proposed by Simo and Ortiz [29] is tailored to the plasticity model. The integration scheme is
efficient, however only conditionally stable. Thus, an implementation strategy is introduced to
add robustness to the integration scheme. The stability and efficiency is tested by simulations of
undrained monotonic and cyclic triaxial tests. Thus, this paper provide complete information
for implementation of a robust user-defined constitutive model, capable of simulating the
response of non-cohesive sands, in a commercial finite difference (or finite element) code.

2. ON THE FRAMEWORK OF CRITICAL STATE SOIL MECHANICS

The concept critical state is successfully applied within the CSSM [27, 28]. Consider a soil
sample subjected to shear loading. As shearing continues beyond peak shear stress, a state is
reached after which further shearing causes zero volumetric change and zero change in shear
stress, see Figure 1. This state, describing the post-peak behaviour, is referred to as the critical
state, according to Casagrande [2]. An important outcome of the CSSM is that the critical

2



q Characteristic state
Critical state

εv

ε1

ε1

(a) (b)

Figure 1. Outline of a typical triaxial compression test on dense sand performed under
constant isotropic stress with q and εv converging against a constant value at critical state.

state can be represented by a straight line in p-q stress space†, with the inclination being
largely independent of both the relative density and isotropic stress level. The inclination can
be defined by the critical stress ratio, Mcr = q/p. Mcr seems to represent an intrinsic parameter
and is therefore adopted as a fundamental model parameter.

At critical state, the soil particles can rearrange while the packing density remains constant.
The critical void ratio, ecr, is used to quantify the packing density at critical state. Experiments
indicate that ecr is independent of the initial void ratio, i.e. the soil particles always self-
organize toward a critical packing density when sheared beyond critical state [2]. Figure 2a
schematically illustrates the void ratio converging toward ecr under monotonic shearing. The

ε1

ee(a) (b)

ecr

ln(p)

ψ

Γ

λ

Figure 2. (a) Outline of change in void ratio obtained from triaxial
compression tests of sand under a constant isotropic stress. (b)

Variation of critical void ratio with isotropic stress level.

value of ecr depends on the isotropic stress level as outlined in Figure 2b. Within the CSSM,
the variation of ecr and p is assumed linear in ecr-ln(p) space. The line is referred to as the
critical state line, defined by

ecr = Γ − λ ln

(
p

pu

)
pu = 1kPa (1)

The constants λ and Γ denote the line inclination and the reference void ratio at the unit
pressure pu, respectively. It is convenient to have a parameter indicating the distance to critical

†In this paper, all stress notations refer to effective stresses.
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state. In this context, the state parameter is defined by

ψ = e− ecr (2)

with e referring to the void ratio in the current state [1]. The state parameter is an essential
parameter arising from the framework of the critical state soil mechanics and has been
successfully adopted for constitutive modelling. The state parameter is adopted in the current
model to prescribe peak stress levels and dilatancy behaviour.

3. MODELLING THE PEAK SHEAR STRENGTH OF SANDS

It is well documented that a strong correlation exists between the relative density and the peak
shear strength of sands. The typical variation of peak shear strength with isotropic pressure
and relative density is outlined in Figure 3a and 3b.

ε1

(a) (b) (c)
qqq

pp

Loose

Dense
Mcr

Mcr
Mcr + kb〈−ψ〉

Figure 3. Typical variation of drained shear strength with isotropic pressure and
relative density obtained from triaxial compression tests. (a) (ε1, q)-diagram (b) (p, q)-

diagram (Cambridge diagram) (c) Model formulation of bounding line.

The peak shear strength can be divided into two components. A base component is related
to the critical state shear stress, with sand particles being able to rearrange under constant
volume. This component can be represented by the critical stress ratio, Mcr. The second
component arises from the dilation of the sand due to shearing. A densely packed sand will
exhibit strong dilation and thus obtain a large shear strength due to the increased amount
of energy needed for grain particles to slide around adjacent particles. The resulting peak
shear strength can be defined by a threshold in stress space referred to as failure envelope or
bounding line.

Since the location of the bounding line is highly correlated to the dilatancy, and thereby the
packing density of the sand, it is meaningful to adopt the state parameter ψ in a bounding
line formulation for constitutive modelling. The bounding line adopted by the current model
is based on a formulation whereby the bounding stress ratio, Mb = q/p, is equal to Mcr plus a
contribution proportional to ψ [32, 23]

Mb(ψ) = Mcr + kb〈−ψ〉 (3)

in which kb is a dimensionless model parameter and 〈 〉 refer to Macauley brackets, defined by
〈x〉 = 0 if x < 0 else 〈x〉 = x. This formulation ensures an increased peak shear strength for
densely packed sands with curvature of the bounding line arising from the p-dependency of ψ.
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Furthermore, the formulation ensures that the bounding line coincides with the critical state
line for either very loose sands or at high isotropic pressures. The bounding line formulation
is illustrated in Figure 3c.

It can be noted, that if the slope of the critical state line is very small (i.e. λ ≈ 0), then
the p-dependency of ψ in (1) become negligible. In this case, the location of the bounding
and characteristic surfaces is then only influenced by the current void ratio, or as commonly
adopted for sands, the relative density.

