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Abstract:

An actuator disc model for the flow solver EllipSys (2D&3D) is proposed. It is based on a correction of

the Rhie-Chow algorithm for using discreet body forces in collocated variable finite volume CFD code.

It is compared with three cases where an analytical solution is known.
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Introduction

The flow going through a wind turbine can be modeled using Computational Fluid Dynamics (CFD) by

solving the Navier Stokes equations. The influence of the turbine in the equation can be implemented

as a body force acting against the flow. The Navier Stokes equations are essentially composed of

velocity terms, of pressure gradient terms and of body forces. When discretized over a mesh using a

finite volume method, if the pressure and velocity terms are represented at the same place, a decou-

pling might occur that can lead to numerical oscillations of the pressure (or pressure wiggles). One

way of dealing with this issue is to keep the velocities at the cell faces and the pressure terms at the

cell centers, so that the pressure gradient terms, derived from them, are located at the same place as

the velocity terms (e.g. the cell centers). This method is called the staggered grid method. The other

standard way is to keep the pressure and velocity terms at the cell centers (known as the collocated

variable method), and uses a special treatment of the pressure, to avoid the pressure/velocity decou-

pling. This method, which was first introduced by Rhie-Chow [1], was never intended to take care of the

pressure/velocity decoupling introduced by inputting a sudden pressure jumps, or discreet body forces.

EllipSys, the in-house curvilinear CFD code designed at Risø National Laboratory for Sustainable

Energy (Risø-DTU) [2] and the Fluid Mechanics department of the Technical University of Denmark

(MEK-DTU) [3] is based on a collocated variable arrangement using the Rhie-Chow pressure correc-

tion algorithm. Discreet body forces are, in the present context, used in order to model the influence

of wind turbines on the flow. In order to overcome the pressure wiggles introduced by discreet body

forces, one approach is to smooth the body forces out by using a Gaussian distribution instead of a

Dirac delta distribution [4]. This method requires that the pressure jump is made over several cells

which can become computationally expensive on large problem like simulating a wind turbine farm. In

order to save computational time, a modification of the Rhie-Chow algorithm is proposed to treat the

special case of discreet pressure jumps.

In the present paper, an algorithm to discretize an actuator disc over a mesh is briefly introduced. Sec-

ondly, the problem of the pressure wiggles is presented for a 1D example of a regular Cartesian mesh

with a special case of uniform velocity over the domain. The proposed algorithm is then described in

the context of the curvilinear CFD code EllipSys3D. For the sake of clarity, the same notations used in
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Figure 1: 1D mesh

the original thesis describing EllipSys are used (see Sørensen [2]). Finally three different test cases,

for which an analytical solution is known, are presented and compared with Ellipsys results.

1 Description of the algorithm

1.1 Force allocation

The basic idea of the force allocation algorithm used is to, first, search for all the cells which are

crossed by the disc. Then, in order to determine the equivalent body force that will be allocated to the

cell, to calculate the intersectional surface between the disc and each cell, and to integrate the force

distribution of the actuator disc over it. Finally, to apply the pressure jump correction, described in the

following section, to redistribute the forces over the neighboring cells, and to derive the corresponding

cell faces pressure jumps. The Navier Stokes equations are then solved using the body forces in the

momentum equation, and using the pressure jumps in the Rhie-Chow algorithm.

1.2 Pressure jump correction

In order to understand the necessity of the the pressure jump correction, a simple 1D case, with

uniform velocity flow is used. Based on this example, the principle of the Rhie-Chow algorithm is briefly

introduced. Then, pressure wiggles are shown to be present when discreet body forces are applied.

Finally, the basic idea behind the pressure jump correction is presented, and its application to the CFD

code EllipSys is described.

Origin of pressure wiggles

The 1D Navier Stokes equations can be written as

∂ρU

∂t
+

∂ρUU

∂x
= −

∂P

∂x
+

∂

∂x

(
µ

∂U

∂x

)
+ F, (1)

where F is a volumic force [N/m3].

In order to have an equation for the pressure, the Continuity equation is used

∂ρU

∂x
= 0. (2)

In the finite volume formulation, derivatives can be discretized by integrating them over a control

volumes. Using a CDS scheme over the 1D mesh presented in Figure 1, the following rules can be

applied.

