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Abstract— This paper addresses the subject of inter-turn short
circuit estimation in the stator of an induction motor. In th e paper
an adaptive observer scheme is proposed. The proposed observer
is capable of simultaneously estimating the speed of the motor,
the amount turns involved in the short circuit and an expression
of the current in the short circuit. Moreover the states of the
motor are estimated, meaning that the magnetizing currentsare
made available even though a fault has happened in the motor.
To be able to develop this observer, a model particular suitable
for the chosen observer design, is also derived. The efficiency of
the proposed observer is demonstrated by tests performed ona
test setup with a customized designed induction motor. Withthis
motor it is possible to simulate inter-turn short circuit fa ults.

I. I NTRODUCTION

Stator faults are according to [1] the most common electrical
faults in electrical motors. Moreover according to [2] mostof
these faults start as an inter-turn short circuit in one of the
stator coils. The increased heat due to this short circuit will
eventually cause turn to turn and turn to ground faults and
finally lead to a break down of the stator.

The inter-turn short circuits are caused by several different
influences on the stator. For example mechanical stress during
assembling or during operation can create scratches in the
insulation and cause short circuits. Especially if the motor is
placed in a moist environment. Moisture can cause flow of
current from scratch to scratch, which can make a hot spot
and thereby destroy the insulation. Partial discharges dueto
very high alternating voltage between turns, when the stator is
supplied by a PWM voltage source, can also over time degrade
the insulation and cause a short circuit.

In the literature different approaches are proposed for de-
tection of inter-turn faults. In [3] the stator currents aretrans-
formed using the Park transformation. Second order harmonics
in the length of the transformed current vector is then used
for fault detection. In [4] oscillations in the voltage between
the line neutral and the star point of the motor is used as a
fault indicator. This is also shown in [5] using a model of a
faulty motor. In [6] estimation of the negative impedance of
the motor is used as a fault indicator, and in [7] the negative
sequence current is used for the same purpose. In [8] high
frequency voltage injection in the supply voltage is utilized to

create a response on the motor current. This response contains
information of the inter-turn short circuit fault.

In this paper a model-based approach is proposed. The
proposed approach is based on a model of the induction motor
including an inter-turn fault in the stator. Different approaches
for modeling inter-turn short circuits in the stator windings are
found in the literature. In [9] a higher order model is used.
This model is an extension of the model presented in [10].
This type of model is used for simulating higher order effects
in the motor, but the obtained model is of high order. The
inter-turn short circuit fault has it main harmonics in the lower
frequency range. Therefore observers designed on the basisof
this model will be of unnecessary high order for this kind of
fault.

In [11] a steady state model of both inter-turn and turn-turn
faults in an induction motor is developed using a low order
model. In [5] a transient model of the same order as the one
presented in [11] is developed. This model is similar to the
one used in the observer design presented in this paper.

In this paper an adaptive observer is proposed for estimation
of the inter-turn short circuit fault. Theoretical considerations
on adaptive observers can for example be found in [12], [13].
The proposed observer is capable of simultaneously estimating
the speed of the motor, the amount of turns involved in the
short circuit, and an expression of the current in the short
circuit. The observer is based on a model, developed particular
for this purpose. This model is similar to the model described
in [5]. As the proposed observer estimates the impact of the
inter-turn short circuit on the induction motor, it can be used
for fault robust control of the motor. Thereby it is possibleto
obtain control in the case of a inter-turn short circuit, meaning
that it is possible to control the process, driven by the motor,
to a fail-safe mode.

As a model based approach for fault estimation is proposed
in this paper, the paper starts by deriving a model of the
induction motor with an inter-turn short circuit in sectionIII.
This model is in section IV used in the design of the proposed
adaptive observer. In section V test results from tests on a
customized designed motor are presented. Finally concluding
remarks ends the paper.