4. TRANSITION FROM COMPACTIVE TO DILATIVE BEHAVIOUR

Shearing of a granular material causes volumetric changes that are either compactive or
dilative. Typical effective stress paths obtained from three triaxial compression tests on dense
sand, performed with p = constant, are outlined in figure 4a. The corresponding volumetric
changes are outlined in Figure 4b. The points, marked with dots, indicate the transition from
compressive to dilative behaviour determined by δεv/δε1 = 0. These points indicate that there
is a threshold in stress space, dividing the volumetric behaviour from compressive to dilative.
This threshold is referred to as the characteristic state [22]. A consistent definition of the
characteristic state is based on zero change in plastic volumetric strain, dεp

v = 0 [26].

q

p′

Bounding line

Characteristic line

εv

ε1

(a) (b) (c)
q

p

Mcr

Mcr + kcψ

Figure 4. Outline of typical triaxial compression tests on dense
sand performed with p′ = constant. [16]

From monotonic triaxial tests, it has been determined that characteristic states can be
represented by a straight line through origin in stress space [12, 15]. This line is referred as
the characteristic line. Experiments indicate that the inclination of the characteristic line is
constant and independent of both relative density and the isotropic stress level [12, 26]. Thus,
it is tempting to define the characteristic line as a straight line with constant inclination, in
terms of the characteristic stress ratio, Mc = q/p. However, while this is valid for monotonic
loading, it may not be valid for cyclic loading. Also, one must have that Mc →Mcr as ψ → 0,
since the criterion defining the characteristic line, dεp

v = 0, must be fulfilled at the critical
state. Thus, in the current model, the characteristic line is defined by

Mc(ψ) = Mcr + kcψ (4)

in which kc represents a dimensionless model parameter [23]. The characteristic line is
illustrated in Figure 4c. The underlying physical background is rather weak, however, the
simple formulation has been successfully adopted to simulate sand subjected to cyclic loading
[23, 24].
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5. MULTI-AXIAL FORMULATION

Granular materials exhibit a strong influence of the third stress invariant. This influence
appear when comparing triaxial compression and extension tests, ie. lower shear friction can
be sustained in triaxial extension. Thus, accurate simulation of granular materials require
that the bounding and characteristic lines, defined in (3) and (4) respectively, are generalized
to bounding and characteristic surfaces defined stress space using a multi-axial formulation.
The multi-axial formulation introduced in this paper differs from the formulation used in the
original model by Manzari et al. [23].

The influence of third stress invariant is conveniently depicted in the π-plane in which
p remains constant. The minimum requirement for defining a contour in the π-plane is the
specification of a ’corner’ and a ’midpoint’ of the triangular shape, corresponding to eg. triaxial
compression and extension, respectively. Thus, for triaxial extension we may define the stress
ratios of the bounding and characteristic lines similar to triaxial compression in (3) and (4) by

M ex
b = M ex

cr + kex
b 〈−ψ〉 M ex

c = M ex
cr + kex

c ψ (5)

in which M ex
cr , kex

b and kex
c are model parameters for triaxial extension equivalent to the

parameters Mcr, kb and kc for triaxial compression.
Several mathematical formulations are proposed to define the triangular contour of the

bounding surface, e.g. Lade [11], Matsuoka-Nakai [14] and Mohr-Coulomb. A versatile shape
formulation, derived from a cubic polynomial of principal stresses, is proposed by Krenk
[20, 21]. The formulation prescribes a family of smooth and convex contours given in terms of

0.5
0.6
0.7
0.8
0.9
1.0

σ1

σ3σ2

Mohr-Coulomb

Lade [11]

Matsuoka-Nakai [14]

c

θ

1

Figure 5. The family of surface contours prescribed by the
function g(c, θ).
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the second and third deviatoric stress invariants. The contours of this family can represent any
shape from circular to triangular depending on a shape parameter. The original formulation
by Krenk [20, 21] can be reformulated in terms of the Lode angle θ and the normalized shape
function g(c, θ), defined such that g(c, 0) = 1 in triaxial compression and g(c, π) = c in triaxial
extension and thereby that M ex

c = cMc. In this case, g is expressed by

g(c, θ) =
cos(γ)

cos
(

1
3 arccos(cos(3γ) cos(3θ))

) , γ =
π

3
+ arctan

(
1 − 2c√

3

)
(6)

The shape of the contours is uniquely defined by c. For example, a triangle is obtained for
c = 0.5 whereas a circle is obtained for c = 1. The family of curves for c ∈ [0.5; 1.0] is illustrated
in Figure 5.

The shape of the bounding and characteristic surfaces are defined in terms of g(c, θ) in (6)
using the shape parameters, c = cb and c = cc, respectively. The values of cb and cc may be
evaluated from the stress ratios defined in (3), (4) and (5).

cb(ψ) =
M ex

b

Mb
cc(ψ) =

M ex
c

Mc
(7)

Both cb and cc are functions of ψ. For cohesionless granular materials, it is generally accepted
that the bounding surface contour is triangular with Mb ≥ M ex

b ; cb will therefore lie in the
range between 0.5 and 1. Representative values of cc are limited accounted for in the literature.

