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Abstract

If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group

action. This property leads to substantial simpli�cation of the description of movement. The standpoint

in this article is a mechanical system a�ected by an external force of a control action. Assuming that

the system possesses symmetry and the con�guration manifold corresponds to a Lie group, the Euler-

Poincar�e reduction breaks up the motion into separate equations of dynamics and kinematics. This

becomes of particular interest for modeling, estimation and control of mechanical systems. A control

system generates an external force, which may break the symmetry in the dynamics. This paper shows

how to model and to control a mechanical system on the reduced phase space, such that complete state

space asymptotic stabilization can be achieved. The paper comprises a specialization of the well-known

Euler-Poincar�e reduction to a rigid body motion with forcing. An example of satellite attitude control

illustrates usefulness of the Euler-Poincar�e reduction in control engineering. This work demonstrates how

the energy shaping method applies for Euler-Poincar�e equations.

I. Introduction

A description of a mechanical system with forcing is addressed in this paper. It focuses

on modelling of a particular system, a rigid body. It has been exhaustively analyzed in the

literature of classical mechanics. This gives freedom to treat it from a Hamiltonian or a

Lagrangian point of view, as motion on: Riemannian, symplectic or Poisson manifold. The

standard references on this subject are [1], [2], and [3]. It is the variational principles that

are assumed in this article as axioms and the equations of motion are derived therefrom.

Let I � R be an open interval. A motion in a set S denotes a smooth curve  : I ! S.

The equations of motion are di�erential equations, which ow lines correspond to motions.

If the con�guration manifold is a Lie group and the Lagrangian becomes invariant under a

group action, in this work the left translation, the motion can be transformed using Euler-

Poincar�e reduction into two sets of equations: kinematics and dynamics; [3] Ch. 13.6.

This description is of particular interest for modelling in [4], control in [5], and estimation

in [6].

The work merges two known techniques: Euler-Poincar�e reduction of classical mechanics

and the energy shaping of control engineering. The main focus in the literature of mechan-

ics is on reducing di�erential equations describing motion of a mechanical system, which

are invariant under the action of a Lie group. Hence one obtains equations with fewer
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coordinates or even a globally de�ned di�erential operator on a quotient manifold; [7], [3],

and [8]. Control of mechanical systems with symmetry was treated before e.g. in [9], [10].

In these works the internal forces gave rise to the control action, however, the e�ect of

general forces was not discussed. The energy shaping method will be applied in this paper.

In its most common formulation it gives a control action, being the sum of the gradient

of potential energy and the dissipation force; [11], Ch. 12 and [12]. In this article the en-

ergy shaping method will be adopted to a mechanical system with symmetry. It is shown

that the reduction of the motion of mechanical system can be used for feedback synthesis,

despite the symmetry breaking property of the control action.

The article constitutes a tutorial on modelling the motion of a rigid body. Relevant

notions of classical mechanics are recalled �rst. Subsequently, the article introduces the

Euler-Poincar�e reduction for a mechanical system with forcing, which is then implemented

for the rotary motion of a rigid body. Two con�guration manifolds are of interest, the

special orthogonal group SO3 of particular interest in robotics, and the group of unit

quaternions Sp1 used in aerospace for a global representation of the attitude. An exam-

ple of satellite attitude control, wherein the Euler-Poincar�e description of the rigid body

motion is applied to the energy shaping method concludes this article.

In this work M stands for a C1 n-manifold with smooth structure f(U�; ��)g�2U . The

system �TG : TM !M de�nes the tangent bundle, and �T �G : T �M !M the cotangent

bundle of M . The main concern of this work will be motion of a system with forcing.

De�nition 1: A force �eld on a con�guration manifold M is a �ber preserving map,

F : TM ! T �M over the identity. It means that for each U�; � 2 U the following

diagram commutes

TU�
F ��

�TG

��

T �U�

�T�G

��
U� id

�� U�:

2

The Lagrange-d'Alembert principle is in the sequel stated in terms of the variational

calculus. If  : [a; b] ! M denotes a piecewise smooth curve, a variation of  means a

family � : [��; �] � [a; b] ! M of piecewise smooth curves such that �0(t) = (t) for all
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t 2 [a; b]. It is called a proper variation if in addition �s(a) = (a) and �s(b) = (b)

for all s 2 [��; �]. A variation �eld Æ of the variation � means the vector �eld along ,

Æ : [a; b] ! T(t)M de�ned by

Æ(t) = (d�t)0

�
@

@s

�
=

@�(s; t)

@s

����
s=0

;

where (d�t)s : TsR ! T�t(s)M denotes the di�erential of �t at s, and
@
@s

stands for the

basis of TsR. A vector �eld V along  is proper if it vanishes at the endpoints, i.e.