II. N OMENCLATURE

In this paper large bold letters denote matrices. Small bold
letters denotes matrices in the motor model when described in
abc-coordinats and vectors respectively. The parameters in the
model presented in section III is decribed in the following.

vsabc The terminal voltage of three phase induction
motor,vsabc = (vsa vsb vsc)

T .
isabc The current at the terminals of the three phase

induction motor,isabc = (isa isb isc)
T .

ψsabc The flux linkage in the stator phases of the
induction motor,ψsabc = (ψsa ψsb ψsc)

T .
irabc The current in the three equivalent phases of

the rotor circuit in the induction motor,irabc =
(ira irb irc)

T .
ψrabc The flux linkage in the three equivalent phases

of the rotor circuit in the induction motor,
ψrabc = (ψra ψrb ψrc)

T .
if The current in the short circuits of the stator.

xsdq0 The transformed stator variable vectors of the
induction motor, e.i.xsdq0 = Tdq0xsabc, where
xsdq0 = (xsd xsq xs0)

T .
xsdq0 The transformed rotor variable vectors of the

induction motor, e.i.xrdq0 = Tdq0(θ)xrabc,
wherexsdq0 = (xrd xrq xr0)

T .
Tdq0(θ) A transformation matrix given byTdq0(θ) =

2
3





cos(θ) cos(θ + 2
3π

) cos(θ + 4
3π

)
sin(θ) sin(θ + 2

3π
) sin(θ + 4

3π
)

1
2

1
2

1
2



.

Tdq0 A transformation matrix given byTdq0 =
Tdq0(0).

III. M ATHEMATICAL MODEL OF SHORT CIRCUITS IN THE

STATOR OF AN INDUCTION MOTOR

An inter-turn short circuit denotes a short circuit between
two windings in the same phase of the stator, see Fig. 1. Here
the electrical circuit of anY-connected stator is shown.

a

b

c

i
f

i
sa

i
sb

i
sc

Fig. 1. Simplified electrical diagram of a three phaseY-connected stator
with an inter-turn short circuit in phasea.

In this figure a short circuit between the star point of the
motor and an arbitrary point of the coil is shown. This seems as
a rather limited model assumption, but if the electrical circuit
is assumed linear, all short circuits in the given coil can be
represented as a short circuit connected to the star point with
the same amount of turns as in the real case.

In the following, a model of an induction motor, including
an inter-turn short circuit in phasea, is developed. The model
is developed under the assumption that the short circuit does
not affect the overall angular position of the coil in the motor.

A. The Induction Motor Model inabc-Coordinats

Setting up the mesh equations for the circuit in figure 1 and
rearranging these equations, a model describing a motor with
one short circuit in phasea is found. Using the matrix notation
presented in [14] this model is given by the following set of
equations,

vsabc = rs(isabc − γif) +
dψsabc

dt
+ 1v0 (1)

0 = rrirabc +
dψrabc

dt
(2)

ψsabc = ls(isabc − γif) + lm(θ)irabc (3)

ψrabc = lrirabc + lm(θ)(isabc − γif ) (4)

lf
dif
dt

= −rf if + γT vsabc (5)

where (1) and (3) describe the currents and the flux linkages
in each stator phase and (2) and (4) describe the currents and
the flux linkages in each rotor phase. Finally (5) describes the
current in the short circuit. In (1)vsabc is the terminal voltage
andv0 is the star point voltage. The matricesrs, rr, ls andlr
are defined by,

rs = rsI rr = rrI

ls = llsI + lm(0) lr = llrI + lm(0)

wherers andlls are the resistance and the leakage inductance
in the stator windings respectively, andrr and llr are the
resistance and leakage inductance in the rotor windings re-
spectively.I is the identity matrix and finallylm is the mutual
inductance and is given by,

lm(θ) = lm





cos(θ) cos(θ + 2π
3 ) cos(θ + 4π

3 )
cos(θ + 4π

3 ) cos(θ) cos(θ + 2π
3 )

cos(θ + 2π
3 ) cos(θ + 4π

3 ) cos(θ)





(6)

wherelm is a constant andθ is the angle between the stator
and rotor phases.