M

ψ

kb

kc

−kex
c

−kex
b

Mcr

−M ex
cr

looser/higher p denser/lower p

Characteristic surface

Bounding surface

Figure 6. Visualization of the bounding and characteristic surface
contours, as function of the state parameter ψ.

Figure 6 illustrates the shape of the bounding and characteristic surfaces as function of ψ
as expressed in (7). For samples denser than critical (ψ < 0), the bounding surface obtains a
triangular shape enclosing the characteristic surface; dilation will therefore occur before the
bounding surface is reached. The bounding and characteristic surfaces become identical and
equal to the critical state surface at the critical state (ψ = 0) where cb = cc = M ex

cr /Mcr. For
samples looser than critical (ψ > 0), the characteristic surface expands beyond the bounding
surface to cause an entirely compactive behaviour, since the stress state always stays within
the bounding surface.

Figure 7 illustrates the bounding surface in the principal stress space obtained using the
expressions (3) and (5) in conjunction with (6) and (7).
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σ1

σ2

σ3

Figure 7. Visualization of the bounding surface in principal stress space.

A total of 6 model parameters define the surface contours and these may be determined
from triaxial tests in both extension and compression. However, it may be appropriate to
to adopt some simplifying assumptions in order to eliminate the model parameters M ex

cr ,
kex

b and kex
c defining the behaviour in triaxial extension. Experimental evidence suggest

that the critical angle of friction φcr is approximately equal under triaxial compression and
extension [8]. Similarly, the widely applied Mohr-Coulomb failure criteria assumes that shear
strength is governed by a constant angle of friction φ. The value of M is related to φ by
M = 6 sinφ/(3 − sinφ) in triaxial compression and M ex = 6 sinφ/(3 + sinφ) in triaxial
extension. Combining these equations yields that the value of M and M ex are related by
M ex = 3M/(3 + M). Thus, if the assumption of a constant friction angle under triaxial
compression and extension is adopted, then (7) can be substituted by

cb(ψ) =
3

3 +Mb
cc(ψ) =

3

3 +Mc
(8)

to eliminate the model parameters M ex
cr , kex

b and kex
c .

If the assumption of a constant friction angle under triaxial compression and extension is
undesired, then an alternative approach eliminating the 2 model parameters, kex

b and kex
c , may

be done by simply choosing

cb = cc =
M ex

cr

M cr
(9)

6. ELASTO-PLASTIC FORMULATION

The mathematical formulation of the plasticity model is presented in this section. The
derivation follows that of Manzari and Prachathananukit [24]. The plasticity model is derived
within the framework of non-associated elasto-plasticity. In the following derivation, all stress

8



notations refer to effective stresses. Bold symbols symbolize symmetric second-order tensors
and the operators u : v and |u| refer to the tensor product and tensor norm, respectively.

6.1. Elastic behaviour

The constitutive relations are formulated in terms of isotropic and deviatoric stress defined
by p = (σ11 + σ22 + σ33)/3 and s = σ − pI, respectively. I denotes the second order identity
tensor. The elastic behaviour is based on the traditional isotropic hypoelastic formulation in
which the elastic incremental stress-strain behaviour is defined by

dεe
d =

1

2G
ds dεe

v =
1

K
dp (10)

where dεe
d and dεe

v refer to the deviatoric and volumetric elastic strain increments, respectively.
In the hypoelastic formulation, the elastic moduli, K and G, are assumed functions of the
isotropic pressure

K = K0

(
p

pref

)b

G = G0

(
p

pref

)b

(11)

in which pref is used as the reference pressure for which K = K0 and G = G0. The pressure
exponent b is a model parameter, expressing the variation of the elastic modules with the
isotropic pressure. The value of b is reported to vary from 0.435, at very small strains, to
0.765, at very large strains [33]. A value of 0.5 captures most of the important features of
increased shear stiffness with pressure [34].

6.2. Yield and plastic potential functions

The elastic domain is enclosed by a yield surface with a cone-type shape and the apex in origin
as illustrated in Figure 8. The yield surface is uniquely defined by the equation

f = |r| −
√

2

3
mp = 0 r = s− pα (12)

σ1

σ2

σ3

σ

pα

Hydrostatic axis

pI

∂f
∂σ

n
∂g
∂σ

r

π-plane

Figure 8. The cone-type yield surface defined in terms of m and α.
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where α is refered to as the deviatoric back-stress ratio tensor. This definition implies that
the yield surface remains circular in the π-plane. The value

√
2/3m and α define the radius

and the axis direction of the cone, respectively. The normals to the yield surface (∂f/∂σ) and
the plastic potential (∂g/∂σ) define the loading and plastic flow direction, respectively. These
are defined by:

∂f

∂σ
= n − 1

3
NI

∂g

∂σ
= n +

1

3
DI (13)

where n = r/|r| is the deviatoric normal to the yield surface. The parameters N and D define
the magnitude of the isotropic components. From (12), it follows that N = α : n + 2

3m. The
dilatancy parameter D has an important role as it controls the isotropic flow direction and thus
the volumetric behaviour of the plasticity model. The plastic flow is non-associated, except
in the special case where D = −N . It should be noted, that the formulation is not suitable
for modeling constant stress-ratio response, i.e. consolidation paths where the stress ratio is
constant as very high stress levels may be reached without inducing plastic strains, due to the
lack of a surface cap.

