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Abstract: An esential limitation in using the dasscd optimal control has been its limited robustness to modeling
inadequades and perturbations. This paper presents conceptions of two pradicd control structures based on the time-
optimal approach: hard and soft ones. The hard structure is defined by parameters sleded in acordance with the rules of
the statisticd dedsion theory; however, the soft structure dl ows additionally to eliminate rapid changes in control values.
The objed is a basic mechanical system, with uncertain (also non-stationary) masstreaed as a stochastic process The
methoddogy proposed here is of a universal nature and may easily be gplied with resped to ather elements of
uncertainty of time-optimal controlled mechanicd systems.

Keywords: Optimal control, mechanicd system, uncertain mass, stochastic process suboptimal structure, robustness.

|. INTRODUCTION

The main constraint of the goplication posshiliti es of systems based on the principles of the dasscal optimal
control theory (Athans and Falb, 1966 has been their excessive sensitivity to the modeling inacaracy of objed
dynamics, the identification of objed parameters, as well as perturbations and noise naturally accompanying red
processs. In extreme caes, even a small error in parameter identification, which is unavoidable in pradice, completely
disqualifies an optimal control system. However, the very ideaof optimal control often turns out to be aproper basis to
design a suboptimal structure in which excessive sensitivity would be diminated; for details, see (Friedland, 1996
Isidori, 1995; Khalil, 1996 Lyshevski, 2001, Weinmann, 1992, Zhou et al., 1996).

The two basic types of optimal control are related with quadratic and time-optimal (minimum-time) performance
indexes. The time-optimal approadh is very significent from the viewpoint of many technologicd processes, becaise it
alows to maximally reduce @nsiderable technologicd interruptions, which are e@nomicdly ineffedive. On the other
hand, time-optimal structures, as controls with extreme values, are exceptionally sensitive to the aove-mentioned



identification inaccurades and d sturbances.

In this paper, the time-optimal control of an objed described using the seaond principle of Newton’s dynamics,
i.e. from physicd point of view, representing mass subjeded to force, will be cmnsidered. Such a mechanicd systemisa
basic dement acampanying all considerations in robatics (Sciavicco and Siciliano, 1996). The uncertainty problem will
be mnsidered in the example of the main parameter of such an objed, i.e. the value of mass(or the moment of inertia). In
pradice that value can only be given with the predsion that results from accurate measurement. Moreover, in many
applicdions (e.g. shifting or transport tasks) this value is not subjed to measurement at al, but rather grosdy estimated
on the basis of the assumed value. Furthermore, in other situations, a mass may be variable, in tandem with the
consumption of fuel or other substances used in the technological process

In this paper, the &ove problem has been solved by the introduction of a random fador; namely, a load will be
treaed as the redizaion of a stochastic process with aimost all redizations being piecewise cntinuous and jointly
bounded. The introduction of a random factor makes it possble to take into acount errors in the identificaion of mass
whereas the fluctuations of the particular redizations describe its changes, including also those of a discontinuous nature.

The paper is organized as follows. Section Il spedfies mathematical grounds regulating strict theoreticd
justification for pradicd controlling structures presented in Sedion Il : a hard one, where parameters are seleded in
acordance with the rules of dtatisticad dedsion theory, and a soft one, which alows additionally to eliminate rapid
changes of control values by making the function of a feedbadk controller continuous. The mnception presented is
universal and may be supplemented by and generalized with a number of various aspeds occurring in such tasks. Those
tasks, together with the results of numericd verification constitute the subjed of the last Sedion V.

The materia presented provides a summary of the previous research on the hard structure (Kulczycki, 1996, 1996k
200Q Kulczycki and Wisniewski, 2002, which credes here abasis for new investigations concerning soft approach. This
material was presented in its preliminary version as (Kulczycki et al., 2004).

Il . THEORETICAL RESULTS

The random approach for the antrol task worked out in this paper has been based on the mncept of an amost
certain time-optimal control. This is defined as a stochastic process sich that amost al its redizaions are @ntrols
which, for proper deterministic systems obtained by fixing the random factor, bring the state of the system to the target
set in a minimal and finite time. The dmost certain time-optimal control is unique if every time-optimal control is a
process sochastically equivalent to it. This notion was introduced in (Kulczycki, 19960. Similarly, an aimost certain
solution of a random differential equation means such a stochastic processthat almost al its redizaions are solutions of
proper deterministic equations obtained for a fixed random factor. The dmost certain solution is unique if every amost
certain solution is a process $ochasticdly equivaent to it. The solution of a deterministic differential equation will be
considered below in Caratheodary sense, i.e. as afunction which is absolutely continuous at every compad subinterval of
its time domain and fulfils the differential equation almost everywhere; for detail s see(Kulczycki, 1996c).

