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Discrimination between different kind of surface defects on Compact Discs
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Aalborg University Washington University, St. Louis
DK 9220 Aalborg St. Louis MO 63130
odgaard@control.auc.dk victor@math.wustl.edu

Abstract— Compact Disc players have problems playing discs
with surface defects such as scratches and finger prints. The
problem is that handling normal disturbances such as mechan-
ical shocks etc, require a high bandwidth of the controllers
which keep the Optical Pick-Up focused and radial tracked on
the information track on the disc. In order for the controllers
to handle the surface defects it is required that they are non-
sensitive to the frequency contents of the defect, since a defect
is a disturbance on the measurements. A simple solution to
this problem is to decrease the controller bandwidth during
the defect. However, due to the variation of defects a more
adaptive control strategy would be preferable. In this paper
the defects are categorised into three groups. A discriminator
is designed, based on the local most discriminating basis vectors
of the Karhunen-Loève and Haar bases as well as the mean of
groups basis. In these bases the discrimination rule is simple.
The defect in question is a member of the group it is closest too.
The Karhunen-Loève basis gives a correct classification rate of
more than 85.7% with 3 basis vectors and the Haar basis of
more than 94.6% with 5 basis vectors.

I. I NTRODUCTION

Compact Disc players (CD players) have been on the
market more than two decades, and most people have no
problems with their players, except if they try to play a CD
with surface defects like scratches, finger prints etc. Those
defects cause the player to jump to another area of the disc,
meaning jumps in the music, or might even stop playing.
The Optical Pick-up Unit (OPU) which is use to retrieve
the information from the disc, is kept focused and tracked
at the information track by two control loops, since there
is no physical contact. The OPU feeds the controllers with
indirect measurements of the physical distances in the focus
and radial tracking directions,ef and er, see Fig. 1. During
the occurance of a defect these signals are degenerated,
and if not handled in some way the controllers can force
the OPU out of focus and radial tracking. The problem in
handling disturbances it that they require a high controller
bandwidth which is in conflict with the fact that handling a
defect in principle requires a low bandwidth, see (Andersen
et al., 2001) and (Vidalet al., 2001).

The OPU generates, in addition toef ander, two residuals
which can be used to detect surface defects as scratches,
see Fig. 1. Simple threshold method used on the residuals
are widely used methods for surface defect detection, see
(Philips, 1994), (Andersenet al., 2001) and (Vidalet al.,
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Fig. 1. The focus erroref is the distance from the focus point of the laser
beam to the reflection layer of the disc, the radial error is the distance from
the centre of the laser beam to the centre of the track. The OPU emits the
laser beam towards the disc surface and computes indirect measurements of
ef ander based on the received reflected light. In addition the OPU generates
two residuals which can be used to detect surface defects as scratches.

2001).
In (Odgaardet al., 2003b) and (Odgaardet al., 2003a)

some more discriminating residuals are described and com-
puted. These are computed based on the OPU outputs and
models of the OPU and the defects. Handling the defects can
be done in a number of ways, most of them are dependent
on a detection of the occurrence of the defect. This detection
based on some residuals generated by the OPU is described
in (Philips, 1994), (Andersenet al., 2001) and (Vidalet
al., 2001).

In (Odgaard and Wickerhauser, 2003) the methods for
detection and time localisation of the defects are improved.
This time localisation is based on the fact that the given
defect does not vary much from defect encounter numberm
to numberm + 1. This is due to the fact that the distance
between the track is 1.6µm, this distance is very small
compared to the defects.

The set of all surface defects is a large set and the design
of one controller handling them all would be a conservative
controller. Instead it would better to discriminate the detected
and time located defects into a number of groups, and use
controllers adapted to the given defect group. Finger prints
and small scratches can be merged into one group since finger
prints seen from the control loops appear as a collection of
small scratches. Larger scratches have a longer time duration
and other frequency contents. This means that the optimal



handling of these two groups is not the same. The last group
is a group of disturbances like defects, they are caused by
other disc defects such as eccentricity, non constant reflection
rate of the disc etc. Their frequency contents is in a lower
frequency range than the other defects.

