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Discrete-Time LPV Current Control of an

Induction Motor

Jan Dimon Bendtsen, Klaus Trangb�k

Abstract|In this paper we apply a new method for gain-
scheduled output feedback control of nonlinear systems to
current control of an induction motor. The method relies
on recently developed controller synthesis results for lin-
ear parameter-varying (LPV) systems, where the controller
synthesis is formulated as a set of linear matrix inequalities
with full-block multipliers. A standard nonlinear model of
the motor is then constructed and written on LPV form.
We then show that, although originally developed in contin-
uous time, the controller synthesis results can be applied to
a discrete-time model as well without further complications.
The synthesis method is applied to the model, yielding an
LPV discrete-time controller. Finally, the eÆciency of the
control scheme is validated via simulations as well as exper-
imentally on the actual induction motor, both in open-loop
current control and when an outer speed control loop is
closed around the current loop.

Index Terms|Induction Motors, LPV Control, Linear
Fractional Transformations, Linear Matrix Inequalities

I. Introduction

Gain scheduling is a well-known and common approach
to control of well-behaved nonlinear systems. The classical
approach to gain-scheduling control has been to linearise
the plant model in some set of operating points and de-
sign one or more linear, possibly robust, controllers for the
system in said points. The gains of these individual lin-
ear controllers are then interpolated between the di�erent
operating points. This approach has been used in a mul-
titude of applications and often works well as long as the
scheduling variable, i.e., the variable according to which
the controllers are interpolated, varies slowly. However, as
pointed out in [17], the rate of change of the parameter
variation imposes fundamental limitations on the achiev-
able performance of classical gain scheduling controllers.
Also, the classical gain scheduling methods are generally
somewhat ad hoc.

More recent work on linear parameter varying (LPV)
control has addressed these issues by devising rigorous
methods in which it is possible to compensate for known,
fast parameter variations directly in the control design [7],
[12], [14], [16]. Linear parameter-varying systems are lin-
ear systems whose system matrices depend on some time-
varying parameter vector that is either fully known or at
least known to be contained in some known set. In LPV
control design this knowledge is employed to provide sys-
tematic gain scheduling in which stability and performance
of the closed loop can be guaranteed. The controller syn-
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thesis is cast as a set of matrix inequalities based on the
varying system matrices and the plant-controller intercon-
nection, along with a set of multipliers, which must satisfy
these matrix inequalities.
One problem with these types of approaches has so far

been that it can be diÆcult to obtain non-conservative con-
trollers for a given plant if the plant parameter variations
are considerable and restrictions are placed on the con-
troller synthesis in the form of pre-imposed structures in
the aforementioned multipliers. In [2] a controller synthesis
was achieved for parameter dependencies entering the sys-
tem via a linear fractional transformation (LFT) descrip-
tion. The structural restrictions on the multipliers were
dealt with in case of aÆne parameter dependencies in [3],
but it is only recently that it has been shown how they
can be lifted in case of more general, rational parameter
dependencies, i.e., in LFT descriptions, as well. The re-
sulting synthesis matrix inequalities yielding the controllers
can be solved by using the so-called full-block S-procedure

[15], [16]. In essence, this results in an automated con-
troller design method for nonlinear systems which permit
an LPV description. To the best of our knowledge, this
paper presents the �rst actual implementation of an LPV
controller designed via the full-block S-procedure.
In this paper we will use this novel technique to design

and test a rotor 
ux oriented current controller for an in-
duction motor. Induction motors have been used in a wide
range of industrial as well as everyday applications over a
number of decades, but with their highly nonlinear, fast dy-
namics they remain a challenge to control. A number of dif-
ferent current control schemes for three-phase systems have
been employed in order to deal with the problem, such as
classical linear controllers, predictive control and schemes
based on neural networks/fuzzy logic (see [10] and the ref-
erences therein). Several continuous-time control schemes
that take the induction motor dynamics into account have
been applied, including simple Lyapunov-based approaches
[19], minimum-timecontrol [6], slidingmode control [18], as
well as decoupling with special attention paid to robustness
[8]. Recently, backstepping techniques have been applied
to current and rotational speed control simultaneously [13].
A drawback of most of these methods is, however, that

they require a considerable amount of tuning and engi-
neering insight. In this paper we will demonstrate that
the LPV controller synthesis can be applied to the prob-
lem and achieve satisfying performance basically without
any ad hoc tuning. Another general problem with these
schemes is that it is unclear whether or not they will work
well when implemented in discrete time at a sampling fre-
quency which is not considerably faster than the motor dy-