The vectorγ in (1) to (5) represents the position and the
amount of turns in the short circuit. The vector is, in the case
of a short circuit in phasea, given by,

γ =
[

γa 0 0
]T

whereγa is the amount of turns involved in the short circuit.
The inductor and the resistor in (5) are given by,

lf = γa(1 − γa)lls rf = γa(1 − γa)rs + ri

wherers is the stator resistance,lls is the leakage inductance
of the stator andri is the resistance in the insulation break.
ri = ∞ means that no short circuit has occurred andri 6= ∞
means that some leakage current is flowing. The evolution
from ri = ∞ to ri = 0 is very fast in most insulating
materials, meaning the valueri can be assumed to either equal
∞ or 0.



B. Transformation to a Stator fixeddq0-frame

Using thedq0-transformationTdq0(θ) presented in [14] the
model described in section III-A is transformed intodq0-
coordinats fixed to the stator. Doing this the following model
is obtained,

vsdq0 = Rs(isdq0 − Tdq0γif ) +
dψsdq0

dt
+ v0 (7)

0 = Rrirdq0 +
dψrdq0

dt
− zpωrJψrdq0 (8)

ψsdq0 = Ls(isdq0 − Tdq0γif ) + Lmirdq0 (9)

ψrdq0 = Lrirdq0 + Lm(isdq0 − Tdq0γif) (10)

lf
dif
dt

= −rf if + γTT−1
dq0(vsdq0 − v0) (11)

wherevsdq0 is the terminal voltage andv0 =
[

0 0 v0
]T

.
Using thedq0-transformation all matrices in the model have
a diagonal structure i.e. they are given by,

Rs = diag{rs, rs, rs} Rr = diag{rr, rr, rr}
Ls = diag{ 3

2 lm + lls,
3
2 lm + lls, lls}

Lr = diag{ 3
2 lm + llr,

3
2 lm + llr, llr}

Lm = diag{ 3
2 lm,

3
2 lm, 0}

J =





0 1 0
−1 0 0
0 0 0





From (7) to (11) it is seen that it is convenient to define a new
current vectori′sdq0 = isdq0 − Tdq0γif . This current equals
the amount of the stator current, which generates air gab flux.
Rewriting (7) and (9) and introducing the currenti′sdq0 the
stator model becomes,

vsdq = Rsi
′

sdq + Ls

di′sdq

dt
+ Lm

dirdq

dt
+ v0

vs0 = rsi
′

s0 + lls
di′s0
dt

+ v0 (12)

isdq = i′sdq + Tdqγif

0 = i′s0 +
1

3
γaif (13)

Here the two equations are divided into four equations, where
vectors with subscribedq and variables with subscribe0
contains respectively the two first components and the last
component of vectors with subscribedq0.

In (7) and (9) the currentisdq0 is the current in the terminals
of the motor. Therefore the currentis0 = 0 in the case of a
Y-connected stator. This is utilized to obtain (13).

The last row of the voltagevsdq0 − v0 in (11) equals
vs0 − v0 and is unknown because the star point voltagev0
is assumed unknown. From (11) it is seen that the current
in the short circuit depends upon this voltage. Therefore itis
necessary to find an expression for it. Equation (12), describing
the zero current in the stator, can be used for this. Including
the expression of the voltagevs0 − v0 obtained from (12) in
(11) and using (13) to describei′s0 the following expression
is obtained,

Lf

dif
dt

= −Rf if + γavsd (14)

whereLf andRf respectively are given by,

Lf = lf +
1

3
γ2

alls Rf = rf +
1

3
γ2

ars

Equation (8) and (10) describes the rotor circuit. Rewriting
these expressions and using thati′sdq0 = isdq0 −Tdq0γif , the
model of the rotor circuit becomes,

dψrdq

dt
= −

(

RrL
−1
r − zpωrJ

)

ψrdq + RrL
−1
r Lmi′sdq (15)

dψr0

dt
= −

rr
lr
ψr0 (16)

Equation (16) shows thatlimt→∞ ψr0 = 0 despite of a short
circuit in the stator. Moreoverψr0 does not appear in the
remaining model equations, i.e. it is not necessary to include
(16) in the final model.