As a consequence of, the repetive character of defects, it
is possible to use more time for the feature extraction of
the defect, in this case the discrimination of the defect into
the three groups. This also means that the entire defect is
available for the discrimination algorithm, and not only a
small part of it.

Each defects are inside a window ofn samples. In order
to simplify the discrimination mentioned above the defects
are transformed into some approximating bases: Karhunen-
Loève (Mallat, 1999) , Haar (Mallat, 1999), FFT. The
dimensions of these aproximating subspaces are decreased
by finding the four most local discriminating basis vectors,
(LDB), see (Coifman and Saito, 1994) and (Saito, 1994),
where the Fisher discriminator is used as cost functions, see
(Johnson and Wichern, 2002) and (Flury, 1997). In this paper
the 1-10 most discriminating basis vectors are used for the
discrimination. These are in addition compared with a set
consisting of the set of the means of the vectors in each
group, this set of vectors does not spanRn, but is a good
comparison for the other discriminating bases.

In this paper defect groups are first defined based on
experimental data, this data set is divided into a test and a
training set. The various bases are shortly described, as well
as the algorithm for finding the most local discriminating
basis vectors. This is followed by a description of the
decision rule based on the transform into these LDB vectors.
In the end the different discriminating bases are compared
based on the test data set.

II. D EFECT GROUPS

From the focus and radial residuals,αf and αr, defects
are extracted based on the algorithm described in (Odgaard
and Wickerhauser, 2003). Each detected defect is extracted
into a column vector with the length of 256=28 samples.
This is a length is chosen since all defects in the dataset
are shorter than 256 samples. The defects are extracted with
symetric geometric centre intended to be in the middle of
the defect vector. Each vector can contents several defects
(especially finger prints). In addition the centralisation is not
totally successfully due to implementation. It was chosen that
a given defect is only contained in one defect vector. I.e. the
centre is not always in the middle of the vectors.

This extraction gives two matrices with defects. The
defects inαf are in Af and the defects inαr are in Ar.
Where each column in the matrices are a defect vectors. All
defects have by visual inspection been classified into three
groups:G1 Small defects,G2 Disturbance like defects,G3

Large defects,. These groups are described in Introduction,
see Section I.

From each of the groups a training and a test set were
formed by randomly taking 80% of the set to be the training
set and keep the remaining part as test sets.

III. D ISCRIMINATING ALGORITHM

The defects are in a block of 256 samples in time. In order
to discriminate between the different kind of defects, the use
of Rn, n = 256 is a large set. It would be a better idea to use
some approximating subspaces to reduce the needed order,
and next find the most local discriminating basis vectors
in this given basis, and eg. use them most discriminating
ones for the discrimination between the groups, wherem is
determined by test. The number of the discriminating basis
vectors should be low, this means that the search for the
optimal value ofm is chosen to be in the interval:[1, 10].

The local discriminating subspace is the most discrimi-
nating set ofx basis vectors of a given basis, the groups
which shall be discriminated between and a cost function, see
(Saito, 1994) and (Coifman and Saito, 1994). In this paper
the Fisher discriminator, see (Johnson and Wichern, 2002)
and (Flury, 1997), is used as the cost function for finding the
most discriminating basis vectors.

A. Fisher Discriminator

The Fisher discriminator gives the discriminating power
of a number of groups in a given basis, see (Johnson and
Wichern, 2002) and (Flury, 1997). Given an orthonormal
basis :{x1, . . . , xn}, andS = {sm : m = 1, . . . ,M} signals
in G1, and T = {tk : k = 1, . . . ,K} signals inG2, the
discriminating power of the basis vectorxi between groups
1 and 2, is defined as:

FD(G1, G2|xi) =

∣∣E(< S,xi >) − E(< T,xi >)
∣∣2

V ar(< S,xi >) + V ar(< T,xi >)
,

(1)

and for the basis as a whole:

FD(G1, G2|x) =
∑

i=1...n

FD(G1, G2|xi). (2)

A good discriminating basis would have high discriminating
power in a few basis vectors and almost nothing in the
remaing majority of vectors, and a poor discriminating basis
has the same discriminating power for all basis vectors.