Consider a mechanicd system with a single degree of freedom, whose dynamics are described by the second law
of Newtonian medhanics

ms(t)=u(t) , (D]
where ., s, « mean the load (mass or moment of inertia), position (linear or angular), and control (force or moment),

respectively. If the parameter . istreated as a realization of a stochastic process M, then denoting by «wQ arandom
factor, and by X;, X,, U real stochastic processes which represent the position, velocity and control respectively, the

dynamics of the system under consideration can how be described by the following random differential equation:
Xy (@ t) = X, (wt) )

X, (wt) =

M (D) U(wt) , (3

with theinitial condition

1
DX (o0 O)E:xo foramostal wIQ @
X, (0 to)H



given these assumptions
(A1) toOR, T =[ty,»);
(A2) xg :[x01,x02]T OR? and Xs :[xfl,xfz]T OR? congtitute initial and target states, respedively:
(A3) thevaues of admissble antrols are limited to the interval [-1,1];
(Ad) (Q,%,P) denotesa complete probability space
(A5) M is a red stochastic process with almost all redizaions being piecewise cntinuous and satisfying the
boundary condition M (w,t)d[m_,m,] for tOT, where O<m_<m, .
Introduce dso the foll owing subdvision of thestatespace]R2 intothedigointsets R, , R_, Q,, Q_, {x;}; seeFig. 1.

Spedficdly, let K,_, K., denote sets of all states which can be brought to the target by the wntrol U =+1,if M =m_
or M =m,, respedively; analogously K__ and K_, for U =-1,if M =m_ or M =m, . Moreover, let:

Q, ={[ X, X,]" OR? suchthat there exist [x},%,]" 0K, and [X,%,]" OK,, with
XP<X <X of X <X <X} (5)

Q. ={[ X, %,]" OR? suchthat there exist [x},%,]' OK_, and [x],%,]" OK__ with

XX <X OF X<X<X} (6)
R, ={[ %, %,]" OR?\Q suchthat there exists [x,X,]' 0Q with x, <x } 7)
R.={[x,X%,]" OR?\Q suchthat there exists [x;,%,]" 0Q with x <x} , (8)

where Q=Q, O{x;} O Q_. Therefore, the sets K,_, K,, represent all those states which can be brougtt to the target
by the control +1, at the minimum and maximum possble values of a mass The set Q, contains intermediate points.
Thesets K_,, K__, and Q_ may beinterpreted analogoudly for the control —1. Note dso that K,_ and K,, belongto
Q, as K_, and K__ belongto Q_. For ill ustration, seeFig. 1.

Theorem
For a dynamic system described by random differential equation (2)-(4), under assumptions (A1)-(A5), there exists a
unique dmost certain time-optimal control U, , generating a unique dmost certain solution X =[X4, Xz]T , Where with
probabili ty 1:
(T if xgOR_, the function U, (w0 tekes on the value —1 for tO[ty,ts(w)) and +1 for tO[tg(w),ts (W),
where tg <tg(w) <t;(w) <co and X(w,t)JQ, for tO[ts(w),ts (w)); (for interpretation seeFig. 1);
(T2) if xgOR,, the function U, (w0 tekes on the value +1 for tO[tg,tg(w)) and —1 for tO[tg(w),ts (W),
where tg <tg(w) <t (W) <e and X(wt)JQ_ for tO[t5(w),ts (w));
(T3) if xgOQ_, the function U, (w,J takes on the form described above in points (T1) or (T2) or takes on the
value—1for t O[tg(w),ts (W)], where tg <t (W) <co and X (t) JQ- for t O[tg(w),t5 (w));
(T4) if xgOQ,, the function U, (w0 takes on the form described above in points (T1) or (T2) or takes on the
value +1 for t O[tg(w),ts (W)], where tg <t (w) <o and X(t) JQ. for tU[tg(w),t+ (w)).
The functions t:Q - R and t¢ : Q - IR introduced above, representing the time of the dianges in the value of the
function U ,(w, 0 and the time to read the target by the solution X (w, 0, respedively, are random variables. ®

The proof of the above Theorem is analogous to one for the auxiliary task of motion resistance, presented in
papers (Kulczycki, 1996a, 1996b). The optimality can be shown based on the theory of differential inequalities
(Kulczycki, 19964a), while the measurability of the functions tg and t; aswell as U, (0t) and X(Ot) can be shown by

a superposition of the corresponding mappings (Kulczycki, 1996b).
The change of sign in the particular realizations of the control U, (switching of the control) can occur only when
the system state belongs to the set Q. For this reason it will be called a switching region. Finaly: the switching curve y

familiar from the classic case of the time-optimal point-to-point transfer of the fixed mass .»» (Athans and Falb, 1966;
Chapter 7.2), has been generalized by the above to the switching region Q (y=Q when m_ =m, =, ).