The final model describing the electrical part of the induc-
tion motor is given by (12), (15) and (14). These equations
respectively describe the stator circuit, the rotor circuit, and
the short circuit. Defining the magnetizing currentimdq such
that it fulfills the equationψrdq = Lmimdq the model of the
induction motor with a short circuit in the stator becomes,

L′

s

di′sdq

dt
= − (Rs + R′

r) i
′

sdq + (R′

r − zpωrJL′

m) imdq

+ vsdq

L′

m

dimdq

dt
=R′

ri
′

sdq − (R′

r − zpωrJL′

m) imdq

Lf

dif
dt

= − Rf if + γavsd

where the current measurable at the terminals of the motor is
given byisdq = i′sdq+Tdqγif . In these equations the matrices
R′

r, L′

s andL′

m are given by,

R′

r = LmL−1
r RrL

−1
r Lm

L′

s = Ls − LmL−1
r Lm L′

m = LmL−1
r Lm

meaning that the new matrices retain the diagonal structure.

IV. A N ADAPTIVE OBSERVER FORINTER-TURN FAULT

DETECTION

In the previous section a model of an induction motor with
an inter-turn short circuit is developed. This model will inthis
section be used in the development of an adaptive observer.
This observer is based on only the electrical quantities avail-
able at the terminals of the motor.

The model developed in the previous section can be put on
matrix form resulting in the following description,

ẋ = (A0 + ωrAωr
)x + Bu

y = Cx
(17)

where,

x =
[

i′sdq
T

i
T
mdq if

]T

u = vsdq y = isdq (18)

The matrices in this model are given by,

A0 =







−L′

s
−1(Rs + R′

r) L′

s
−1

R′

r 0

Lm
−1R′

r −Lm
−1R′

r 0

0 0 −
Rf

Lf









Aωr
=





0 −zpJL′

s
−1

L′

m 0
0 zpJ 0
0 0 0



 B =







L′

s
−1

0
[

γa

Lf
0
]







C =
[

I 0 Tdqγ
]

All parameters of the matrices are known except for the vector
γ and the parametersRf andLf . The last two appear in the
matrices in a fraction, which can be rewriten as shown below,

Rf

Lf

=
rf + 1

3γ
2
ars

lf + 1
3γ

2
alls

=
γa(1 − 2

3γa)rs + ri

γa(1 − 2
3γa)lls

If it is assumed thatri = 0 this fraction equalsrs

lls
, meaning

that the fraction is known.ri is the resistance of the insulation
in the short circuit. In section III-A it is argued that this
resistance almost always is either∞ or 0. Therefore the
assumption thatri = 0 is almost always true if a short circuit
has occurred.

Defining a linear state transformationx = Tz as shown
below,

T =









I 0

[

−1
0

]

−L′

m
−1

L′

s I 0
0 0 3

2γa









(19)

and defining a fault signalf as

f =
γa

1 − 2
3γa

(20)

the system described by (17) is transformed into a bilinear
system on the form,

ż = (A0 + ωrAωr
+ vsdAvsd

)z + Bu

y = Cz
(21)

where the state vector is extended with a state describing the
fault signal, e.i.z =

[

(T−1x)T f
]T

. The matrices in (21)
are given by,

A0 =



















A0,11 L′

s
−1

R′

r

[

Rs+R′

r

L′

s
− rs

lls

0

]

0

L′

m
−1

Rs 0

[

Rs

L′

m
− rs

lls

0

]