6.3. Surface definitions using image points

The model is formulated by use of image points. The image point defines a point on a surface
in the π-plane and is uniquely defined by the image vector αi pointing from the hydrostatic
axis to the image point, in the direction of n, see Figure 9. The bounding and characteristic
surfaces, defined previously, can be formulated in terms of image vectors. In this case, the
surfaces are expressed by

αi =

√
2

3
(g(ci, θn)Mi(ψ) −m)n , i = b, c (14)

αc

αb θ

θ

βc

βb

α

n

Characteristic surface

Bounding surface

βb = αb − α

βc = αc − α

σ1/p

σ2/p σ3/p

Figure 9. Illustration of the yield, characteristic and bounding surfaces in the π-plane.
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where θn refers to the Lode angle of n. It is important to note that this surface formulation
refers to back-stress ratios rather than stress ratios since the radius of the yield surface

√
2/3m

is subtracted. The Lode angle may be determined from the stress invariants J2 and J3 of n

cos(3θn) =
3
√

3

2

J3

(J2)3/2
(15)

The tensors, βb = αb−α and βc = αc−α, define the distance between α and their respective
image points. These tensors are adopted in the formulation of model dilatancy and evolution
laws for hardening parameters.

6.4. Volumetric behaviour

It is essential that the volumetric behaviour is simulated correctly. From (13), it follows that
the plastic volumetric strains are proportional to D. The formulation of D is therefore of great
importance. D is defined by

D = (A0 +Az)(βc : n) , Az = 〈z : n〉 (16)

where the dilatancy parameter A0 represents a positive and dimensionless scaling parameter.
This definition implies that the sign of βc : n defines the threshold between compressive and
dilative behaviour. Thus, any stress state inside the characteristic surface obtains a compressive
behaviour, since βc : n > 0, whereas on-loading beyond the characteristic surface obtains a
dilative behaviour, since βc : n < 0.

The unloading dilatancy parameter Az is defined in terms of the fabric tensor z which
enables the model to capture the dilatancy of sand under reversed loading. The definition of
Az imply that Az = 0, except during reversed loading where Az > 0. The evolution of z is
defined from an evolution law originally introduced by Dafalias [5]

dz = z̃dλ z̃ = −Cz(A
max
z n + z)〈−D〉 (17)

The factors Cz and Amax
z are positive dimensionless model parameters. The definition of z

may be hard to interpret, however, the introduction of z enables the model to recall load
history and evolve accordingly. The parameter Amax

z becomes an upper threshold value of Az.
The definition in (17) implies that z evolves in a direction opposite to n whenever the sample
dilates (D > 0) such that the tensor product z : n becomes positive, only when the load
direction shifts to unloading.

6.5. Kinematic and isotropic hardening

Both kinematic and isotropic hardening are adopted in the model. The kinematic evolution
law is based on a proposition by Dafalias and Popov [4]

dα = α̃dλ α̃ = Cα

( |β
b

: n|
br − |βb : n|

)
βb (18)

Cα is a positive model parameter and br is a parameter that must be defined such that
br > |βb : n|. The adopted value is br = 2

√
2/3(Mb −m). The evolution law ensures that α,

the center of the yield cone, evolves in the direction of βb. The rate of evolution will converge to
zero as α approaches the bounding surface, due to inclusion of the factor |βb : n|. This implies
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that the stress state remains inside the bounding surface during hardening. The bounding
surface will contract during softening as the sand dilates and ψ → 0. This contraction can
leave the stress state outside the bounding surface. In this case, the direction of βb is opposite
to the loading direction n, causing |βb : n| to become negative. Thus, α will evolve in the
opposite direction of βb and thereby follow the contracting bounding surface. The isotropic
hardening law is based on an original proposition by Manzari et al. [23]

dm = m̃dλ m̃ = Cm(1 + e0)D (19)

where Cm is a model parameter and e0 is the initial void ratio. The formulation implies that
the evolution of m becomes proportional to the plastic rate of change of volume. This ensures
that a compacted sand obtains a larger elastic domain than a loose sand. Even though the
model allows for isotropic hardening, this model practically retain a constant radius m of the
elastic domain. Therefore, isotropic hardening is often neglected (Cm = 0) since it is of less
importance for the shear behaviour of sands.

6.6. Model parameters

A complete list of model parameters is given in Table I. The table include suggestions
for elimination of several model parameters to ease calibration if limited data is available.
Specification of initial conditions is required - these include e0, p0, S0, A0 and m0. The initial
value of the back-stress may conveniently be chosen as A0 = S0/p0. It may be appropriate to
choose a small initial size of the yield cone, i.e. m0 ≈ 0.05, and neglect isotropic hardening

List of model parameters: Reduction of parameters

Parameter Description Optional Monotonic
Elasticity K0 Reference bulk modulus. [Pa] - -

G0 Reference shear modulus. [Pa] 0.5 ×K0 -
b Pressure exponent. 0.5 -

Critical
state

λ Slope of CSL in e-ln(p) space. - -
Γ Critical state void ratio for p′=1Pa. - -
Mcr Slope of CSL in p-q space in triaxial

compression.
- -

M ex
cr Slope of CSL in p-q space in triaxial

extension.
n.a.1 -

Surface
definitions

kb Bounding line in triaxial compression. - -
kex

b Bounding line in triaxial extension. n.a.1 -
kc Characteristic line in triaxial compression. - ≈ 0
kex

c Characteristic line in triaxial extension. n.a.1 ≈ 0
Hardening Cm Evolution of isotropic hardening. 0 n.a.