Il . APPLICATIONAL CONCLUSIONS: SUBOPTIMAL CONTROL STRUCTURES

Besides gedfic cases, the dired implementation of a system generating the dmost certain time-optimal control
encounters difficulti es because of its dependence on the random fador, in fad unknown a priori. However, thanks to the
results of Theorem given in Sedion I, the presented material constitutes a useful basis for the aedion of suboptimal
control laws, in which such a dependenceis removed.

A. Hard Structure

The foll owing concept will be based on the form of differential equation (3). Namely, after its bil ateral integration
one may observe that the impaa of the particular redizaions of the stochastic processM can be estimated by using their
mean-values over any interval of time in which no spedal event —for example @ntrol switching— occurs. To oltain a
suboptimal controller, consider a particular case of the probability measure P conneded with the process M (see
Assumptions (A4)-(A5) ) which is concentrated on constant redizations (interpreted as the average values). If the value
of these mnstant redizaions is known and equa to m, then with the notation of Theorem 1 presented in the previous
sedion, m_ =m, =m, therefore, K,_ =K,, and K_, =K__, hencethe switching region Q is confined to the switching
curve whose shape is dependent on the value of the parameter m. Denote & m its estimate used in the feedbadk control
law; therefore, it can be interpreted as an (indefinite) knowledge eout the parameter m nealed for the purpose of the
synthesis of the feadbadk controll er equations.

The analysis of senditivity to the aror of the estimation of the parameter m by the value m will be presented
below.

The cae where the seaond coordinate of the target state is equal to zero, i.e. with x;, =0, will be mnsidered

first. If Mm=m, the oontrol is time-optimal; the state of the system is brought to the switching curve, and being
permanently included in this curve heredter, it reades the target in a minimal and finite time. When m<m; as a result
of its having oscill ations around the target, over-regulations occur in the system; the target is readed in a finite time. If
m>m, after the switching curve is crossed, diding trajectories appear in the system; here, too, the target is readed in a
finite time. In both of the last two cases, i.e. with m# m, the time to read the target state increases from the optimal
more or lesspropartionally to the diff erence between the values m and m.

The remaining case, X, # 0, will now be presented. If m=m, the control is time-optimal, and the phenomena
areidenticd as before for x;, =0. When m<m, the trgjedories occurring in the system generate limit cycles; the target
is not readhed. Finaly if m>m, even though some of the trajedories temporarily diverge from the switching curve in
the part between the axis x; and the target state, ultimately the target is reached in a finite time; diding trajedories exist
on the switching curve; the time to read the target increases in tandem with the growth in the difference m-m.

Based on the sengitivity analysis presented above, some dements of statisticd dedsion theory will be gplied to
obtain the optimal value of the estimator m needed for the purpose of the synthesis of the feedbadk controller equations.
The basic task of statistical dedsion theory (Berger, 1980) is the optimal seledion of one dement from among all
possble dedsions on the sole basis of probabili stic information about the state of nature (redity), espedally when its
adual state is unknown. In the problem considered here, the red value of the parameter mis treaed as an unknown state
of redity, while the fixed value of the etimator m congtitutes a dedsion. The lossfunction | is required, which value
[(m, m) isinterpreted as losses resulting from making the dedsion m when hypotheticaly the value m occurs in redity.
Two basic procedures are aoommonly used: the “flexible” Bayes rule minimizes the expeded value of losses, whereas the
“radicd” minimax rule minimizes the greaest possble lossthat may occur after a given dedsion is made. For detail s, see
(Berger, 1980).

Assume — acmrding to the results of the sensitivity analysis — that the lossfunction is described in the linea and
nonsymmetrica form:

O p(h-m) if
mm=H0 o  if
Hath-m) if fm-m>0

-m<0
-m=0

3> 3>

, )

where p,qOR, O{}, but only one of them can be infinite. Suppaose — in reference to Assumption (A5) — that the
random variable daraderizing the distribution of the mass m has a suppat of the form [m_,m,] such that
[m_,m,]0(0,).