0

0 0 − rs

lls
0

0 0 0 0



















Aωr
=









zpJ −zpJL′

s
−1

L′

m 0 0
0 0 0 0
0 0 0 0
0 0 0 0









Avsd
=

















0 0 0

[

2
3lls

0

]

0 0 0

[

2(lm+lls)
3Lmlls

0

]

0 0 0 2
3lls

0 0 0 0

















B =









L′

s
−1

L′

m
−1

0
0









C =
[

I 0 0 0
]

whereA0,11 = −L′

s
−1

(Rs + R′

r) − L′

m
−1

R′

r in matrix A0.
If the speed is assumed constant, this system is a bilinear

system with one unknown but constant parameter, namely the
speed. For such a system an adaptive observer can be used
for simultaneous estimation of the states and the unknown
parameter. This is possible if the system fulfills some demands
presented in definition 1 below.

In [12] a definition of a system on nonlinear adaptive form
is given. The corresponding definition for the bilinear caseis
presented below,

Definition 1 A system on the form

ż = A(u,θ)z + Bu (22)

wherez =
[

y ζ
]

and y is the measured output, is said to
be on bilinear adaptive form if,

• A(u,θ) is bounded for allθ ∈ Dθ and u ∈ U , where
Dθ is the parameter space andu ∈ U is the input space.

• the set(A(u,θ),C) is observable for everyθ ∈ Dθ and
u ∈ U , whereC =

[

I 0
]

.
• Aθ1

(u) to Aθn
(u) are linear independent matrices for

everyu ∈ U .

where,

A(θ) = A0(u) + θ1

[

Aθ1
(u)

0

]

+ · · · + θn

[

Aθn
(u)

0

]

Remark 1 Definition 3.1 in [12] requires existence of a Lya-
punov function and Lipschitz conditions on the nonlinearities.
These are fulfilled in this case as the system is state affine.

The system described by (21) fulfills definition 1 except for
the observability condition whenvsd = 0. It can be argued
that when the induction motor is running, the fraction of the
time wherevsd = 0 is almost equal to zero. Therefore the
system described by (21) is observable almost all the time
and therefore fulfills definition 1 almost all the time.

For a system on the form defined by definition 1 an adaptive
observer exists according to the following lemma.

Lemma 1 For a system of the form defined in definition 1 an
adaptive observer exists and has the following form,

˙̂z = A(u, θ̂)ẑ + Bu + K(y − ŷ) (23)
˙̂
θi = κ(y − ŷ)T P1Aθi

(u)ẑ ∀ i ∈ {1, · · · , n} (24)



whereP1 is a positive definite matrix,̂z =
[

ŷ ζ̂
]T

and

A(u, θ̂) = A0(u) + θ̂1

[

Aθ1
(u)

0

]

+ · · · + θ̂n

[

Aθn
(u)

0

]

If there exists aK(u) stabilizing the system for everlyθ and
u, i.e. making the matrixA(u,θ)−K(u)C Hurwitz for every
θ ∈ Dθ and u ∈ U , whereC =

[

I 0
]

.

Proof of the lemma is given in appendix I. This lemma is a
simplification of proposition 3.1 in [12].

Lemma 1 states that aK(u) must exist, which garanties
that the real part of the eigenvalues of,

A(u,θ) − K(u)C (25)

are less than zero for allu ∈ U andθ ∈ Dθ. In the induction
motor case this is the same as saying that the eigenvalues must
be less than zero for all possible values ofvsd andωr.

ChoosingK(u) = K0 + vsdK1 the expression in (25) will
in the induction motor case become,

(A0 − K0C) + ωrAωr
+ vsd(Avsd

− K1C)

A common way to treat a bilinear system is to useK1 for
cancelation of the bilinear terms [15]. This is not possible
in this case due to the structure of the matrices. Therefore,
to avoid dependency of the sign of the voltagevsd, K1 is
chosen such that the eigenvalues ofAvsd

−K1C is placed on
the imaginary axis. Doing this the behaviour of the system is
the same for positive and negative values ofvsd.