In this work the basis is used to discriminate among three
groups, this means that the discriminating powers amoung
all the groups for each basis vector is computed:

FD(G|xi) = FD(G1, G2|xi)
+ FD(G1, G3|xi)
+ FD(G2, G3|xi).

(3)

When all these discriminating powers were computed, them
most discriminating basis vectors were found by choosing
the m basis vectors with the highest discriminating powers.

p. 2
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Fig. 2. Illustration of the Karhunen-Loève approximation ofαf which
contain a typical scratch. The first approximation is based on the one most
approximating coefficient, the second approximation is based on the five
most most approximating coefficients, and the third approximation on the
seven most approximating coefficient.

B. Choice of Discrimination basis

Four different bases are tried in this work: The Karhunen-
Loève basis, the Haar basis, the frequency basis and the set
of mean of groups.

1) Karhunen-Lòeve basis:This basis is chosen since it is
the best approximating linear basis for a given training set.
It is used to reduce the dimension of the subspace, for which
the best discriminating basis vectors are found. These basis
vectors are found in the following way, see (Mallat, 1999)
and (Wickerhauser, 1994a).

1) Given the data set inAf andAr. Compute a data sets
with zero mean, by subtracting the mean of each defect
vector. This gives the data sets:Āf and Ār.

2) Then find the eigenvalues and eigenvectors ofĀf · ĀT
f

and Ār · ĀT
r , these are the autocorrelation of the zero

mean data sets. The eigenvectors are the Karhunen-
Loève basis, and the eigenvalues are the variance of
the given coordinates.

These eigenvectors/ Karhunen-Loève basis vector of the
data set, are eigendefects. The approximating property of
this basis is illustarted in Figs. 2 where a time serie of
αf containing a defect, is approximated with one, five and
seven Karhunen-Lòeve basis vectors. From this it is clear
that just few Karhunen-Lòeve basis vectors give a good
approximation of the original signal.

2) Haar basis: Wavelet bases in general and the Haar
basis specific are much more simple (faster in computations)
than the Karhunen-Lòeve basis, but on the other hand not as
good approximating basis. The following generalised Haar
basis is chosen as a basis, since it is a simple basis. It is
a generalised Haar basis since some other properties are
needed than those given by the normal Haar basis. No
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Fig. 3. The 8 generalised Haar basis vectors.

reconstruction is needed based on this basis, this means
that the basis does not need to be orthogonal, due to the
Fisher discriminator, it needs to be almost orthogonal, but
it is still a normalised basis. It also have to time invariant,
but due to the non requirement of reconstruction this can be
handled easier than normal time invariant Haar transforms,
see (Wickerhauser, 1994b) and (Mallat, 1999). The basis
vectors,wi, has the length of28 = 256. For the vector
numbern it is formed as follows. The firstn elements take
the value 1, and the next n elements take the value -1, and
the remaining ones take the value zero. The vector is next
normalised by multiplication of the factor2−n. The first
8 vectors are defined in this way. The last vector is the
maximum value of the signal which shall be transformed.
The basis vectorsw1, · · · , w8, are illustrated in Fig. 3. These
basis vectors are all orthogonal.

Since the defects cannot be assured to be centred in the
data set, this transform has to be time invariant. Since this
transform is only used for analysis. It can be handled simple
by computing the coordinates,cj , by:

cj = max(|s ∗ wj |). (4)

s denotes the signal, andwj the j’th basis vector. The basis’
orthogonal property is lost in this time invariance handling.
However, it is close to be orthogonal. The orthogonality is
only lost if the maximum of the convolution relates to a
time shift in the basis vector which makes the basis non
orthogonal.