It is readily shown (Kulczycki and Wisniewski, 2002 that if p =, i.e. with infinite values of lossfunction (9)
for m<m, the minimax dedsion isredized by

m=m, . (10

In turn, the Bayes dedsion with the pasitive numbers p and q, is given as a solution of the following equation with the
argument m:

Fify=—"— (11)
p+q

where F denotes the distribution function of the random variable dharaderizing the mass m. This lution is unique
thanks to connedivity of its suppart. The pradicd agorithm to solve equation (11) is presented in (Kulczycki, 2001). For
this purpose, one can also use atificial neural networks, aca@rding to the procedure presented in (Schigler and Kulczycki,
1997).

The results given by formulas (10) and (11) will be gplied below.

Once a@ain the cae X;, =0 isconsidered first.

If over-reguations can be dlowed, it is worthwhile using the flexible Bayes rule with red values for the loss
function, i.e. acording to equation (11). Such a dhoiceis possble becaise the determination of the estimator m value
that is either less than, equal to, or greaer than m allows the system state to be brought to the target in a finite time.
(However, thistime increases approximately propartionaly to the difference between the values m and m.)

If over-regulations are not all owed, this determination needs to be caried out on the basis of the minimax rule,
assuming infinite values of the loss function for m<m, i.e. using formula (11). This enables the over-regulations to be
avoided, because they occur only if m<m.

Let now X¢, Z0.

The value of the parameter m should be determined using the minimax rule with infinite values of the loss
function for m<m, i.e. by dependence (10). Such a choice guarantees that the generation of the inadmissible limit cycles
which appea when m<m is avoided. If, however, this value is greaer than m, the state of the system is brought to the
target in a finite time. (Note that in the @ase x;, #0, the over-regulations cannot be avoided at all.) A somewhat
improved structure can be obtained by dividing the switching region (curve) Q into two parts at the point of its
intersedion with the axis x,. For ead of them, the values of the parameter m should be determined in a different
manner. Namely, in the case of the part which lies on the same side of the axis X, asthe target state, it should be done
— as previously — by using the minimax rule with infinite values of the loss function for m<m, i.e. using formula (10); in
the cae of the part locaed on the oppdsite side, however, by the Bayes rule with red values of the loss function, i.e.
acordingto equation (11). This change does not pose the risk that a cycle will occur, whil e the use of the flexible Bayes
rule makes it possible to render more dficiently the patentia sliding process occurring along the part of the switching
curve located on the side of the axis x; oppdsite to the target.

If one possesses the value m obtained acmrding to the ébove procedure, the feedbadk controller equations can be
cdculated. Thus, the equations of the switching curve K take on the form

_ m 2 2
Xl__E(XZ =Xt )+ X for xp O(Xg2,) (12
_ ﬁ] 2 2

Xl_E(XZ =Xip" )+ X1 for Xp O(=o,X¢5) . (13
Formula (12) defines the set K_, = K__, while dependence (13), the set K,_ =K., . In the cae when, for x;, 0,
the switching curve is divided into two parts at the point of its intersedion with the ais x,, the eguation for the part
lying on the side of this axis oppasite to the target should be modified as foll ows:

m m
X = sgn(xfz)(7bx22 _Exfzz) +X5p (14

where M, denotes the alditional estimator defining that part, obtained through Bayes rule with red values of the loss
function, i.e. by equation (11). Thesets R_. and R, constitute alequate aeas resulting from the division of the plane R?



by the airrve K, acording to formulas (7)-(8). For the sets K_, K,, R, R, obtained in this way, the value of the
suboptimal control is defined by the equation

b1 i [xg(t), %] OR.OK.)
Unarg® =00 if  [x(t), X217 O{x¢} , (15)
B D), %®]T O(R. OK,)

where [xl(t),xz(t)]T means the objed state, obtained by a red-time measurement process for any tOT . Figure 2
provides an ill ustration of the aontrol structure worked out here with the representative trgjedory it generates.

B. Soft Structure

The oontrol designed in the previous subsedion may leal to frequent switchings between the extreme — acrding
to the assumption (A3) —values +1 and —1 along dliding trajedories, which should be avoided in mechanical systems,
since it can have anegative impad on the endurance of a device and user comfort. Based on the results of Theorem
presented in Sedion Il and under the anditi on that the @ntrol may take any value in the interval [-11], this goal can be
obtained by substituting a modified control law, rendered “soft” instead of “hard” (15). A general concept of soft
structures is described in (Lyshevski, 2007).