∫

P

∂Ψ

∂x
dxdy = (Ψe − Ψw)∆y = (ΨE − ΨW )

∆y

2
, (3)

∫

P

∂ΨΨ∗

∂x
dxdy = (ΨeΨ

∗

e − ΨwΨ∗

w)∆y

= (ΨE(Ψ∗

E + Ψ∗

P ) − ΨW (Ψ∗

W + Ψ∗

P ) + ΨP (Ψ∗

E − Ψ∗

W ))
∆y

4
, (4)and ∫

P

∂

∂x

(
∂Ψ

∂x

)
dxdy =

[(
∂Ψ

∂x

)

e

−

(
∂Ψ

∂x

)

w

]
∆y = (ΨW + ΨE − 2ΨP )

∆y

∆x
. (5)



where the ∗ indicates that the term is known from a previous time step.

Applying these rules on the Continuity equation (2) gives

∆y (ρUe − ρUw) = 0, (6)

which therefore leads to a second relationship,

UW = UE . (7)

Assuming a steady flow and therefore dropping the unsteady term of Equation (1) gives

ρ [(UU∗)e − (UU∗)w]
∆y

4
= (PW − PE)

∆y

2
+ µ (UW + UE − 2UP )

∆y

∆x
+ FP ∆x∆y. (8)

Equation (8) can be rewritten into a general formulation by linearizing and assuming that one of the

U ’s is known in the convective term (UU term)

AP UP =
∑

P

Anb
P Unb + (PW − PE)

∆y

2
+ FP ∆x∆y, (9)

with nb ∈ (W, E), and

AW
P = µ

∆y

∆x
+ ρ

∆y

4
(U∗

W + U∗

P ), AE
P = µ

∆y

∆x
− ρ

∆y

4
(U∗

E + U∗

P ),and AP = 2µ
∆y

∆x
+ ρ

∆y

4
(U∗

E − U∗

W ). (10)

Note that Continuity states that ρ∆yUW = ρ∆yUE, and so therefore AP = AW
P + AE

P .

The cell center velocity obtained from the Navier Stokes equations (9) can be interpolated, using

the midpoint rule, at the cell face in order to apply the Continuity

Ue =
1

2
(UP + UE) . (11)

A simple case can be applied, where the velocity is assumed to be uniform in the domain (i.e.

UWW = UW = UP = UE = UEE). Combined with the assumption of a regular Cartesian mesh, all

the velocity terms and coefficients A∗

∗
are eventually canceling each other. Inserting Equation (9) into

Equation (7) then gives

(PWW − PP )
∆y

2
+ FW ∆x∆y = (PP − PEE)

∆y

2
+ FE∆x∆y

PWW − 2PP + PEE = (FE − FW )∆x. (12)

If there are no body forces in the domain, the relationship between the pressure at each cell be-

comes

PP =
1

2
(PWW + PEE) . (13)

As the pressure of a cell is not dependent of its direct neighboring cells pressure, this relationship

can be satisfied by a pressure wiggle solution (e.g. 2-0-2-0-2...)

The Rhie-Chow algorithm

The Rhie-Chow algorithm is adressing this issue by separating the pressure terms from the rest of the

momentum terms, when the face velocities are derived. Instead of interpolating the pressure gradient

at the cell faces using the pressure gradients at the cells center, they are directly derived from the

pressure at the closest cells center.

Ue =
1

2

(
ŨP + ŨE

)
+

∆y

Ae
(PP − PE) , (14)
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Figure 2: Pressure jump with wiggles

where

ŨP =
1

AP

(
∑

P

Anb
P Unb + FP ∆x∆y

)
, and Ae =

1

2
(AP + AE) . (15)

Inserting Equation (14) into the Continuity Equation (2) then brings a different relation

1

2

(
ŨE − ŨW

)
+

∆y

Ae
(PP − PE) −

∆y

Aw
(PW − PP ) = 0. (16)

Applying the same simple case of uniform velocity in the entire domain, with a regular Cartesian

mesh, all the velocity terms cancel each other, which brings a relationship between the pressure and

the body forces
1

2
(FE − FW )∆x∆y + ∆y (2PP − PW − PE) = 0. (17)

If there are no body forces in the domain, then the pressure in the cell P is related with its direct

neighboring cells pressure.

PP =
1

2
(PW + PE) . (18)

In this case, the oscillations pressure field is not a solution.