Æ(a) = Æ(b) = 0. Thus the variation �eld of a proper variation is proper. For details,

refer to [13].

The next de�nition expresses the Lagrange-d'Alembert principle. It is an axiom stating

conditions for a mechanical system, with a given Lagragian and known external forces, to

follow a motion (; _) 2 TM .

De�nition 2 (7.8.4 in [3]) Given a Lagrangian L : TM ! R and a force �eld F : TM !

T �M , the integral Lagrange-d'Alembert principle for a curve (t) with the proper variation

�s(t) is

@

@s

������ s=0

Z b

a

L(�s(t); _�s(t))dt +

Z b

a

F ((t); _(t))(Æ(t))dt = 0: (1)

2

The motion appears particularly simple for the con�guration manifold being a �nite

dimensional Lie group G. The emphasis in this work lays on this class of con�guration

manifolds. The Lie algebra TeG of G is denoted by g. Every group element a 2 G

de�nes a left translation $a : G ! G ; g 7! ag . It also gives rise to an automorphism

cg : G! G; a 7! gag�1.

De�nition 3 (2.10 in [14]) The adjoint representation is a homomorphism

Ad : G! Aut(g); g 7! (dcg)e = Adg;

where Adg means the di�erential of cg at the unit element (dcg)e : g ! g. The adjoint

representation Ad induces a homomorphism of Lie algebras

ad : g ! End(g); X 7! (dAdX)e = adX ;
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where AdX : G! g; g 7! AdgX. 2

The map ad sends X to the homomorphism Y 7! [X; Y ]. Thus

[X; Y ] = adXY:

As mentioned before the Lagrange-d'Alembert principle gives the condition for a curve on

the tangent bundle TG to represent a motion. However, if the Lagrangian L : TG ! R

turns out to be invariant under the left translation, the equations of motion are particularly

simple. They break up into two separate equations: the kinematics and the dynamics,

hence the motion corresponds to a curve I ! G � g. This constitutes the contents of

Section II. Rotary motion of the rigid body comprises an important example of the

above. Its motion is de�ned on a linear Lie group. Section III addresses the case of the

special orthogonal group SO3, and Section IV treats the group of unit quaternions Sp1.

Section V gives an example of a control application. It shows that the energy shaping

method applies to systems modeled by the Euler-Poincar�e equations, and a controller for

three-axis stabilization of a rigid body is synthesized.

II. Euler-Poincar�e Motion

The Euler-Poincar�e equation with forcing will be formulated in this section. A mechan-

ical system may experience a certain symmetry, expressed in the sequel by the invariance

of the Lagrangian under the left translation.

De�nition 4: The Lagrangian L : TG ! R is left invariant if the following diagram

commutes

TgG
(d$a )g ��

L ���
��

��
��

�
TagG:

L
������

����

R
2

Assuming the Lagrangian invariant under the left translation, the objective is to consider

independently the dynamics, i.e. the motion on the Lie algebra g and the kinematics, the

motion on the Lie group G. For this purpose, the translation of the variation vector �eld

will be examined. Namely, the di�erential of the left translation
�
d$�1 (t)

�
(t)

: T(t)G!

TeG is allowed to act on Æ.
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Proposition 1 (5.1 in [15]) Let �(s; t) : U � R2 ! G be a variation of a curve (t) on a

Lie group G, and denote �;� : U ! g by

�(s; t) =
�
d$� (s;t)�1

�
�(s;t)

�
@�(s; t)

@t

�
(2)

and

�(s; t) =
�
d$� (s;t)�1

�
�(s;t)

�
@�(s; t)

@s

�
: (3)

Then
@�(s; t)

@s
�
@�(s; t)

@t
= [�(s; t);�(s; t)] : (4)

Conversely, if U is simply connected and �;� : U ! g are smooth functions satisfying (4)

then there exists a smooth function � : U ! G satisfying (2) and (3). 2

The tangent space T�(s;t)g in Proposition 1 is isomorphic to the Lie algebra g, and through

the rest of the paper T�(s;t)g and g are canonically identi�ed with Rn , where n denotes the

dimension of the manifold G. The theorem below states the main results.