Let the sets K__ and K,_, be defined as previoudy but for the value of the parameter m cdculated in the
previous sdion for the discontinuous gructure. Let also the alditional positive constant Am be given and the sets K _,
and K., bedefined for the value m+Am.

Asbefore, the cae X, =0 will be mnsidered first. Let afeedbadk controller be & foll ows

S -1 it [x(t), % (®)]T OR.
a(®). %) i D). 0] 0Q-
Usoft(t) = [ 0 it [xq (), x2 (017 Of{x¢} (16)
FOa, @) i [, % 01T 0Q,
H +1 it [x (1), % 0)]" OR,

with the function z:R? — R continuously and strictly increasing from the value -1 on the sets K__ and K., to the
value+1 onthesets K_, and K,_ (see &so Fig 1). If the solution X (w,0J is“too close” — with resped to red value of
the mass— to the set K, _, then control (16) is “too grea” and it makes this slution further from the set K,_ to the
interior of the set Q, . And inversely, if the solution is “too far” to the set K,_, then control (16) is “too small” and
brings the tragjedory closer to this st (seeFigs. 1 and 3). The result obtained in the @ove manner is smilar to the effed

achieved on a bob-ded trad thanks to the gpropriate modeling of its shape. It is a fluid movement, therefore, allowing
such a structure to be named “soft”. An analogous situation occurs between the sets K_, and K__. The value of the

parameter Am influences the speed of the cntrol fluctuations in the set Q: the greder the value, the milder the
fluctuations. To the primary reseaches one can suggest Am=ny10.

Havingthe value m obtained acording to the material presented in subsedion A, and assuming the mnstant Am,
one can cdculate the eguation of the set K, _

X1 :gxzz +Xgp—€  for xo O(—,0) 17
and for theset K,

m+Am
X1 =

X22 + X1 + €& for X9 O (_00,0) , (18)

where the aditional parameter €= 0 is closer to (but is not greder than) predse paositioning (i.e. assumed in pradice

predsion of reading the target state) and has been introduced to avoid the over-increasing of the function z near the ais
X1 . The function z can be proposed in the foll owing manner:

2(xq, X2) = (X)X —c(X2)]? =1 for X, 0(~0,0) (19



with

4

a(xz)zf (20)
Amx,~ +4¢
AR

c(x) =AM 2 gy e (2)

while the value of the positive parameter d presents a compromise between speed of adion of the sub-time-optimal
control system and its robustness. Namely, d =1 can be treaed as neutral; the values d <1, results in making the
solutions neaer to the aurves K_, or K., which slows down the process but increases robustness; and the inverse

when d >1. For primary experimental researcch d = 0.25 isproposed.
The analogous dependencies are outlined in the sets K__ and K_, , respedively

X =- X22+Xfl +E€ for X2 D(O,OO) (22)

=8 l\)|3>

+Am

X = - Xo2 +Xp1—€  for x,0(0,00) . (23)

The function z can be proposed here &

2(xq, X2) = a(Xg)[¥ —c(x2)]¥ =1 for x, 0(0,) (24)
with
a(xy) = ——— (25)
Amx,~ +4¢
c(x2):—gx22+xf1+s : (26

Let now X;, #0. The mncept introduced in the precaling paragraph should be transferred here in a natural way.
For simplicity of notation, the cae x5, >0 will beinvestigated below; if x¢, <O considerations are symmetricd. A

feedbadk controller isaso defined here by formula (16).
The sets K, and K., inthe part between the target and the axis x,, should be given as for the hard structure,
bath defined by the equation

m+Am
X1:

(2% =x122)+xp1 for % O[0,X{) . (27)
with

Z(Xq,X2) =1 for x, O[O, X52) . (28)
For the part lying in lower half-plane, the set K., isdefined by

_ m+Am

X = (x2® =x§2%)*+xq1 for xp 0(,0) (29

andtheset K,_ by

xlzgxzz—m+2Amxf22+xf1—s for X, 0(-,0) . (30
Thefunction zisgiven as
2(x4, %) =a0)Xq ~Cx2)]? =1 for xp O(=e0,0) (39)
with
-4
a(xp) = — 5 (32
Amx,~ +4¢



m+Am
2
Finaly, thesets K__ and K_, aredefined by

c(xz) = (xo? = X§2%) +Xf1 +E (33

xlz_g(X22—Xf22)+Xf1+E for xz O(Xt2,) 9
m+Am, - 2
X == 0 =X )+ Xy mE for X D(Xg2,%) (39

respedively, and the function zis given as
2(x1, %2) =a(x)xg ~cOR)Y =1 for X, O(x7,) (36)
with
-4
a(xp) = (37

Dfi(xp” =X 2%) + 4

C(2) = =2 (xp2 = X1 2) + Xf1 +E (39)
2

Aniillustration of the @ntrol structure thus obtained, along with the trgjedories it generates, is provided in Fig. 3.