Applying a discreet force or a pressure jump

However, if there is a discreet force FP applied in the cell P , already from Equation (9), there is a

problem. If the velocity is the same over the domain, then all the velocity terms are canceling each

other which gives a relationship between the body force and the pressure.

PE − PW = 2FP ∆x. (19)

Similarly, applying Equation (??) on the cell W and E shows that there is a pressure wiggle solution

PP − PWW = 2FW ∆x = 0 and PEE − PP = 2FE∆x = 0. (20)

So even using the Rhie-Chow correction, applying a sudden pressure jump into this scheme causes

the appearance of numerical pressure wiggles (see Figure 2).

Basic idea of the modification

In order to correctly handle discreet forces in the Navier Stokes and the Continuity equations, the forces

are defined at the face of the cells in the same way the pressure gradient terms are. The body force in

the cell P is splitted into two pressure jumps: one on the west face P j
w and one on the east face P j

e

respectively. Equation (9) can then be rewritten as

AP UP =
∑

P

Anb
P Unb + (PW − PE)

∆y

2
+
(
P j

w + P j
e

) ∆y

2
. (21)
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Figure 3: Pressure jump without wiggles

The pressure jumps are then treated in the same way as the pressure gradients during the deriva-

tion of the face velocity

Ue =
1

2

(
UP + UE

)
+

∆y

Ae
(PP − PE) +

P j
e

Ae
∆y, (22)

where

UP =
∑

P

Anb
P Unb, and Ae =

1

2
(AP + AE) . (23)

The Continuity equation (6) is then giving

1

2

(
UE − UW

)
+

∆y

Ae
(PP − PE) −

∆y

Aw
(PW − PP ) +

∆y

Ae
P j

e −
∆y

Aw
P j

w = 0. (24)

Applying the same simple case (uniform velocity and regular Cartesian mesh) brings a relationship

between the pressure and the body forces. The Continuity, in Equation (24), then gives

PW + PE − 2PP = P j
e − P j

w. (25)

Furthermore, by canceling the velocity terms, Equation (21) gives

PE − PW = P j
w + P j

e . (26)

Finally, combining Equation (25) and (26) gives

PP − PW = P j
w and PE − PP = P j

e , (27)

which is the correct result without pressure wiggles (see Figure 3).

Implementation in EllipSys

The SIMPLE algorithm [5] of EllipSys is using the predicted velocity, obtained from the Navier Stokes

equations, in order to find the pressure, through the Continuity equation. This pressure is used to

correct the predicted velocity so that it complies with the Continuity equation (it is then not complying

with the Navier Stokes). The iteration goes on until the velocity converges to a solution that satisfies

both the Navier Stokes equations and the Continuity equation.

The Continuity equation can be expressed using the divergence operator

−→
∇ ·

−→
ρU = 0. (28)

Using the notation of Sørensen [2]-Eq.28 for a curvilinear grid, this equation can be rewritten as

1

J
(ρUαξx + ρV αξy + ρWαξz)ξ

+
1

J
(ρUαηx + ρV αηy + ρWαηz)η

+
1

J
(ρUαζx + ρV αζy + ρWαζz)ζ = 0, (29)



where J is the Jacobian of the curvilinear to Cartesian transformation matrix, and the α’s are differential

areas of the cell faces projected in the Cartesian coordinates. Equation (29) can be written in a more

compact way to [2]-Eq.71

1

J
[(Ce − Cw) + (Cn − Cs) + (Ct − Cb)] = 0, (30)

where Ce = ρeUe(αξx)e + ρeVe(αξy)e + ρeWe(αξz)e.

The predicted velocity, derived from the Navier Stokes equations, is composed of implicit terms

(AnbUnb) and an explicit terms (SU−mom) [2]-Eq.65.

UP =
SU−mom −

∑
AnbUnb

AP,U
, (31)

where the explicit terms (SU−mom) contain the cross diffusion terms, the pressure terms and the body

forces.

In order to apply the Continuity, it is necessary to find the velocity at the cell faces. The usual

collocated approach is to interpolate the velocity UP at the cell faces. This leads to the pressure

wiggles, as explained previously. The idea of the Rhie-Chow algorithm is to separate the pressure

gradient terms from the rest, and to directly estimate it at the cell face.