Theorem 1: Let G be a Lie group with Lie algebra g, L : TG ! R be a left invariant

Lagrangian, l : g ! R be its restriction to the Lie algebra and F : TG ! T �G a force

�eld. For a curve  : [a; b]! G, let � : [a; b]! g, �(t) =
�
d$(t)�1

�
(t)

_(t).

Then the integral Lagrange-d'Alembert principle

@

@s

������ s=0

Z b

a

L(�s(t); _�s(t))dt +

Z b

a

F ((t); _(t))(Æ(t))dt = 0 (5)

holds for all proper variations, is equivalent to the Euler-Poincar�e equation with forcing

d

dt
dl�(t) = ad��(t)dl�(t) + (d$(t))

�

e
F ((t); _(t)) (6)

_(t) = (d$(t))e �(t): (7)

2

Equation (6) denotes the dynamics and (7) the kinematics.

Proof of Theorem 1: Vector �elds �;� : U ! g are de�ned as in Proposition (1)

�(s; t) =
�
d$� (s;t)�1

�
�(s;t)

�
@�(s; t)

@t

�

�(s; t) =
�
d$� (s;t)�1

�
�(s;t)

�
@�(s; t)

@s

�
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�(t) = �(0; t) and �(t) = �(s; t):

Since L is left invariant, meaning

L

�
�(s; t);

@�(s; t)

@t

�
= L

�
$� (s;t)�1� (s; t);

�
d$� (s;t)�1

�
� (s;t)

@� (s; t)

@t

�
= L(e;�(s; t);

the �rst part of (5) becomes

@

@s

������ s=0

Z b

a

L(�s(t); _�(s; t)) dt =
@

@s

������ s=0

Z b

a

l(�(s; t)) dt =

Z b

a

(dl)�(t)(Æ�(t)) dt: (8)

In (8) the chain rule was used

@(l Æ �(s; t))

@s
= (d(l Æ �t(s)))s

�
@

@s

�
= (dl)�(s;t)(d�t(s))s

�
@

@s

�
= (dl)�(s;t)

@�(s; t)

@s
:

According to Proposition (1) the variation �eld of �(s; t) is of the form

Æ�(t) =
@�(s; t)

@s

������ s=0

=
@�(t)

@t
+ ad�(t)�(t): (9)

Substituting (9) into (8) and using integration by parts gives

Z b

a

(dl)�(t)(Æ�(t)) dt =

Z b

a

(dl)�(t)

�
@�(t)

@t
+ ad�(t)�

�
dt

=

Z b

a

�
�
d

dt
(dl)�(t) + ad��(t)(dl)�(t)

�
(�(t)) dt: (10)

The right hand side of (5) can be rewritten as

Z b

a

F ((t); _(t))(Æ(t)) dt =

Z b

a

F ((t); _(t))(((d$(t)�1 )(t))
�1�(t)) dt

=

Z b

a

F ((t); _(t))((d$(t))e�(t)) dt

=

Z b

a

(d$(t))
�

e
F ((t); _(t))(�(t)) dt : (11)

Comparing (10) and (11) with (5) and using the fundamental lemma of calculus of varia-

tions, the Euler-Poincar�e equation (6) follows. �

Theorem 1 gives a general expression of motion on a Lie group. The next two sections

address equations of motion for a particular mechanical system, a rigid body.
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III. Reduction on SO3

The objective of this section is to derive equations of motion for a rigid body. The

special orthogonal group

G = SO3 = fA 2 GL3(R) : A
TA = I and det(A) = 1g

comprises the con�guration manifold. The Lie algebra of SO3 will be �rst identi�ed, and

its properties will be subsequently examined. The section concludes with formulation of

the equation of motion for the rigid body with forcing.

The Lie algebra of SO3 consists of all skew symmetric matrices

so3 = TeSO3 = SS3 = fA 2 GL3(R) : A
T = �Ag

and it is spanned by E1, E2 and E3

E1 =

2
6664
0 0 0

0 0 �1

0 1 0

3
7775 ; E2 =

2
6664

0 0 1

0 0 0

�1 0 0

3
7775 ; E3 =

2
6664
0 �1 0

1 0 0

0 0 0

3
7775 :

The following isomorphism of vector spaces shall be introduced

s : R3 ! SS3; (x1; x2; x3) 7! x1E1 + x2E2 + x3E3 =

2
6664

0 �x3 x2

x3 0 �x1

�x2 x1 0

3
7775 :

The map s can be used to represent the cross product a� b = s(a)b. This makes s a Lie

algebra isomorphism

s : (R3 ;�)! (SS3; [�; �]);

taking a � b to [s(a); s(b)]. Since SO3 is a subgroup of GL3(R) the multiplication of

matrices describes the di�erential of the left translation, i.e.