namics. In this paper we show that the LPV controller syn-
thesis can be carried out in discrete time. This is generally
important in connection with practical implementations if
there are limitations on the sample rate compared to the
dynamics of the plant, since the accuracy of a continuous-
time nonlinear design may not be suÆcient if the sample
rate cannot be chosen high enough. If the sample rate can-
not be chosen freely, a continuous-time controller synthesis
may result in discrete-time controllers with very high gains
or unstable open-loop dynamics, which could result in the
designed closed-loop behaviour not being preserved when
the controller is implemented. Some examples of discrete-
time designs for induction motors can be found in [4] and
[20].
The content of the paper is as follows. Section II brie
y

discusses the model of the induction motor on which the
LPV control law is based. It is written as a complex-valued
state space model which can easily be discretised. Next, in
Section III we discuss the discrete-time formulation of the
controller synthesis problem based on full-block multipliers
and show that the problem can be solved basically without
modi�cations compared to the continuous-time version. In
Section IV the control synthesis result presented in Section
III is applied to the induction motor model of Section II.
Section V then demonstrates a few simulation results where
it is seen that the controller performs as expected, and
that the scheduling is required for stable control. Section
VI shows some practical experiments. Finally, Section VII
sums up the conclusions of the work.
Notation. Let C� 2 C

n�m denote the complex conju-
gated transpose of the complex-valued matrix C 2 Cm�n ,
and let C? denote any basis matrix for the null space of
C, that is, CC? � 0. In the following, we will say that
C 2 C n�n isHermitian if C = C�. In this case the eigenval-
ues of the matrix are real, and we will say that the matrix
is positive de�nite, written C > 0, if all the eigenvalues
are positive. The matrix is positive semide�nite, written
C � 0, if all its eigenvalues are non-negative. Negative
de�niteness and semide�niteness is de�ned analogously. A
matrix inequality is an expression of the form

F (A;B; : : : ; X1; X2; : : : ) < 0;

where A;B; : : : are known and X1; X2; : : : are unknown
matrices, and F (�) is a Hermitian matrix function. The
matrix inequality is feasible if all eigenvalues of F (�) are less
than 0 for someX1; X2; : : : . If F (�) is linear in the unknown
matrices, it is called a linear matrix inequality (LMI). LMIs
can be solved eÆciently using standard software tools; refer
to e.g. [5] for more information on LMIs in general. Finally,
we will use the notation C(k) to describe a discrete-time
dynamic system, whileC is simply a matrix (or memoryless
mapping).

II. LPV Description of Motor Model

The induction motor setup we are considering in this
paper is shown schematically in Figure 1. An inverter
feeds three-phase alternating current (isA; isB and isC) to
the motor based on the PWM voltages usA; usB and usC .

The three-phase voltages and currents are transformed
from/into a single complex voltage and current representa-
tion in a rotating reference frame, respectively, according
to the relations

us = usd + jusq =
2

3

�
usA + usBe

j
2�

3 + usCe
j
4�

3

�
e�j�

is = isd + jisq =
2

3

�
isA + isBe

j
2�

3 + isCe
j
4�

3

�
e�j�

where � is the angular position of the chosen reference
frame. usd = <fusg; usq = =fusg; isd = <fisg, and
isq = =fisg are all real-valued signals. The aim we will
pursue in this paper is to design an inner current control
loop which can be placed in a cascade coupling with an
outer shaft speed control loop, as indicated in Figure 1.
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Fig. 1. Schematic drawing of the induction motor setup.

With standard assumptions, the motor model is given by
(see e.g. [11] or [13]):

dis

dt
= �

�
Rs +R0

r

L0
s

+ j!

�
is

+

�
R0
r

L0
s

� j
L0
m

L0
s

Zp!mech

�
im +

us

L0
s

(1)

dim

dt
=

R0
r

L0
m

is �

�
R0
r

L0
m

+ j(! � Zp!mech)

�
im (2)

in which us and is are the complex stator voltage and
current, respectively, and im is the complex magnetising
current associated with the rotor 
ux 	r = Lmim. The
equations above are given in a reference frame which ro-
tates with the rotational speed ! = _�. Lm is the mag-
netising inductance. R0

r
= (Lm=Lr)

2Rr; L
0
s
= Ls �L2

m
=Lr

and L0
m
= L2

m
=Lr are the referred parameters used in the

model, found based on identi�ed values of the stator and
rotor resistances and inductances Rs; Rr; Ls and Lr. Zp is
the number of pole pairs, while !mech is the motor shaft
speed. The motor develops the following electromagnetic
torque:

me = =f
3

2
ZpL

0
m
isi
�
m
g

while the load torque mL acts as a disturbance via the
mechanical relation

J
d!mech

dt
= me �mL



where J is the mechanical moment of inertia. We choose a
reference frame rotating at the same angle as the magnetis-
ing current, since in this frame the steady-state signals are
constant. Since, in reality, the magnetising current cannot
be measured, we will use the following simple estimator.
Let Tr = L0

m
=R0

r
and !r = Zp!mech and compute the esti-

mate of im, îm, based on (2) as

! = !r + isq=(Tr îmd) (3)

dîm

dt
=

1

Tr

�
is � (1 + j(! � !r))̂im

�
: (4)