3) Mean of group set:If one wants to discriminate be-
tween two known signals, the best way is to convolute it with
the signal itself, and the convolution giving the highest result
is the convolution with the signal itself. But if the signal is not
perfectly known or one which is a discrimination of groups
containing more than one signal, this method is not so good
anymore. However, these arguments indicate the usability of
a discriminating basis consisting of the mean of the groups.

p. 3
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Fig. 4. Illustration of the decision rule of the discriminator.s is the
defect in question.C1 andC2 are the centre of two groups.m(s, C1) and
m(s, C2) are the measures of the distances between the defect in question
and the respective group centres. Sinces is closest toC1, this means that
m(s, C1) < m(s, C2). The decision is that the defect in this example is a
member of group 1, since it is closest to centre of group 1.

This set is not orthogonal and neither does it spanRn, but
it is a good basis for the other bases to compare with, since
it normally has good discriminating properties.

4) FFT basis: It is clear that the time axis is not a
good discriminating basis of these defects, this leads to the
question: Is the frequency basis a good discriminating basis
for the defects? To test the frequency basis’s discriminating
power, a FFT basis was also used, with 128 elements linear
distributed from 0 Hz to 17.5 kHz.

5) Finding the discriminating basis vectors:The Fisher
discriminating power function is next used to find the four
most discriminating vectors in each basis. These four most
discriminating basis vectors are following used for discrim-
ination.

C. The algorithm

For each group the centre of the group in the given
discriminating basis is computed, based on the training set.
This gives three vectors:C1, C2, C3.

The discriminating algorithm is: Find the group which
has a centre with the smallest distance to the sample, given
a metric. A successful measure has been found to be the
geometric distance between the samples and the vectors
defined as the coordinates of the centre:

m(s, C) =
∥∥s− < C, s > ·C∥∥

2
. (5)

The decision rule and measure are illustrated in Fig. 4. In this
illustration the defect in question,s, is closest to the centre of
group 1, and the defect is as consequence a member of group
1. To illustrate the algorithm’s success, an array is defined,
where the rows indicate which group the defect is contained
by, and the column which groups they are detected as.

D. Results

The discriminator’s results are computed for the 1 to 10
most discriminating basis vectors. For 1 to 2 basis vectors
the results are not impressive. For 3 to 6 basis vectors, the