(d$A)B : TBSO3 ! TABSO3 ; C 7! AC :

The kinematics for a matrix group follows

_(t) = (d$(t))e �(t) = (t)�(t): (12)
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Equation (12) de�nes relation between the velocity _(t) 2 T(t)SO3 and �(t), an element

of the Lie algebra so3.

De�ne an angular velocity as !(t) = s�1(�(t)) and the Lagrangian ~l = l Æ s : R3 ! R.

The Lagragian comprises of the kinetic energy only

~l(!) = T (!) =
1

2
!TJ!;

where J denotes the inertia matrix. The Lagrangian turns out to be left invariant and the

assumption of Theorem 1 is satis�ed. To establish the equations of motion, the di�erential

of the Lagrangian

d~l! = J!

and an explicit expression for ad��dl�(t)

ad��dl�(X) = dl�([�;X]); (13)

where X 2 so3, are provided. Since s is the Lie algebra isomorphism, Eq. (13) becomes

ad�!d
~l!(s

�1(X)) = d~l! � (! � s�1(X)) = (d~l! � !) � s�1(X):

Concluding

ad�!d
~l! = d~l! � !;

and the dynamics follows

d

dt
(J!(t)) = J!(t)� !(t) + s�1((t)�F ((t); _(t))): (14)

Equation (14) is indeed the celebrated equation of the rigid body dynamics, where the

second summand corresponds to the external torque. However, it appears central for

this work that the torque can be computed explicitly from the force �eld. Thus, the

control algorithms derived from the Lagrangian or Hamiltonian formalism, which provide

the control force �eld, can be directly implemented for an Euler-Poincar�e system. In

particular, the energy shaping method in Section V applies for control of a rigid body.

9



IV. Reduction on Unit Quaternions

Alternatively, a group of all unit quaternions could be taken as the con�guration man-

ifold. This attitude representation pays an important role in aerospace and robotics.

Quaternions owe their signi�cance due to simple physical interpretation of an angle and an

axis of rotation. For small angles the three components of the vector part of a quaternion

approximate pitch, roll and yaw. Furthermore there is a variety of estimation algorithms

based on quaternionic representation of the attitude, [6] and [16].

It is vital for this exposition to examine its geometric and algebraic properties. The

unit quaternions can be viewed as a three sphere imbedded in R4 or more convenient for

computation as a complex matrix group. Both interpretations are treated in this section.

The quaternion algebra H will be de�ned �rst. The R-algebra H (+; �) is the division

algebra of 2 by 2 complex matrices of the form

H =

8<
:
2
4 a b

��b �a

3
5 : a; b 2 C

9=
; ;

with matrix addition and multiplication. Another de�nition of quaternions is the algebra

R4(+; �) with standard addition in R4 and a product given by the following formula:

x � y = Q(x)y; (15)

where

Q(x) =

2
666664

x0 �x1 �x2 �x3

x1 x0 �x3 x2

x2 x3 x0 �x1

x3 �x2 x1 x0

3
777775
:

The algebras H (+; �) and R
4(+; �) are isomorphic with a ring isomorphism given by

~w : R4 ! H ; (x0; x1; x2; x3) 7!

2
4x0 � ix3 �x2 � ix1

x2 � ix1 x0 + ix3

3
5 :

Since a con�guration manifold of a Lie group is in focus, only the group properties of

H will be further exploited. Speci�cally, the quaternions with the norm

N

0
@
2
4 a b

��b �a

3
5
1
A = jaj2 + jbj2
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equal one, are of interest. The unit quaternions form a group

Sp1 = fx 2 H : N(x) = 1g;

with the product inherited from H . In fact Sp1 is the same as the special unitary group

SU2 = fA 2 GL2(C ) : A
�A = I and det(A) = 1g;

and makes up a subgroup of the Lie group GL2(C ). The matrix group SU2 appears

particularly important for this work.