(
∂P

∂x

)

e

=
1

J

((
∂Pαξx

∂ξ

)

e

+

(
∂Pαηx

∂η

)

e

+

(
∂Pαζx

∂ζ

)

e

)
. (32)

The normal gradients are directly computed using a second order accurate central difference

scheme [2]-Eq.42. (
∂Pαξx

∂ξ

)

e

= (PE − PP )(αξx)e. (33)

The cross-term gradients are computed as the interpolation between two central differences [2]-

Eq.43.

(
∂Pαηx

∂η

)

e

=
1

4
[(PN − PS) + (PNE − PSE)](αηx)e (34)

(
∂Pαζx

∂ζ

)

e

=
1

4
[(PT − PB) + (PTE − PBE)](αζx)e. (35)

Therefore, instead of interpolating directly (31), the pressure gradient is estimated at the cell faces

[2]-Eq.69

Ue =

(
SU−mom −

∑
AnbUnb

AP,U

)

e

+

(
1

AP

)

e

(
(αξx)e(PE − PP )

+
1

4
(αηx)e[(PN − PS) + (PNE − PSE)]

+
1

4
(αζx)e[(PT − PB) + (PTE − PBE)]

)
, (36)

where the first term in the Right Hand Side (RHS) is the linear interpolation at the cell face of all the

momentum terms except the pressure gradient terms.

In the modification of the Rhie-Chow algorithm, the body forces are also extracted from the mo-

mentum terms. They are then transformed into pressure jumps located at each cell faces, in a similar

manner as proposed by Mencinger and Zun [6].



Ue =

(
SŨ−mom −

∑
AnbUnb

AP,U

)

e

+

(
1

AP

)

e

(
(αξx)e(PE − PP )

+
1

4
(αηx)e[(PN − PS) + (PNE − PSE)]

+
1

4
(αζx)e[(PT − PB) + (PTE − PBE)] + P j

e, x

)
, (37)

where P j
e, x is the pressure jump at the east cell face in the x direction, and SŨ−mom is now the

momentum source without the pressure terms and the body forces.

In order to be consistent with the the original body force applied in the cell, the pressure jump needs

to satisfy the following property.

∫∫∫

V

−→
F dV =

∫∫

A

−→n P j dS. (38)

This relationship can be projected on the Cartesian coordinate system and discretized over the current

cell. For the x-direction, this corresponds to

FP, x VP =
∑

nb

nnb, x Snb P j
nb, x, (39)

where nb are the neighboring faces, S is the face surface area and V the cell volume, nnb, x is the

normal vector of the face nb in the x direction.

One solution to this relationship is to weight each faces accordingly to its normal vector and face surface

area. The following relationship is complying with Equation (39)

P j
nb, x =

FP, x VP nnb, x Snb∑
nb(nnb, x Snb)2

. (40)

The pressure jump contributions from the two cells adjacent faces are added up. The final pressure

jump can then be used directly in Equation (37)

P j
e, x =

FP, x VP ne, x Se∑
nb, P (nnb, x Snb)2

+
FE, x VE ne, x Se∑
nb, E(nnb, x Snb)2

. (41)

Finally, the forces used in the Navier Stokes equations are recomputed at the cell center using the

face pressure jumps and divided by two, so that each neighboring cells carry out the pressure jump

equally.

F ′

P, x VP =
1

2

∑

nb

nnb, x Snb P j
nb, x (42)

Therefore, the new F ′

P, x is not exactly the same as the original FP, x. In practice the force has been

smeared over the nearest neighboring cells, so that the jump of pressure, corresponding to the body

force, is occurring at the cell faces.

The new face velocity can be used in the face mass flux coefficients from Equation (30), which is then

used to compute the pressure and to correct the velocity, in order to satisfy Continuity.

2 Analytical validation

In order to study the validity of the actuator disc model, and the impact of the pressure jump correction,

three cases, where the analytical formula are known, are compared with the model, with and without

the pressure jump correction. The model is both implemented in 2D and in 3D. As the results of the 2D

code and the 3D code are giving similar results within the convergence precision required, only the 3D

results are presented here.
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2.1 2D Infinite line and 3D Infinite plan

The first case studied is a channel flow similar to the example presented in the previous sections. The

boundary conditions are taken to be symmetric on the side, so that no expansion is possible. An ho-

mogenous force, opposed to the flow direction, is applied along a line (in 2D) or a plane (in 3D) (see

Figure 4. This setup insures that the flow direction remains 1D and constant because of Continuity.