In Fig. 2 the locus of the roots for a given motor and a
given choise ofK0 andK1 is shown. The presented locuses
are functions of speed at four different values ofvsd.
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Fig. 2. Root locus plot of the observer eigenvalues for four different supply
voltagesvsd and speed values from -400 to 400 [rad/sec].

From Fig. 2 it is seen that in the presented cases the system
is stable. Numerical analysis has shown that this is the case
for all values ofvsd from -400 [V ] to 400 [V ] except for
vsd = 0.

Remark 2 In the text above it is argued that the observer is
stable for all values of the voltagevsd between -400 and 400
[V ] except forvsd = 0, and all speeds between -400 and 400
[rad/sec]. This is not the same as saying that it is possible
to estimate the fault and speed at zero speed due to demands
for persistence of excitation.

Remark 3 Fault tolerant control can be obtained using the
current vectori′sdq, estimated by the proposed observer, as
input to the current controllers. This current is the part ofthe
stator current producing air gab flux. Therefore, by using this
current the control is not affected by the short circuit.

This current vector is given by the two first terms of the
state vectorx in (18), which is calculated usingx = Tz,
whereT is defined in (19).

Remark 4 According to [16] isolation between different
faults can be obtained using a set of adaptive observers.
This idea can, in the case of the induction motor, be used if
three identical observers are designed, each detecting a stator
winding fault in one of the three phases.

V. TEST RESULTS

In this section the adaptive observer is tested on an induction
motor setup where inter-turn stator faults can be simulated.
The electrical circuit of the stator is shown in Fig. 3. The motor

2
5

%


5
%



a

c

b

Fig. 3. The electrical circuit of the stator in the test setup. Two points of
phasea of the stator and the star point are available at the terminalbox.

used in the test is a 1.5 [KW] customized Grundfos motor,
supplied by a Danfoss frequency converter. The speed, the
three phase currents, and the three phase voltages are available
at the test setup. The voltage to the motor is controlled using
a linear voltage to frequency relation, with a voltage boostat
low frequencies. All tests are preformed at supply frequencies
between 10 and 30 [Hz] to avoid too large short circuit
currents and thereby burnout of the motor during the tests.

Three tests are performed, showing the estimation capability
of the algorithm under three different conditions. In each of
the tests the algorithm is tested with no short circuit, 5% of
the windings short circuited, and 25% of the windings short
circuited. In the first test the motor is running at constant speed
with a supply frequency of 25 [Hz]. The results from this test
are shown in Fig. 4(a) and 4(b). In the second test the supply
frequency of the motor is changed each second between 15
and 30 [Hz]. The results from this test are shown in Fig. 4(c)
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(a) The top figure shows the estimation of the scaled current
γaif and the bottom figure shows the estimated and real
amount of windings affected by the short circuit.
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(b) The top figure shows the estimated and the measured
speed and the bottom figure shows the error between the
estimated and measured speedωe.
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(c) The top figure shows the estimation of the scaled current
γaif and the bottom figure shows the estimated and real
amount of windings affected by the short circuit.
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(d) The top figure shows the estimated and the measured
speed and the bottom figure shows the error between the
estimated and measured speedωe.
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(e) The top figure shows the estimation of the scaled current
γaif and the bottom figure shows the estimated and real
amount of windings affected by the short circuit.
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(f) The top figure shows the estimated and the measured
speed and the bottom figure shows the error between the
estimated and measured speedωe.

Fig. 4. The results form tests with the proposed algorithm. Figure 4(a) and 4(b) show results at constant speed and balanced supply voltage, figure 4(c) and
4(d) shows results with changing speed, and figure 4(e) and 4(f) shows results with unbalanced supply voltage.



and 4(d). In the last test the amplitude of voltage supplying
phasea is decreased with 5%, meaning that the supply voltage
is unbalanced. The results from this test are shown in Fig. 4(e)
and 4(f).