In this reference frame, îm is real. We choose the com-
plex state vector x =

�
i�
s

i�
m

��
and insert (3) in (1){(2)

obtaining

_x = (A0 + Æ1A1 + Æ2A2) x+Bus; is = Cx (5)

in which

A0 =

"
�
Rs+R

0

r

L0

s

R
0

r

L0

s

R
0

r

L0

m

�
R

0

r

L0

m

#
; B =

�
1
L0

s

0

�
and C =

�
1 0

�

represent the nominal model, which is a linear time invari-
ant system, and

A1 =

"
�j �j

L
0

m

L0

s

0 0

#
and A2 =

"
0 j

L
0

m

TrL
0

s

0 �j 1
Tr

#

represent the e�ects of parameter variations in the linear
system. These parameter variations symbolise the nonlin-
earities caused by Æ1 = ! and Æ2 = isq=îmd, where all sig-

nals vary with time and îmd > 0 8t. This particular choice
of parameterisation has the advantage over the other ob-
vious choice, Æ1 = ! and Æ2 = !r, that ! will typically be
close to !r; the parameterisation chosen above is a straight-
forward way to exploit this knowledge. The system (5) can
then be written on an LFT form and can be meaningfully
discretised, for instance according to the method presented
in [1]. By considering the parameter variations as being
caused by external e�ects, we are able to employ the LPV
control synthesis that will be described in the following
section. It should be noted, as already mentioned in the
introduction, that the main reason why we discretise the
model at this point is to be able to address limitations on
the sample rate already in the synthesis phase, before the
actual implementation.

III. LPV Controller Synthesis

In the synthesis, we consider the discrete-time system2
664
xk+1
zu;k
zp;k
yk

3
775 =

2
664

A Bu Bp B

Cu Duu Dup Eu

Cp Dpu Dpp Eu

C Fu Fp 0

3
775
2
664

xk
wu;k
wp;k
uk

3
775 (6)

with xk 2 C n ; uk 2 Cm and yk 2 C p representing states, in-
puts and outputs at sample instant k, respectively. All the

matrices are assumed to be complex, constant and of ap-
propriate dimensions. wp;k 2 C pw and zp;k 2 C pz are used
to specify performance and wu;k 2 C uw and zu;k 2 C uz are
channels which connect a set of residual gains collected in
the mapping �k with the nominal linear system as follows:

wu;k = �kzu;k: (7)

�k is a time-varying mapping that represents the non-
linearities in the system. We will assume that � 2 ���,
where ��� is a compact, path-connected set containing 0,
and that the interconnection between the nominal system
modelM(k) and � is well-posed, that is, I ��Duu is non-
singular for all � 2���.

�

M(k)

K(k)

�c(�)

-

�

wuzu

�� wpzp

-

�

y u

-

�

zc wc

=

� 0

0 �c(�)

Mc(k)

-

�

�� wpzp

Fig. 2. The interconnection of the nominal systemM(k), the residual
gains �, and the controller K(k).

We then consider the controller-system interconnection
depicted in Figure 2. The controller is of the form

2
4 xc;k+1

uk
zc;k

3
5 =

2
4 Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 Dc22

3
5
2
4 xc;k

yk
wc;k

3
5 (8)

with wc;k = �c(�k)zc;k where �c is a nonlinear function
of �. If we interconnect the controller and the nominal
system as depicted in the left part of Figure 2 we get the
closed-loop LTI system Mc(k) described by

2
664
�k+1
zu;k
zc;k
zp;k

3
775 =

2
664
A Bu Bc Bp

Cu Duu Duc Dup

Cc Dcu Dcc Dcp

Cp Dpu Dpc Dpp

3
775
2
664

�k
wu;k
wc;k
wp;k

3
775 (9)

subject to the parameter dependency

�
wu
wc

�
=

�
�k 0
0 �c(�k)

��
zu
zc

�
(10)

and with the state vector �k =
�
x�
k

x�
c;k

��
. �c and the

controller matrices must be chosen such that the intercon-
nection with the system and controller is well-posed, i.e.,
I �

�
� 0
0 �c

� �
Duu Duc
Dcu Dcc

�
is nonsingular for all � 2 ���. More



explicitly, the gains of Mc(k) in (9) are given by

Mc =

2
664
A Bu Bc Bp

Cu Duu Duc Dup

Cc Dcu Dcc Dcp

Cp Dpu Dpc Dpp

3
775

=

2
66664

A 0
0 0

Bu 0
0 0

Bp

0

Cu 0
0 0

Duu 0
0 0

Dup

0

Cp 0 Dpu 0 Dpp

3
77775

+

2
66664

0 B 0
I 0 0

0 Eu 0
0 0 I

0 Ep 0

3
77775K

2
4 0 I

C 0
0 0

0 0
Fu 0
0 I

0
Fp
0

3
5

=

2
4 Am Bm1 Bm2

Cm1 Dm11 Dm12

Cm2 Dm21 Dm22

3
5

where K is the matrix of controller gains given by (8). It
can be shown that the trajectories of (9) are identical to
those of the nonlinear system [15]

�k+1 = �A(�k)�k + �B(�k)wp;k
zp;k = �C(�k)�k + �D(�k)wp;k

(11)

where�
�A(�k) �B(�k)
�C(�k) �D(�k)

�
=

�
Am Bm2

Cm2 Dm22

�
+�

Bm1

Dm21

� �
Duu Duc
Dcu Dcc

� �
I �

�
� 0
0 �c

� �
Duu Duc
Dcu Dcc

���1 �
Cm1 Dm12

�
The objective is, if possible, to �nd a gain-scheduled con-

trol law K(k) and a scheduling function �c(�) such that
the closed loop system (9) ful�lls a robust quadratic perfor-

mance speci�cation (RQP), which is de�ned as follows.
� The interconnection of system and controller is well-
posed.
� The unforced system is uniformly asymptotically stable,
i.e., positive constants K and � exist such that k�kk �
k�0kKe

��k for k � 0 and all � 2��� if wp;k � 0.
� The following performance speci�cation holds for �0 = 0:

9" > 0 :

1X
k=0

�
wp;k
zp;k

��
Pp

�
wp;k
zp;k

�
� �"

1X
k=0

w�
p;k
wp;k (12)

for some Pp =
h
Qp Sp

S
�

p
Rp

i
; Rp � 0; speci�ed a priori.

As can be seen, this formulation is equivalent to the
continuous-time formulation of the notion of RQP (see for
instance [16]). The following result shows that the discrete-
time version of the full-block S-procedure yields a synthesis
procedure that will guarantee (discrete-time) RQP for (9).
Theorem 1: Robust quadratic performance is achieved

for the system (9){(10) if one of the following two equiva-
lent properties holds.

1. (9){(10) is well-posed and there exists a Hermitian X >

0 such that2
664
�

�

�

�

3
775
� 2
664
�X 0
0 X

0 0
0 0

0 0
0 0

Qp Sp
S�
p

Rp

3
775
2
664

I 0
�A(�) �B(�)

0 I
�C(�) �D(�)

3
775 < 0

(13)

for all � 2���.
2. There exists a Hermitian multiplier

Pe =

2
664

Q S

S� R

Q12 S12
S�21 R12

Q�12 S21
S�12 R�12

Q2 S2
S�2 R2

3
775 (14)

which ful�lls the matrix inequality2
664

� 0
0 �c(�)

I 0
0 I

3
775
�

Pe

2
664

� 0
0 �c(�)

I 0
0 I

3
775 > 0 (15)

for all � 2��� and a Lyapunov matrix X > 0 such that

��

2
66666666664

�X 0
0 X

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

Q S

S� R

Q12 S12
S�21 R12

0 0
0 0

0 0
0 0

Q�12 S21
S�12 R�12

Q2 S2
S�2 R2

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

Qp Sp
S�
p

Rp

3
77777777775
� < 0

(16)

where

� =

2
66666666664

I 0 0 0
A Bu Bc Bp

0 I 0 0
Cu Duu Duc Dup

0 0 I 0
Cc Dcu Dcc Dcp

0 0 0 I

Cp Dpu Dpc Dpp

3
77777777775
: (17)

Proof: Inspection reveals that the only di�erence be-
tween the continuous-time case and the discrete-time case
is the upper left block in the central factors in (16) and (13).
The equivalence between 1. and 2. hence follows from a di-
rect application of the full-block S-procedure, Theorem 8
in [15].
We thus just need to show that requirement 1. yields

RQP. Let wp;k � 0 in (11) and choose Vk = ��
k
X�k

as a Lyapunov candidate for the unforced system. The
di�erence from sample to sample is Vk+1 � Vk =
��
k
�A(�)�X �A(�)�k � ��

k
X�k , which implies that the sys-

tem is uniformly exponentially stable if �A(�)�X �A(�) <
X . But this is immediately deduced from the upper left
block in (13), which can be written as �A(�)�X �A(�) �
X + �D(�)�Rp