Cα Evolution of kinematic hardening. - -
Dilatancy A0 Dilatancy parameter - -
Unloading
dilatancy

Cz Evolution of fabric tensor. 0 n.a.
zmax Limit size of fabric tensor. 0 n.a.

1: Simplifying assumption: M ex
i = 3Mi/(3 +Mi) i = b, c

Table I. List of model parameters and optional parameter reductions.
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(Cm = 0). In this case, the size of the elastic domain remains small and the response to
shearing is mainly governed by the evolution law for kinematic hardening. Thus, G0 is of less
importance and may conveniently be chosen as G0 = 0.5×K0 which corresponds to an elastic
Poisson’s ratio equal to 0.29. A representative shear stiffness is then obtained by calibrating
Cα.

7. INTEGRATION ALGORITHM

An efficient and accurate time-stepping integration scheme must be adopted to incrementalize
and utilize the cyclic plasticity model. The fact that the elasto-plastic stiffness depends on
both current stresses and hardening parameters challenges the integration of the constitutive
relations. The most suitable integration algorithm may depend on the type of global solver.
This paper provides a fast, stable and accurate integration algorithm suitable for an explicit
global solver, such as FLAC3D. It is characteristic for an explicit global solver, that the step-
size is very small. This calls for a fast return mapping or sub-stepping integration scheme on
constitutive level. A benchmark analysis by Manzari [24] included a cutting plane algorithm
belonging to the family of explicit return mapping methodss, originally derived by Simo &
Ortiz [29]. The benchmark analysis showed that the highest efficiency was obtained using the
cutting plane algorithm, however, the algorithm failed to converge at low stress levels. A return
mapping method is adopted in this paper and convergence problems are addressed by adopting
a suitable implementation strategy.

7.1. Return mapping method

The derivation of the return mapping method relies on basic elasto-plastic assumptions.
Firstly, the integration of the constitutive relations must satisfy the consistency condition.
The consistency condition, in terms of the hardening parameter H , is given by

∂f

∂σ
dσ −Hdλ = 0 H = −

(
∂f

∂α
α̃ +

∂f

∂m
m̃

)
(20)

Secondly, the theory of elasto-plasticity assumes that a stress increment can be divided into
an elastic and a plastic part

∆σ = C : (∆ε − ∆εp) = ∆σe − ∆σp (21)

The stress increments ∆σe and ∆σp are referred to as the elastic predictor and plastic
corrector, respectively and C refers to the hypoelastic stiffness matrix. The purpose of the
return mapping method, is to determine the plastic corrector such that the stress state remains
on the yield surface while the consistency condition is fulfilled. Given the current stress state
σ0 and a strain increment ∆ε, the stress state in the subsequent step can be calculated by

σ = σ0 + C : (∆ε − ∆εp) (22)

according to (21). By initially setting ∆εp = 0 in (22), the elastic predictor stress σelas

is calculated, leaving the plastic correction ∆σp = C : ∆εp to be determined. The plastic
correction is governed by the flow rule

∆εp = ∆λ
∂g

∂σ
(23)

13



Thus, the purpose of the return mapping method is reduced to determining the magnitude
of ∆λ while fulfilling (20). This is addressed by a first order Taylor expansion of the yield
function around σelas while utilizing that f(σ) = 0

f(σ) = f(σelas) − df

dσ
: ∆σp +

df

dλ
∆λ = 0 (24)

From the consistency condition, it follows that df/dλ = H . Thus, by rearranging (24),
and using the relation ∆σp = C∆εp combined with (23), a linear expression determining
the magnitude of the plastic multiplier can be obtained. This linear expression is however
inadequate since the gradients ∂f/∂σ and ∂g/∂σ as well as the hardening parameter H
vary along the return path from σelas to σ. An iterative scheme must be adopted to solve
this problem. Simo and Ortiz [29] proposed an explicit scheme, the general return mapping
method, solving the problem in a sequence of linearized steps. The steps are given by

σi = σ0 + C : (∆ε − ∆ε
p
i−1) (25)

∆λ =

(
f(σi)

(∂f/∂σ) : C : (∂g/∂σ) +H

)

i−1

(26)

∆ε
p
i = ∆ε

p
i−1 + ∆λ

(
∂g

∂σ

)

i−1

(27)

∆xi = ∆xi−1 + ∆λx̃i−1 (28)

where x refers to a hardening parameter and x̃ is the corresponding evolution law. A geometric
interpretation of the general return mapping method is illustrated in Figure 10.