The three-sphere constitutes the second interpretation of the unit quaternion. The

di�erential manifold SU2 becomes indeed di�eomorphic to the three-sphere S3 = fx 2

R
4 : jjxjj = 1g with a di�eomorphism

w : S3 ! SU2; (x0; x1; x2; x3) 7!

2
4x0 � ix3 �x2 � ix1

x2 � ix1 x0 + ix3

3
5 :

It appears useful to treat the three-sphere as a Lie subgroup of (R3 ; �), then the map

w : (S3; �)! (SU2; �) is a group isomorphism, and x � y = w�1(w(x)w(y)).

The Lie algebra of SU2 consists of the 2 by 2 skew-Hermitian traceless matrices su2 � H

su2 = TeSU2 = fA 2 GL2(C ) : A = A� and tr(A) = 0g:

It shall be noted that the Pauli spin matrices

�1 =

2
40 1

1 0

3
5 ; �2 =

2
40 �i

i 0

3
5 ; �3 =

2
41 0

0 �1

3
5

span su2. The map

r : R3 ! su2; (x1; x2; x3) 7!
1

2i
(x1�1 + x2�2 + x3�3) =

1

2

2
4 �ix3 �x2 � ix1

x2 � ix1 ix3

3
5 ;

de�nes a Lie algebra isomorphism (R3 ;�) ! (su2; [�; �]) taking X � Y to [r(X); r(Y )]. It

will be useful to write r as follows

r =
1

2
~w Æ i; where i : R3 ,! R

4 ; (x1; x2; x3) 7! (0; x1; x2; x3);

11



then its left inverse becomes

r�1 = 2� Æ ~w�1jsu2 where � : R4 ! R
3 ; (x0; x1; x2; x3) 7! (x1; x2; x3):

The remaining of this section relies on Theorem 1 and the equations of motion for

the rigid body are formulated. Since SU2 is a subgroup of GL2(C ) the multiplication of

matrices gives the di�erential of the left translation

(d$A)B : TBSU2 ! TABSU2 ; C 7! AC :

The kinematics follows

_(t) = (d$(t))e �(t) = (t)�(t):

De�ning an angular velocity as !(t) = r�1(�(t)) and q(t) = w�1((t)) the kinematics

takes the familiar form

_q(t) = (dw)�1
(t) _(t) = ~w�1(w(q(t))r(!(t))) =

1

2
~w�1( ~w(q(t)) ~w(i(!(t))))

=
1

2
q � i(!(t)) =

1

2
Q(q(t))i(!(t)):

Consider a Lagragian ~l = l Æ r : R
3 ! R then the Euler-Poincar�e motion can be written

d

dt
dl!(t) = ad�!dl!(t) + (dr)�e(d$(t))

�

e
F ((t); _(t)):

Each term of the equation above will be computed separately in the sequel. As in Sec-

tion III the Lagragian corresponds to the kinetic energy only

~l(!) = T (!) =
1

2
!TJ!;

where J denotes the inertia matrix. The Lagrangian is left invariant and Theorem 1

applies. As in the case of SO3, the di�erential of the lagrangian equals

d~l! = J!;

and the expression for ad��dl�(t) takes on the form

ad��dl�(X) = dl�([�;X]); (16)
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where X 2 su2. Since r is the Lie algebra isomorphism, (16) becomes

ad�!d
~l!(r

�1(X)) = d~l! � (! � r�1(X)) = (d~l! � !) � r�1(X);

which gives

ad�!d
~l! = d~l! � !:

The external forcing is formulated by

(dr)�e((d$)
�

e
F (; _))(V ) = (d$)

�

e
F (; _)((dr)e(V )) = �F (; _)((dr)e(V ))

= �F (; _)(r(V )) =
1

2
�F (; _)( ~w Æ i(V ))

=
1

2
� Æ ~w�(�F (; _)(V ));

where V 2 TeS
3 �= Te(TeS

3). With a de�nition f(q; !) = ~w�(F (; _)) the torque becomes

(dr)�e((d$)
�

e
F (; _)) =

1

2
� Æ ~w�(�F (; _)) =

1

2
� Æ ~w�

�
(w�)�1(q�)(w�)�1(f)

�

=
1

2
� Æ ~w�

�
(w�)�1(q� � f)

�
=

1

2
� Æ q� � f(q; !) =

1

2
�(Q�(q)f(q; !)):

The dynamics of the rigid body follows

d

dt
(J!(t)) = J!(t)� !(t) +

1

2
�(QT(q(t))f(q(t); !(t)): (17)

The second summand in (17) gives an explicit expression for the external torque. This

form appears particularly useful for control synthesis. The energy shaping technique will

be applied in the next section for computing the control force �eld f : TS3 ! T �S3.