All the tests have shown that the observer is stable. From
the first test, presented in Fig. 4(a) and 4(b), it is seen that
the speed is estimated without any bias. It is also seen that
there is a bias on the estimated fraction of turns in the short
circuit. This bias is partly due to noise on the measurements,
and partly due to mismatch between the real motor parameters
and the motor parameters used in the observer. This bias is
repeated in each of the three tests.

Results from the second test, presented in 4(c) and 4(d),
shows that the observer is capable of estimating the wanted
quantaties despite of speed changes. Still it is seen that the
speed changes affect the estimated amount of turns in the short
circuit. This is because of the constant speed assumption used
in the design. It is, however, still possible to use the estimate
of the fault.

From the results of the last test, presented in 4(e) and 4(f),
it is seen that an unbalanced supply of 5% is not affecting the
performance of the observer.

VI. CONCLUSION

An adaptive observer for simultaneous estimation of the
motor states, the speed, and the amount of turns in an inter-
turn short circuit is proposed. The observer is tested on a
customized designed induction motor. The tests have shown
that the observer can estimate an inter-turn fault despite of
speed changes and unbalanced supply conditions. This makes
the estimation scheme usable in inverter feed induction motor
drives, or in motor applications supplied by a bad grid.

As both the short circuit and the states of the motor are
estimated, the proposed observer might be used for fault
tolerant control. Meaning that torque control can be obtained
despite of an inter-turn short circuit in the stator.
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APPENDIX I
PROOF OF LEMMA 1

This appendix contains the proof of lemma 1. The proof is
quite simple and is based on a Lyapunov analysis of the error
equation of the observer. The error equation of the adaptive
observer is given by,

˙̃z = A(θ,u)z + Bu −
(

A(θ̂,u)ẑ + Bu + K(u)(y − ŷ)
)

= (A(θ,u) − K(u)C)z̃ + Aθ(θ̃,u)ẑ (26)

wherez̃ = z− ẑ, θ̃ = θ − θ̂ and,

Aθ(θ̃,u) =

n
∑

i=1

θ̃i

[

Aθi
(u)

0

]

C =
[

I 0
]

The Lyapunov function presented below is used for the stabil-
ity analysis of the error equation,

V = z̃T Pz̃ +
1

2κ

∑

i

θ̃2i > 0

whereP is a positive definite matrix of the following form,

P =

[

P1 0

0 P2

]

The derivative of this Lyapunov function along the trajectory
of the error system presented in equation 26 is given by,

V̇ =z̃T
(

(A(θ,u) − K(u)C)T P + P(A(θ,u) − K(u)C)
)

z̃

+
∑

i

θ̃i

(

z̃T P

[

Aθi
(u)

0

]

ẑ +
1

κ
˙̃
θi

)



The adaptation law is given by setting the terms inside the
sum equal to zero and using the assumption theθ is constant

meaning thaṫ̃θ = −
˙̂
θ. From this the following adaptation law

is obtained,

˙̂
θi =κ(y − ŷ)TP1Aθi

(u)ẑ ∀i ∈ {1, · · · , n}

wherez =
[

y ζ
]

from definition 1 is used to interchange
z̃ andy − ŷ. Using the adaptation law, the derivative of the
Lyapunov function along the trajectory of the error equation
reduces to,

V̇ =z̃T
(

(A(θ,u) − K(u)C)T P + P(A(θ,u) − K(u)C)
)

z̃

which is smaller than zero wheñz 6= 0 if,

ℜe{eig(A(θ,u) − K(u)C)} < 0 ∀ θ ∈ Dθ,u ∈ U

whereDθ and U are a bounded sets. or in other words the
matrix A(θ,u) − K(u)C is Hurwitz for all θ ∈ Dθ and for
all u ∈ U .