It is convenient to rewrite the integration steps (25)-(28) in terms of model parameters.
From (12) and (20), it follows that the hardening parameter H can expressed by

H = p(n : α̃ +

√
2

3
m̃) (29)

The second denominator term in (25) can be simplified by exploiting that stresses are divided
in isotropic and deviatoric stresses. Thus, from (11) and (13), the second denominator term
becomes

∂f

∂σ
: C :

∂Q

∂σ
= −NDK + 2G (30)

f(σ0,x0) = 0

f(σ,x) = 0

ELASTIC DOMAIN

Elastic predictor

σ0

σelas
1

σ2σ3
σ4

σ

Figure 10. Geometric interpretation of the general return mapping method [29]. An elastic prediction
brings the stress state from σ0 to σelas

1 . Subsequently, successive plastic correction steps are applied
to return the stress state to the yield surface.
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7.2. Integration of elastic relations

The integration of the elastic relations needs special attention due to the p-dependency of the
bulk and shear modulus. The resulting isotropic stress p arising from the elastic increment
∆εe

v can be determined by integration of the elastic relation (11).

p =

(
p1−b
0 +

1

pb
a

(1 − b)K0∆ε
e
v

) 1
1−b

(31)

p0 denotes the isotropic stress at the previous step. The resulting bulk modulus can be
calculated subsequently by K = ∆p/∆εe

v, with ∆p = p − p0. If ∆εe
v = 0, then K must be

evaluated from (11). The shear modulus scales proportional to the bulk modulus, thus the

function ReturnMappingMethod(∆εd, ∆εv)

Initial state:

s0, p0, m, α, z, εv, ∆ε
p
d = 0, ∆εp

v = 0

Update void ratio:

εv = εv + ∆εv

e = e0 − (1 + e0)εv

Iterations i = 1, 2, ....., imax

p =
(
p1−b
0 + (K0/p

b
a)(1 − b)(∆εv − ∆εp

v)
)1/(1−b)

s = s0 + 2G(∆εd − ∆ε
p
d)

ψ = e− (Γ − λ ln(p/pref))

If f(p, s)/p > ǫf :

Update: N, D, K, G, n, α̃, m̃, z̃
Add plastic correction:

∆λ =
f(p, s)

−NDK + 2G+ p(n : α̃ +
√

2/3m̃)

∆ε
p
d = ∆ε

p
d + ∆λn

∆εp
v = ∆εp

v + ∆λD
α = α + ∆λα̃
m = m + ∆λm̃
z = z + ∆λz̃

Else:

s0 = s
p0 = p
return

Table II. The general return mapping method by [29] applied to the
modified critical state two-surface plasticity model.
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resulting shear stress can be evaluated by

s = s0 + 2G∆εe
d G = G0

{
K/K0 if ∆εe

v 6= 0
(p/pa)

b if ∆εe
v = 0

(32)

The model specific return mapping method, expressed by the above formulations, is outlined
in Table II. Note that the return mapping algorithm will continue iterations until σ coincides
with the yield surface which is evaluated by the criterion f(p, s) < ǫf × p. Here, ǫf specifies
a given tolerance. The criterium is chosen to scale proportional to p, since f is evaluated in
terms of stress.

8. IMPLEMENTATION STRATEGY

A suitable implementation strategy must be adopted to ensure robustness and efficiency of the
integration scheme before actual coding of the plasticity model for computer application. The
general return mapping method is only conditionally stable when adopted for the two-surface
critical state plasticity model. In general, the return mapping method fails to converge if the
imposed strain increment becomes too large. These convergence problems increase as p→ 0.

In this paper, most convergence problems are solved by strain-controlled sub-stepping.
In general, the imposed increments should be sufficiently small so that sub-stepping on
constitutive level is avoided. However, if the isotropic stress level in a single element approaches
zero, then extremely small increments must be enforced at the global level to obtain a stable
solution. Instead of enforcing a fixed increment size, the local increments are divided into a
number of sub-steps as required. The size of each sub-increment is continuously updated from a
specified tolerance criterion, so that only the necessary number of sub-increments are applied.

q

p

p0

|∆σ0|

σ0

Yield surface

∆σelas

ǫe =
|∆σ|
p0

Figure 11. Criterion for initiating a sub-step illustrated in the p− q stress plane

The active sub-step control uses a tolerence criterion based on the magnitude of the elastic
prediction ∆σelas, as shown in Figure 11. If the magnitude of the elastic prediction exceeds a
given tolerance, the increment is then divided into two sub-increments. The elastic prediction
is estimated from the elasticity in the initial state, i.e. G = G(σ0) and K = K(σ0). The
criterion initiating sub-steps is defined by |∆σ|/p0 > ǫe, with ǫe specifying a given tolerance.
The criterion scales proportional to the isotropic pressure, thus sub-steps are initiated mainly
at low stress levels.
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The introduction of increment controlled sub-steps ensures that the return-mapping method
remains stable. However, the number of sub-steps grows drastically as p → 0. The high
computational costs may be significantly reduced using a stress correction strategy as p→ 0.
Here, a stress correction is introduced to prevent p to exceed a lower limit given by pm = ǫmpref,
in which ǫm is a specified tolerance criteria. Note that the reference pressure pref is a constant
and may for example be chosen equal to the atmospheric pressure.

q

pm = ǫmpref

Yield surface

(p0, s0)

(p, s)

(pm, sm)

p

Figure 12. Stress correction for p→ 0 illustrated in the p− q stress plane.