Frequent switchings of the control aong diding trajedories have been eliminated, acording to the assumed goal of the
soft structure. The control changesits value fluently in full range of theinterval [-11] .

1V. FINAL SUGGESTIONSAND REMARKS

The material presented in this paper is of a universal nature, and owing to its clea interpretation it may be eaily

supplemented by a number of auxili ary aspeds frequently occurring in robust control tasks. As a representative example,
the problem of velocity limitation, described by the ndition | X,(wt)|<cw for amost every wOQ and every

tOftg(w), ts (W)], while w>0 and ~-w< X, <w, will beinvestigated. Let also the auxili ary parameter Aw, such that
O<Awsw and Aw-w< X5 <W-Aw, beintroduced. By defining the function v:R? - R (similar to the function 2)
continuously and strictly increasing from the value -1 on the set IR x{w} to the value +1 on the set R x{w—Aw} , with
the formula

v(xl,xz)zzgv%a3 -1 for x,O[w—-Aw,w] , (39

where the parameter D >0 plays the same role & d introduced in dependence (19), one can obtain soft structure (16)
supplemented with the problem of velocity limitation:

. -1 if [X(t), X2 ()] " 0 R_ O{Rx (W, e0)}

i V(X (1), X2 (1)) it [x(0, %01 0 R, n{Rx[w-Aw,w]}

B minfv(x (1), X2 0), 200 0, 2O} if Da), X 0] 0 Q- n{Rx[w-Aw,w]}

0 2(% (1), X (1)) it [xa (0, %01 0 Q- n{Rx(Aw-w,w-Aw)}

Usoft (t) = ] 0 if [x (£), Xo ()] T O{x¢} . (40
0 2(% (1), X (1)) it [xq(t), x2 (0] 0 Qu n{Rx(Aw—w, w-Aw)}
nax{=v0a 0.7%2 (), 2060, x2 O} i [xa(),x2 O] 0 Qu n {Rx[-w,Aw-w]}

0 ~V(=x1 (1), (1)) it D), %] O R_ n{Rx[-w,Aw-w]}
H +1 it D). x®]" O Ry O{RX(~e0,~w)}

For interpretation, seeFig. 3.

The presented concept can also be gplied for many other similar, auxiliary issues appeaing in optimal control,
e.g. modeling of motion resistance (Kulczycki, 1996, 1996b). As an example, consider initial system (1) supplemented
with the discontinuous model of motion resistance —4 sgn(s(t)), i.e.



mé (1) = () =4 sgn(s (1) (41)
where 4 0[0,]) ; then under- or overestimating the value of the parameter 4 will entail similarly raising or lowering the
parameter »», and further considerations are analogous to that presented above for the mncepts of hard and soft
controlli ng structures.

The oorred functioning of the suboptimal structures investigated in this paper has been verified by numericd
simulation. The objed isamechanicd system (1) with unknown (random) and/or varying load. In the cae x;, =0, if it

is assumed that over-regulations are undesirable, then they did not occur in the cntrolled oljed. For x;, #0, limit

cycles did not appea. If the Bayes rule was applied for determining hard structure parameters, the diding trajedories
occurring there did not have frequent switches. In the cae of the soft structure, diding trajedories were diminated.

Typicd trajedories generated by control structures (15) and (16) are shown in Figs. 2 and 3. Tables 1 and 2 show
times to read the target set when x¢, =0 and X, #0, respedively. The results are shown for the optimal control

(under the pradicdly unredistic assumption that the true value of the mass m is known exadly) and the suboptimal
structures: hard and soft ones. It is not surprising that the shortest times to read the target were obtained for optimal
control (owing to the hypothetica assumption of an exadly known mass, followed by the hard structure (although at the
cost of frequent and arduous switches on diding trajedories), while the longest times for the soft structure ae inversely
proportional to the value of the parameter d. If, however, ead value of m was supplemented by perturbation, with the
value of 0.5msin(25t) , the results favored the soft structure & small values of the parameter d, as the most robust. Note

that in the case of the soft structure, the results were satisfying even when temporarily mO[m_, m,] .
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