V. Control Synthesis

The energy shaping has been formulated for a general mechanical system in [12] and

[17]. The idea is to produce a control input consisting of a term contributing to potential

energy and a part providing dissipation. In a simplest case, if a system lives in R
n and

has potential energy U : Rn ! R, the energy shaping puts forward a feedback control

of the form �@V (q)
@q

+ Md; where V : Rn ! R is a continuously di�erentiable function.

The term Md denotes a dissipative force. Assuming that the time derivative of its work

_W = MT
d _q be negative de�nite, and the minimum of the potential energy U+V is reached

at a point p, the control law makes the system asymptotically stable to the equilibrium
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point (q(t); _q(t)) = (p; 0). The name "shaping" comes form the property of the feedback

that shapes the potential energy of the system to the desired form using the controller

contribution V .

The energy shaping has its generalization for an arbitrary manifold G. Again, the

control consists of a di�erential of a potential function � : G! R and a dissipative force

�eld fd : TG! T �G as indicated in the following equation:

f(; _) = �d�() + fd(; _): (18)

The dissipative force �eld fd satis�es fd(v)(v) < 0 for all nonzero v 2 TG. If p is a local

minimum of �, then according to Theorem 1 in [12], (p; 0) becomes asymptotically stable

equilibrium state of the closed loop system.

It follows from Section II that the control law (18) applies to the systems described by

the Euler-Poincar�e . The control input becomes

M((t); _(t)) = �(d$(t))
�

ed�((t)) + (d$(t))
�

e fd((t); _(t)): (19)

The �rst component in (19) will be called the conservative force and is denoted by Mc,

whereas the second one constitutes the dissipative force, Md.

An illustration of the energy shaping for the Euler-Poincar�e system will be given in the

remaining part of the article. Consider a rigid body, e.g. a spacecraft, to be stabilized in

the inertial coordinate system with use of gas jets. The task is to design a suitable control

law. For this purpose quaternionic parametrization of the attitude will be applied.

Consider the inclusion j : S3 ,! R
4 , and let the potential function � parameterize

through some smooth function ~� : Rn ! R, i.e. � = ~� Æ j. Since (d�)q = (d~�)j(q)jTqS3 , the

di�erential (d�)q is

(d�)q = Q(q)i�Q�(q)(d~�)j(q); (20)

where qi are the canonical coordinate functions in Rn , and (d~�)j(q) =
P3

k=0
@ ~�
@qi
dqi:

Making use of (17) and (20), the conservative force equals

Mc = �
1

2
�QT(q)

@�(q)

@q
= �

1

2
[d1� d2� d3�]T; (21)
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where h
d0�(q) d1�(q) d2�(q) d3�(q)

i
=

@�(q)

@q
Q(q):

Taking a dissipative force �eld

fd = �D _q;

where D indicates a positive de�nite matrix, and combining Eqs. (19), (21), the control

law follows

M = �
1

2
[d1� d2� d3�]T �

1

2
�QT(q)D _q:

It was shown in [5] that for a particular choice ofD = 4kdE4�4 and the potential function

�(q) = kp(1 � q0) having the global minimum at the identity e and the maximum at �e

the di�erential d�(q) equals

[d0� d1� d2� d3�] = kp

h
1� q0 q1 q2 q3

i
: (22)

Now the control law reduces to the well known PD form

M = �kp[q1 q2 q3]
T � kd!: (23)

This shows that the energy shaping approach presented in this paper agrees with the

previous results on the 3-axis attitude control summarized in [18]. For other examples of

potential functions used in guidance one is referred to [19].

VI. Conclusion

This work applied the calculus of variations to derive Euler-Poincar�e equations of motion

with forcing. It showed that if the Lagrangian L : TG ! R was invariant under the left

translation, the equations of motion broke up into two separate expressions: the kinematics

and the dynamics. The rigid body motion comprised an illustrative example. The paper

focused on two con�guration manifolds: the special orthogonal group and the group of

unit quaternions. It showed that the energy shaping method could be applied for the

Euler-Poincar�e system. The �ndings were applied for the rigid body stabilization in three

axes. The resulting control consisted of the sum of the conservative and the dissipative

force �elds.
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