The value of pm is chosen such that pm << pref. If p obtains a value less than pm, then the
soil matrix is practically liquefying. In this case, scaling may be applied to translate the stress
state from (p, s) to (pm, sm), as illustrated in Figure 12.

pm = ǫmpref sm =

(
pm

p

)
s (33)

This correction strategy may be adopted to significantly reduce the computational costs as
cyclic liquefaction evolve. The correction clearly violates the underlying model formulation.
However, the correction only slightly changes the model response and may be justified, since
validity of the assumptions used to formulate the plasticity model are rather weak for p → 0.
When the correction is applied, the value of z is simultaneously set to zero (z = 0) since the
soil matrix is liquefying. Setting z to zero effectively resets the ability of the model to recall
load history.

Numerical instability occurs if the radius of the yield surface becomes zero or negative
(m ≤ 0). This can occur since the radius of the yield surface is defined to decrease
proportionally to the rate of volumetric expansion. Instability can be avoided by setting m̃ = 0
in the case where 0 > Cm(1 + e0)D and m < ml. The constant ml represents a specified lower
bound for the size of the yield surface.

An algorithm combining the above mentioned correction strategies is outlined in Table III.

9. EFFICIENCY, ACCURACY AND STABILITY

The performance of the integration scheme is investigated for efficiency, stability and accuracy
on a constitutive level. Simulations of conventional cyclic and monotonic triaxial tests,
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Initial state:

s0, p0, εv, m, α, z
ζ = 0, k = 1
∆εd,0, ∆εv,0

Iterations j = 1, 2, ....., jmax

∆εv = ∆εv,0/k
∆εd = ∆εd,0/k

∆σelas = (2G0∆εd +K0I∆εv) (p0/pr)
b

If |∆σelas|/p0 > ǫe: Reduce step-length

k = 2k
Else: Start integration

[s0, p0] = ReturnMappingMethod(∆εd, ∆εv)
If p0 < ǫmpref: Add stress correction

s0 = ǫm(pref/p0)s0

p0 = ǫmpref

z0 = 0

ζ = ζ + 1/k

Stop iterations when ζ = 1

Final state: σ0, p0, εv, m, α, z

Table III. Implementation strategy applied to obtain a stable numerical integration scheme

performed in undrained conditions (∆ǫv = 0), are used for analysis. The adopted model
parameters are similar to the parameters used for simulation of Nevada Sand [23, 24]. These
are listed in Table IV.

K0 = 31.4MPa Mc = 1.1 kb = 4.0 A0 = 2.64
G0 = 31.4MPa λ = 0.025 kc = 4.2 Amax

z = 100
er = 0.93 Cα = 1200 Cz = 100

Table IV. Model parameters adopted for analysis of efficiency, stability and accuracy.

First, the efficiency and accuracy of the integration scheme (Table II) is investigated. The
analysis is based on simulations of monotonic and cyclic tests. The monotonic test simulates
a loose sample with the initial confining stress p = 100kPa and void ratio e0 = 0.82 while
the cyclic test simulates a medium-dense sample with the initial confining stress p = 150kPa
and void ratio e0 = 0.65. The cyclic test is simulated with a constant shear stress offset
(q = 35 ± 25kPa) in order to avoid stability problems when p → 0. The simulations are
illustrated in Figure 13.

The accuracy of the return mapping method is evaluated in terms of an error measure
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Figure 13. Illustration of simulations used to investigate the accuracy and efficency of the integration
scheme. a-b) Monotonic loading. c-d) Cyclic loading

defined by

error =
1

pref

(
1

N

N∑

i=1

|σi − σi,exact|
)

(34)

where N is the number of steps and σexact refers to the exact solution approximated by
simulations having a very small step size. The reference pressure is chosen as pref = 100kPa.
The accuracy is investigated as a function of the imposed strain increments ∆ǫ and the
resulting step size is quantified in terms of the ratio ∆(q/p)1 of the initial step. For example,
if ∆(q/p)1 = 1.1 = Mcr, then the critical stress ratio is reached in only one step. The
results of the simulations are listed in Table V. They indicate that the computational expense,
evaluated in terms of total iterations, increases proportional to N. Thus, independent of step
length, approximately 2 iterations are on average required at each step. The error decreases
potentially with N , see Figure 14a, and proportional to the ratio ∆(q/p)1, see Figure 14b.
The results suggest that a reasonable accuracy, say error < 2− 3%, is obtained when the step
size is chosen so that ∆(q/p)1 < 0.1. The tolerance criteria ǫf has an influence on efficiency
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No. Loading type N ∆ε1 ∆(q/p)1 Iterations error [%]
1 Monotonic 50 8 × 10−4 0.52 103 6.2
2 Monotonic 100 4 × 10−4 0.27 207 3.1
3 Monotonic 200 2 × 10−4 0.14 413 1.6
4 Monotonic 500 1 × 10−4 0.066 1023 0.63
5 Monotonic 1000 4 × 10−5 0.038 2027 0.31
6 Monotonic 5000 8 × 10−6 0.0075 9794 0.057
7 Cyclic 100 2 × 10−4 0.13 241 3.2
8 Cyclic 200 1 × 10−4 0.071 465 1.4
9 Cyclic 500 4 × 10−5 0.031 1089 0.57
10 Cyclic 1000 2 × 10−5 0.015 2059 0.28
11 Cyclic 2000 1 × 10−5 0.0077 3910 0.14
12 Cyclic 5000 4 × 10−6 0.0031 9439 0.05