Karhunen-Lòeve basisαf Karhunen-Lòeve basisαr

3 Basis vectors 3 Basis vectors
G1 G2 G3

G1 85.7% 25.0% 0.0%
G2 9.1% 50.0% 0.0%
G3 5.2% 25.0% 100%

G1 G2 G3

G1 83.8% 0.0% 0.0%
G2 6.8% 0.0% 16.7%
G3 9.5% 100% 83.3%

4 Basis vectors 4 Basis vectors
G1 G2 G3

G1 87.0% 25.0% 0.0%
G2 10.4% 50.0% 0.0%
G3 2.6% 25.0% 100%

G1 G2 G3

G1 85.1% 0.0% 0.0%
G2 8.1% 0.0% 0.0%
G3 6.8% 100% 100%

5 Basis vectors 5 Basis vectors
G1 G2 G3

G1 87.0% 25.0% 0.0%
G2 10.4% 50.0% 0.0%
G3 2.6% 25.0% 100%

G1 G2 G3

G1 83.8% 0.0% 0.0%
G2 8.4% 0.0% 16.7%
G3 9.5% 100% 83.3%

6 Basis vectors 6 Basis vectors
G1 G2 G3

G1 89.6% 50.0% 0.0%
G2 9.1% 25.0% 0.0%
G3 1.3% 25.0% 100%

G1 G2 G3

G1 83.8% 0.0% 0.0%
G2 2.7% 100% 0.0%
G3 13.5% 0.0% 100%

TABLE I

THE RESULTS OF THE DISCRIMINATOR BASED ON THE3
TO 6 MOST DISCRIMINATING KARHUNEN-LOÈVE BASIS

VECTORS ARE SHOWN IN THIS TABLE. THE LEFT HALF

PART OF THE TABLE IS BASED ON THE RESIDUALαF, AND

THE OTHER HALF PART ON THE RESIDUALαR. THESE

PARTS ARE AGAIN SEPARATED INTO ARRAYS WITH THE

RESULTS OF EACH NUMBER OF BASIS VECTORS. THE

HORIZONTAL G1, G2, G3 ARE THE GROUP IN WHICH THE

TEST DATA ARE CONTAINED AND THE VERTICAL ONES

ARE THE GROUPS THEY ARE CLASSIFIED AS BEING IN.
THIS CAN BE ILLUSTRATED BY AN EXAMPLE. TAKE αf

WITH 3 BASIS VECTORS. 85.7%G1 DEFECTS ARE

CLASSIFIED AS BEINGG1 DEFECTS, 9.1%WAS

CLASSIFIED AS BEINGG2 DEFECT AND THE REMAINING

5.2%WAS CLASSIFIED AS BEINGG3 DEFECTS.

improvement of the results id clear. The frequency basis
achieves non acceptable results, the results of the discrimina-
tor based on the Karhunen-Loève basis, the Haar basis and
the mean of group set are illustrated in Tables III-D, III-D
and III-D. Before choosing the best discriminator from these
results in Tables III-D-III-D, it is necessary to define some
requirements to the discriminator. The most important issue
is to classifyG3 defects asG3 defects, since the controllers
are maybee forced into severe problems if these defects are
not classified correct. The second most important thing is to
have as high correct classification ofG1 defects.G2 defects
are non common and are as consequence not as important
to classify correct. Another important thing is to limit the
required computations. This means that a low number of
basis vectors is better than a high number of basis vectors. It
also means that the Haar basis has a disadvantage in the way
the basis transformation is done. It is made time invariant by
finding the max of the auto correlation of the basis vectors
and the residuals, where the other two basis transformations

p. 4



Haar basisαf Haar basisαr

3 Basis vectors 3 Basis vectors
G1 G2 G3

G1 49.4% 50.0% 0.0%
G2 19.5% 25.0% 0.0%
G3 31.2% 25.0% 100%

G1 G2 G3

G1 75.5% 0.0% 0.0%
G2 4.1% 100% 66.7%
G3 20.3% 0.0% 33.3%

4 Basis vectors 4 Basis vectors
G1 G2 G3

G1 35.1% 25.0% 0.0%
G2 42.9% 50.0% 0.0%
G3 22.1% 25.0% 100%

G1 G2 G3

G1 79.7% 0.0% 0.0%
G2 16.2% 0.0% 16.7%
G3 4.1% 100% 83.3%

5 Basis vectors 5 Basis vectors
G1 G2 G3

G1 54.5% 25.0% 0.0%
G2 31.1% 50.0% 0.0%
G3 14.3% 25.0% 100%

G1 G2 G3

G1 94.6% 0.0% 0.0%
G2 1.4% 100% 0.0%
G3 4.1% 0.0% 100%

Basis order 6 Basis order 6
G1 G2 G3

G1 84.4% 25.0% 0.0%
G2 10.4% 50.0% 0.0%
G3 5.2% 25.0% 100%

G1 G2 G3

G1 77.0% 0.0% 0.0%
G2 17.6% 100% 0.0%
G3 5.4% 0.0% 100%

TABLE II

THE RESULTS OF THE DISCRIMINATOR BASED ON3 TO 6
MOST DISCRIMINATING HAAR BASIS VECTORS ARE

SHOWN IN THIS TABLE. THE LEFT HALF PART OF THE

TABLE IS BASED ON THE RESIDUALαF, AND THE OTHER

HALF PART ON THE RESIDUALαR. THESE PARTS ARE

AGAIN SEPARATED INTO ARRAYS WITH THE RESULTS OF

EACH NUMBER OF BASIS VECTORS. THE HORIZONTAL

G1, G2, G3 ARE THE GROUP IN WHICH THE TEST DATA

ARE CONTAINED AND THE VERTICAL ONES ARE THE

GROUPS THEY ARE CLASSIFIED AS BEING IN. THIS IS THE

SAME PRINCIPLE AS INTABLE III-D.