�D(�) < 0. Since Rp � 0 it is seen that if



X renders (13) satis�ed, the unforced system is uniformly
exponentially stable.
Furthermore, due to continuity and strictness of (13),

we can add a small perturbation G = [ 0 0
0 "I

] to the left-
hand side of the inequality without rendering it unsatis�ed.
Multiplying from the left and right with �k =

�
��
k

w�
p;k

��
then gives

��
k

�
�A(�)�X �A(�)�X �A(�)�X �B(�)
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�
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�
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which reduces to

(�k+1 � �k)
�
X (�k+1 � �k) +�

wp;k
zp;k

��
Pp

�
wp;k
zp;k

�
+ "w�

p;k
wp;k � 0

Summing from k = 0 to k = 1 with �0 = 0 and
limk!1 �k = 0 then yields (12), and hence requirement
1. implies RQP.
It is observed that, as in the continuous-time case, (16)

is an LMI in the unknowns X and Pe. The discrete-time
controller synthesis thus continues completely analoguously
with the continuous-time synthesis in [15]. The extended
multiplier Pe in (14) is constructed from multipliers P and
~P of lower dimension such that

Pe =

�
P �

� �

�
; P�1

e
=

�
~P �

� �

�
(18)

where P and ~P must ful�ll the following requirements:
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�
Q S

S� R

�
;

�
�
I

��
P

�
�
I

�
> 0 8 � 2��� (19)

and
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~Q ~S
~S� ~R

�
;

�
I

��̂�
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~P

�
I

��̂�

�
< 0 8 � 2���: (20)

We will, due to a technicality in the controller construc-
tion, require ~P to have as many negative eigenvalues as
the dimension of wu. It is now possible to construct the
extended multiplier as

Pe =

�
P U

U� N�1

�
: (21)

where the matrix U is chosen such that its columns form
an orthogonal basis of the image of P � ~P�1, and such that

U�(P � ~P�1)U = N =

�
N� 0
0 N+

�
(22)

with N� < 0 and N+ > 0.�
V�(�) V+(�)

�
=
�
�� I

�
U (23)

with V� and V+ having dimfN�g and dimfN+g columns,
respectively. We will then construct the scheduling func-
tion �c(�) in the following way:

�c(�) = N�V�(�)
�
��

[�
I
]
�
P [�

I
]� V�(�)N�V�(�)

�
��1

V+(�): (24)

The scheduling function can thus be constructed based
on knowledge of the mapping � and the multiplier sub-
matrices P and ~P . These multipliers are found by solving
the following three coupled LMIs:

�
X I

I Y

�
� 0 (25)

 �

2
6666664

�X 0
0 X

0 0
0 0

0 0
0 0

0 0
0 0

Q S

S� R

0 0
0 0

0 0
0 0

0 0
0 0

Qp Sp
S�
p

Rp

3
7777775
 < 0 (26)

��

2
6666664

�Y 0
0 Y

0 0
0 0

0 0
0 0

0 0
0 0

~Q ~S
~S� ~R

0 0
0 0

0 0
0 0

0 0
0 0

~Qp
~Sp

~S�
p

~Rp

3
7777775
� > 0 (27)

where

 =

2
6666664

I 0 0
A Bu Bp

0 I 0
Cu Duu Dup

0 0 I

Cp Dpu Dpp

3
7777775
�
B� E�

u
E�
p

�?

and

� =

2
6666664

�A� �C�
u

�C�
p

I 0 0

�B�
u

�D�
uu

�D�
pu

0 I 0

�B�
p

�D�
up

�D�
pp

0 0 I

3
7777775
�
C� F �

u
F �
p

�?
:

In the above, ~Pp =
h
~Qp

~Sp
~S�

p
~Rp

i
denotes the inverse of the

performance speci�cation matrix Pp.

To sum up, the synthesis progresses as follows. Assuming
that matrices X;Y; P , and ~P solving (25){(27) have been
found, it is possible to construct the extended multiplier
Pe and the scheduling function �c as given in (21) and
(24), respectively. If X�Y �1 is of full rank, the Lyapunov
matrix X can be calculated as

X =

�
X I

I (X � Y �1)�1

�
:



in which case the controller will be of the same order as the
system. If, on the other hand, X � Y �1 is close to losing
rank, then X can instead be constructed as

X =

�
X Z

Z� (Z�(X � Y �1)Z)�1

�

where the columns of Z form an orthonormal basis of
the image of X � Y �1. In this case the order of the
controller will be reduced by a corresponding number of
orders. (17) is a linear function of the controller ma-
trices (Ac; Bc; Cc; Dc), which means that (16) becomes a
quadratic matrix inequality (QMI) in (Ac; Bc; Cc; Dc). A
solution method for the QMI problem (16) based on the
number of positive and negative eigenvalues of the central
factor, can for instance be found in [15].