Table V. Analysis of accuracy and efficiency as function of step size. (ǫf = 10−4)
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Figure 14. Error of return mapping algorithm as function of N and ∆(q/p)1.

and accuracy. Table VI lists the results of simulations performed in order to investigate the
influence of ǫf . The results suggest that a value of ǫf = 10−4 is appropriate to optimize

No. Loading type ǫf Iterations ǫ [%]
1 Cyclic 10−8 2725 0.33
1 Cyclic 10−6 2374 0.33
2 Cyclic 10−5 2259 0.33
3 Cyclic 10−4 2059 0.33
4 Cyclic 10−3 1850 0.42
5 Cyclic 10−2 1691 3.3

Table VI. Influence of the tolerance criteria ǫf on efficiency and accuracy. The
simulations are performed with N=1000 and ∆ε1 = 2.5 × 10−5
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Figure 15. Simulation used in stability analysis. a-b) Simulation no. 6, c-d) Simulation no. 10

efficiency without loosing accuracy.

The stability of the integration scheme and implementation strategy (Table II and III) was
tested by simulation of loose and dense samples subjected to a wide range of load histories.
Here, an undrained cyclic triaxial test performed on a medium-loose sample (e0 = 0.75)
subjected to cyclic loading (q = 10 ± 20kPa) is considered, see Figure 15a and 15b. The
cyclic loading causes cyclic liquefaction, which is harsh from a numerical point of view, since
p → 0. The value of Cz is set to Cz = 500 in order to cause strong contraction during
unloading and thereby challenging the stability of the algorithm. Series of simulations are
performed to investigate the effect of N, ǫe and ǫm on stability. The results are listed in
Table VII. The simulations 1-3 suggest that reducing the step-length is inappropriate to avoid
numerical instability. Even a dramatic decrease in step-size does not ensure convergence. The
simulations 4-8 show that the strain-controlled sub-stepping is sufficient in order to avoid
numerical instability if the tolerance is chosen so that ǫe ≤ 0.3. However, the stability is
obtained at a relatively high computational cost (minimum 24856 iterations).

The computational costs may be significantly reduced if the stress correction for p → 0 is
adopted, ie. ǫm > 0. For example, if ǫm = 0.01, then the computational costs are reduced to
only 3033/24856 = 12%. Thus, it may be desirable to adopt this correction strategy if cyclic
liquefaction is expected to evolve over a large domain. The correction alters the model response
as p → 0, however only slightly. Figure 15c and 15d illustrate a simulation performed with
ǫm = 0.01 which may be compared with the simulation in Figure 15a 15b performed without
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No. N ∆ε1 ǫe ǫm Iterations
1 600 10−4 - - *
2 6000 10−5 - - *
3 60000 10−6 - - *
4 600 10−4 0.8 - *
5 600 10−4 0.5 - *
6 600 10−4 0.3 - 24856
7 600 10−4 0.2 - 32289
8 600 10−4 0.1 - 61453
9 600 10−4 0.3 10−1 1501
10 600 10−4 0.3 10−2 3033
11 600 10−4 0.3 10−3 5769
12 600 10−4 0.3 10−4 8281
13 600 10−4 0.3 10−5 15761
* No convergence

Table VII. Results of stability analysis. (ǫf = 10−4)

correction for p→ 0.
To summarize, a sufficient accuracy of the return mapping method may be obtained if the

step-size is chosen such that ∆(q/p)1 < 0.1 while a combination of ǫe = 0.3 and ǫm = 10−2

may be a good compromise to ensure both efficiency and stability.

10. CONCLUSION

This paper provides comprehensive background information and documentation for the
implementation of the modified critical state two-surface plasticity model as a user-subroutine
in the commercial finite difference, FLAC3D by Itasca. The plasticity model is equal to
the model by Manzari et al. but uses an alternative multi-dimensional surface formulation.
The model parameters are discussed and suggestions for parameter reductions are made. A
fast and accurate time-stepping integration scheme suitable for an explicit global solver is
presented. The integration scheme is based on the general return mapping method, which
is only conditionally stable. Convergence problems are addressed by adopting a suitable
implementation strategy consisting of increment controlled sub-stepping. Other correction
strategies are introduced, including a correction introduced to increase the efficiency as
p→ 0. Finally, simulations are made to investigate the performance of the integration scheme
and appropriate tolerance criteria are suggested to obtain sufficient efficiency, stability and
accuracy. Thus, this paper provides complete information for the implementation of a robust
user-defined constitutive model, capable of simulating the response of non-cohesive sands or
silts, in a commercial finite element or finite difference code.
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