are done by convoluting the basis vectors with the residuals.
This means that a Haar has to perform significantly better
than the other bases to be chosen as the best one. Inspection
of these three tables with the results shows that the best
performance is achieved by using the Haar transform with 5
basis vectors onαr, whereG1 defects were classified correct
with 94.6% success, and the two other groups were correctly
classified with 100% success. The mean of group set achieves
the best performance for theαr residual, with 82.4% success
for G1 defects and 100% success for the two others. The
Karhunen-Lòeve basis performs best at theαf residual. The
Karhunen-Lòeve basis does not improve its performance
much from order 3 to 6. It is interesting to compare the result
of order 3 and 4 discriminator based on the Karhunen-Loève
basis, with mean of group set based discriminations. The
Karhunen-Lòeve based discriminator achieves 50% success
for G2 defects for both 3 and 4 basis vectors, and 100%
for G3 defects for both the 3 and 4 basis vectors. TheG1

success rate is 85.7% for the Karhunen-Loève 3 basis vectors
and 87% for the Karhunen-Loève 4 basis vectors.

Even though the Haar basis based discriminator performs
the best, it is presumably not preferable due its high demands
of computations, the time invariant property. Comparing the

Mean setαf Mean setαr

3 vectors 3 vectors
G1 G2 G3

G1 79.2% 0.0% 50.0%
G2 13.0% 75.0% 25.0%
G3 19.5% 0.0% 25.0%

G1 G2 G3

G1 82.4% 0.0% 0.0%
G2 17.6% 100% 0.0%
G3 0.0% 0.0% 100%

TABLE III

THE RESULTS OF THE DISCRIMINATOR BASED ON THE

MEAN OF GROUP SET OF THE ORDER3, THIS SET HAVE

ONLY 3 VECTORS, IS SHOWN IN THIS TABLE. THE LEFT

HALF PART OF THE TABLE IS BASED ON THE RESIDUALαF,
AND THE OTHER HALF PART ON THE RESIDUALαR. THE

HORIZONTAL G1, G2, G3 ARE THE GROUP WHICH THE

TEST DATA ARE CONTAINED IN AND THE VERTICAL ONES

ARE THE GROUPS THEY ARE CLASSIFIED AS BEING IN.
THIS IS THE SAME PRINCIPLE AS INTABLE III-D.

Karhunen-Lòeve basis and the mean of group basis, they
have the same good performance regarding discriminating
G3 defects. The Karhunen-Loève basis is 3 or 5 % point
better success rate ofG1 defects, but it does not perform as
well at G2. However, as written before, theG2 is rare and is
as a consequence not as important to discriminate well. This
means that if the number of computations are not a large
problem, the projection ofαr on the 5 Haar basis vectors
is the best discriminator. If the number of computation is a
problem with best discriminator is the projection ofαf on
the 3 most discriminating Karhunen-Loève basis vectors.

IV. CONCLUSION

Based on the test data from real world challenging CDs
three defect groups are defined. These groups are used to
design a discriminator, which is designed to discriminate
between these groups. This discriminator is found based on
the local discriminating basis of some approximating bases:
Karhunen-Lòeve, Haar etc. After the basis transformation,
the discriminator finds the group which the given defect
is closest to in the given basis. The Karhunen-Loève basis
based detection has rates higher than 85.7% for the important
short defects,G1, and large defects,G3. The much more
computationally demanding Haar basis based discriminator
has success rates higher than 94.6% for all the three defect
groups. In addition to these high success rates the Haar basis
based discriminator is time invariant, which is an important
property if it can not ensured that the defects are symetrically
placed in the midle of the data block.
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