IV. Controller Synthesis

In this section we apply the synthesis method outlined
in the previous section to the discrete-time motor model.
The model (5) was employed, using the following parameter
values previously identi�ed from the actual motor setup:

A0 =

�
�320:7 140:0
10:5 �10:5

�
; B =

�
42:0
0

�
; C =

�
1 0

�

and

A1 =

�
�j �13:3j
0 0

�
; A2 =

�
0 140:0j
0 �10:5j

�
:

The contributions of the parameter variations to
the state equation could be described by Buwu =
[A1 A2 ]

�
Æ1I

Æ2I

�
zu. However, since A1 and A2 have rank 1,

we may write

A1 = U1�1V
�
1 =

�
u11 u12

� ��1 0
0 0

��
(v11)

�

(v12)
�

�

and

A2 = U2�2V
�
2 =

�
u21 u22

� ��2 0
0 0

��
(v21)

�

(v22)
�

�

and let Bu =
�
u11�1 u21�2

�
. It then follows that, with

zu = Cux;Cu =
�
v11 v21

��
, the parameter variation can

be written as Æ1A1x+ Æ2A2x = Bu

�
Æ1 0
0 Æ2

�
zu, which is ad-

vantageous in terms of implementation. The parameter
variation channel zu ! wu was hence de�ned as follows:

wu = �zu =

�
! 0

0 isq=îmd

�
zu:

The performance and noise/reference channels were de-
noted zp and wp. The performance output

zp =

�
is � is;ref
�uus

�

consisted of the control error and the control signal
weighted by a factor �u. The performance input (or noise
channel)

wp =

�
is;ref
�m

�

consisted of the stator current reference and measure-
ment noise. Finally, the measurement y was de�ned as
the control error corrupted by random measurement noise
�m 2 [��� ;�� ], i.e.

y = is � is;ref + �m:

The following nominal system could thus be constructed:

2
664

_x

zu
zp
y

3
775 =

2
664
A0 Bu 0 B

Cu 0 0 0
Cp 0 Dpp Ep

C 0 Fp 0

3
775
2
664

x

wu
wp
u

3
775 :

The matrices Cp; Dpp and Ep were used to de�ne the
weightings of the state, noise, reference, and control signal
contributions to the performance and measurement out-
put, respectively. Correspondingly, Fp accounted for the
weightings of the noise and reference contribution to the
measurement output. We chose �u = 10�6 and �� = 10�8.

The control error part of the performance channel was
augmented by a �rst-order �lter that allowed frequency
tuning of the controller; the pole was placed in s = �100.
This system was then discretised with a sampling period
of 600Hz, using the bilinear transformation as described
in [1], yielding the discrete-time nominal system (6). As
discussed earlier, this sampling frequency was imposed by
the hardware setup. The eigenvalues of the discretised sys-
tem matrix were located at z = 0:5815; z = 0:9903 and
z = 0:9990.

The next step was to solve the LMIs (25){(27) in order
to compute a controller. The performance speci�cation

Pp =

�
�
I 0
0 1



I

�
(28)

providing a bound 
 on the induced 2-norm

sup
wp 6=0

kzpk2

kwpk2
� 


was chosen and a bisectional search for the smallest 
 for
which (25){(27) were feasible could then be performed. We
allowed Æ1 = ! and Æ2 = =fisg=<fîmg to obtain values in
the intervals [�800 ; 800] and [�10 ; 10], respectively.
Under these circumstances, a performance of 
 = 0:0011
could be achieved and a controller on the form (8) could
be obtained by solving the QMI (16). When solving the
synthesis QMI, it was found that the controller order could
be reduced by one, yielding a second-order controller with
eigenvalues of Ac in z = 0:9990 and z = 0:8202.
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Fig. 3. LPV current control, simulation. The top �gure shows the
real and imaginary components, usd and usq , of the control volt-
age generated by the controller. The middle �gures show the
real and imaginary components, isd and isq , of the controlled
currents, plotted with full lines (|) along with their reference
signals, plotted with dash-dotted lines (� � �). The bottom plot
shows Æ1 (|) and Æ2 (� � �) scaled to the interval [�1 ; 1]. As
can be seen, the tracking of the current reference satis�es the per-
formance requirement except when the control voltage saturates
(at around 4 sec).
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Fig. 4. LPV current control, simulation without scheduling. The top
�gure shows the real and imaginary components, usd and usq , of
the control voltage generated by the controller. The lower �gure
shows the real and imaginary components, isd and isq , of the
controlled currents, plotted with full lines (|) along with their
reference signals, plotted with dash-dotted lines (���). Without
the gain scheduling the system becomes unstable.