Only the pressure is expected to vary along the domain, increasing in a discreet manner from one side

to the other of the line/plane, as it was described in the previous sections.

The results from the EllipSys (see Figure 5) are in agreement with the theory presented in the pre-

vious sections. Using the uncorrected algorithm, the pressure presents some wiggles, visibly damped

after 5-6 cells both before and after the jump. The velocity is also presenting wiggles on the same cells

where the pressure is fluctuating.

Using the corrected algorithm, the pressure follows a clean jump carried over three cells, in good

agreement with the analytical solution. There are no visible wiggles on the pressure, nor on the veloc-

ity results.

2.2 2D actuator strip and 3D actuator infinite ribbon

The second case is a 2D actuator strip under a rectangular inflow profile. In order to model it in 3D,

the top and bottom faces of the domain are taken as symmetric boundary condition, while the north
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and south faces are taken as farfield boundary conditions. The actuator strip is then represented as an

infinitely long ribbon of homogenous force going through the domain from top to bottom (see Figure 6).

The analytical solution for lightly loaded actuator strip, derived by Madsen [7], is used as followed.

p(x, y, ∆p, R) =
∆p

2π

(
tan−1

(
R − y

x

)
+ tan−1

(
R + y

x

))
(43)

vx(x, y, ∆p, R) = u∞ −
p(x, y, θ, ∆p, R)

ρu∞

−
∆p

ρu∞︸ ︷︷ ︸only in the wake (44)

The assumptions made to derive this equation are only valid for a very lightly loaded actuator disc

(CT ≪ 1). For a very lightly loaded actuator strip (CT = 0.01), the numerical result, using the correc-

tion, is in good agreement to the analytical solution (see Figure 7). Similarly to the previous case, the

numerical result without the correction is presenting quite important velocity and pressure wiggles in

the axial direction, both before and after the position of the actuator strip. However, there are no visible

wiggles in the radial direction.

2.3 3D actuator disc with axis symmetry

Finally the case of an actuator disc in 3D is studied. In order to model the flow appropriately, the

boundary condition on the side faces (south, north, top, bottom) are all taken as farfield (see Figure 8).

The analytical solution for an axis symmetric lightly loaded actuator disc in cylindrical coordinates,

derived by Koning [8], can be numerically integrated using the following equations.

p(x, r, θ, ∆p, R) =
∆p

4π

∫ R

0

∫ 2π

0

r′x

[r′2 + r2 + x2 − 2r′r cos (θ′ − θ)]
3/2

dr′dθ (45)

vx(x, r, θ, ∆p, R) = u∞ −
p(x, r, θ, ∆p, R)

ρu∞

−
∆p

ρu∞︸ ︷︷ ︸only in the wake (46)

The assumptions made to derive this equation are only valid for a very lightly loaded actuator

disc (CT ≪ 1). For a very lightly loaded actuator disc (CT = 0.01), the numerical result, using the

correction, is also in good agreement to the analytical solution. The behavior of the numerical result,

without the correction, looks very similar to the previous actuator strip case. Velocity and pressure

wiggles are clearly visible both before and after the position of the body forces, in the axial direction,

but not in the radial direction.

It is interesting to note that the wiggles do not seem to affect the overall solution. They only give an

error at the local position of the actuator disc. It is nonetheless rather interesting to obtain a correct

velocity and pressure at the actuator disc position, as this information can be used, for example, to

determine the energy extraction of the wind turbine modeled by the actuator disc.

For a more heavily loaded actuator disc (CT = 0.89), a similar convergence is achievable, but it is

irrelevant to compare it with the analytical solution.
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3 Conclusion

An actuator disc model using a correction of the Rhie-Chow algorithm for the usage of discreet body

forces is presented. The corrected algorithm show a clear improvement of the solution around the

location where the body forces are applied. This alternative way of treating body forces as pressure

jump can reduce significantly the number of cells needed to model a pressure jump. In the present

research context, this can potentially lead to cheaper modeling of wind turbine near wake region, and

therefore opening the possibility to model larger wind farms. The results from the actuator disc model

show a good agreement with analytical solutions, for some lightly loaded cases.
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