V. Simulations

In the simulations the reference sequence was chosen as
a series of steps, each with a duration of 250 samples. For
each step, the reference for isq was allowed to take random
values in the interval [�10 ; 10], while the reference for
isd was chosen from the interval [1 ; 3]. The system was
disturbed by a load torque mL, which was a sequence of
uniformly distributed white noise �ltered through a �rst-
order �lter with a time constant of 1=2 second. Subject to
these external signals, the nonlinear model generated the Æ1
and Æ2 sequences based on which the controller scheduling
function was calculated. Motivated by limitations of the
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Fig. 5. LPV current control, experimental results. The top �gures
show the real and imaginary components, usd and usq , of the
control voltage generated by the implemented LPV controller.
The lower �gures show the controlled current isq . The reference
signals are shown with dash-dotted lines (� � �), while the mea-
surements are shown with full lines (|). The left �gures are
without load, while the right �gures are recorded with a load
torque of mL = 4Nm.

hardware of the experimental setup, the control voltage us
was made to saturate at 600V .

Figure 3 shows a simulation of the closed loop system. It
is seen that the control loop achieves good tracking, in ac-
cordance with the performance value achieved for all values
of the parameter variations, except when the control signal
saturates. The parameter variations are shown in the bot-
tom plot in Figure 3, scaled to the interval [�1 ; 1]. It is
noted that the generated stator voltage compensates for the
parameter variations throughout the allowed range. This
scheduling is crucial to successful control; Figure 4 shows
a simulation carried out under similar circumstances, but
with the scheduling signal set to wu � 0 (only voltage and
current are shown). As can clearly be seen, the system be-
comes unstable in certain regions of the operating range if
the gain scheduling is switched o�.

VI. Practical Experiments

The controller presented above was implemented in C
without modi�cations on a standard PC. The power de-
vice is a voltage-sourced inverter controlled directly from
the PC. The induction motor is a 1:5kW , two pole-pair
motor with a rated torque of 10Nm. The �rst two exper-
iments were open-loop current control experiments where
the aim was to keep the magnetising current constant and
make the imaginary part of the stator current follow a se-
ries of steps. The �rst experiment was conducted without
load, while in the second experiment the motor shaft was
subjected to a load torque of 4Nm. The results are shown
in Figure 5, where it is observed that the current tracks
the reference steps adequately well. Looking at the stator
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Fig. 6. LPV current control in cascade with rotational speed con-
troller, experimental results. The top �gure shows the real and
imaginary components, usd and usq, of the control voltage gener-
ated by the implemented LPV controller. The middle and lower
�gures show the controlled current isq and the rotational speed
!r, respectively. The reference signals are shown with dash-
dotted lines (� � �), while the measurements are shown with
full lines (|). The current reference signal was generated by an
outer loop speed controller.

voltage, it is noted that the imaginary part of the voltage
is signi�cantly di�erent between the two experiments. This
is due to the two di�erent disturbance load torques, which
cause the scheduling controller to yield signi�cantly di�er-
ent control signals. Some variation can be noted in the
real part of the voltage as well, caused by cross couplings
between the stator and magnetising currents.
In the third experiment the shaft speed loop was closed

using an outer PI-controller. In this case the stator current
reference signals were thus generated by the PI-controller,
and the LPV controller had to track these signals. The
results of this experiment is shown in Figure 6. As can be
seen, the control loop performs satisfactorily.

VII. Concluding Remarks

In this paper a recently developed procedure for LPV
controller synthesis, the so-called full-block S-procedure,
has been applied to stator current control of an induction
motor, which is a highly nonlinear dynamical system. This
method required the model to be written on a linear frac-
tional form, where the nonlinearities entered the model as
parameter variations. Due to hardware limitations on the
sample rate, it was chosen to discretise the system model.
Hereafter, it was demonstrated that the controller synthe-
sis can be formulated in discrete time as well.
A controller was constructed such that its dynamics de-

pended on a scheduling function calculated from the pa-
rameter variation part of the model. The synthesis of
the controller and scheduling function was then achieved
by solving a set of linear matrix inequalities constructed
from the model parameters. It was found via simulations

that the gain-scheduled closed-loop system ful�lled a ro-
bust quadratic performance speci�cation throughout the
operating range, but that it would become unstable if the
scheduling was switched o�. The gain-scheduling is thus
an integral part of the controller. The main contribution
of this paper was then to show that a systematic non-
conservative control design with more than one scheduling
parameter could be implemented on a real-life system with
fast dynamics.

Finally, some suggestions for further research could be
to construct an entirely LPV-based controller from speed
reference to measured speed, as well as to try to include
robustness with respect to poorly known parameters such
as the rotor resistance and inductance.

References

[1] P. Apkarian, \On the Discretization of LMI-synthesized Linear
Parameter-Varying Controllers," Automatica Vol. 33, 4:655{661,
1997

[2] P. Apkarian, P. Gahinet, \A Convex Characterization of Gain-
Scheduled H1 Controllers," IEEE Transactions on Automatic

Control, Vol. 40, 5:853{864, 1995
[3] P. Apkarian, P. Gahinet, G. Becker, \Self-scheduled H1 control

of linear parameter-varying systems: a design example" Auto-

matica, Vol. 31, 9:1251{1262, 1995
[4] F. Blaabjerg, J. K. Pedersen, M. P. Kazmierkowski, \DSP-based

Current Regulated PWM Inverter-fed Induction Motor Drive
Without Speed Sensor," in Proc. of the IEEE International Sym-

posium on Industrial Electronics, 659{664, 1996
[5] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, \Linear Matrix

Inequalities in System and Control Theory," Philadelphia, PN:
SIAM, 1994

[6] J. W. Choi, S. K. Sul, \Generalized solution of minimum time
current control in three-phase balanced systems," IEEE Trans-

actions on Industrial Electronics Vol. 45, 5:738{744, 1998
[7] A. Helmersson, \Methods for Robust Gain Scheduling," Ph.D.

thesis, Link�oping University, 1995
[8] J. Jung, S. Lim, K. Nam, \PI-type Decoupling Control Scheme for

Highspeed Operation of Induction Motors," in Proc. of the 28th

Annual IEEE Power Electronics Specialists Conference, 1082{
1085, 1997

[9] Y. H. Liu, C. L. Chen, R. J. Tue, \A Novel Space-vector Current
Regulation Scheme for a Field-oriented-controlled Induction Mo-
tor Drive," IEEE Transactions on Industrial Electronics Vol. 45,
5:730{737, 1998

[10] M. P. Kazmierkowski, M. A. Dzieniakowski, \Review of Current
Regulators for Three-Phase PWM Inverters," in Proc. of the 20th

International Conference on Industrial Electronics, Control and

Instrumentation, 567{575, 1994
[11] R. F. F. Koning, C. T. Chou, M. H. G. Verhaegen, J. B.

Klaassens, J. R. Uittenbogaart, \A Novel Approach on Parame-
ter Identi�cation for Inverter Driven Induction Machines," IEEE

Transactions on Control Systems Technology Vol. 8, 6:873{882,
2000

[12] A. Packard, \Gain Scheduling via Linear Fractional Transfor-
mations," Systems and Control Letters Vol. 22, 79{92, 1994

[13] H. Rasmussen, P. Vadstrup, H. B�rsting, \Nonlinear Field
Oriented Control of Induction Motors using the Backstepping
Method," in Proc. of the Sixth International Conference on Con-

trol, Automation, Robotics and Vision, 2000
[14] W. Rugh, J. S. Shamma, \Research on Gain Scheduling," Au-

tomatica Vol. 36, 1401{1425, 2000
[15] C. W. Scherer, \LPV Control and Full Block Multipliers," Au-

tomatica Vol. 37, 361{375 2001
[16] C. W. Scherer, \Robust Mixed Control and LPV Control and

Full Block Scalings," in L. El Ghaoui, S. Niculescu, Recent Ad-
vances in LMI Methods in Control, SIAM, 1999

[17] J. S. Shamma, M. Athans, \Gain Scheduling: Potential Hazards
and Possible Remedies," IEEE Control Systems Magazine Vol.
12, 101{107, 1992

[18] L. G. Shiau, J. L. Lin, \Stability of Sliding-mode Current Con-
trol for High Performance Induction Motor Position Drives," IEE



Proceedings on Electric Power Applications Vol. 148, 1:69{75,
2001

[19] K. K. Shyu, H. J. Shieh, \Variable Structure Current Control for
Induction Motor Drives by Space Voltage Vector PWM," IEEE

Transactions on Control Systems Technology Vol. 42, 6:572{578,
1995

[20] S. M. Yang, C. H. Lee, \A Current Control Technique for
Voltage-fed Induction Motor Drives," in Proc. of the 25th Annual

Conference IEEE Industrial Electronics Society, 1380{1385, 1999


