

Aalborg Universitet

Flow whitelisting in SCADA networks

Barbosa, Rafael Ramos Regis; Sadre, Ramin; Pras, Aiko

Published in:
International Journal of Critical Infrastructure Protection

DOI (link to publication from Publisher):
10.1016/j.ijcip.2013.08.003

Publication date:
2013

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Barbosa, R. R. R., Sadre, R., & Pras, A. (2013). Flow whitelisting in SCADA networks. International Journal of
Critical Infrastructure Protection, 6(3-4), 150-158. https://doi.org/10.1016/j.ijcip.2013.08.003

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 11, 2025

https://doi.org/10.1016/j.ijcip.2013.08.003
https://vbn.aau.dk/en/publications/097c2224-eb18-496e-a06a-a6ae11d48363
https://doi.org/10.1016/j.ijcip.2013.08.003

i

ii

Chapter 1

FLOW WHITELISTING IN SCADA

NETWORKS

Rafael Ramos Regis Barbosa, Ramin Sadre, and Aiko Pras

Abstract

Supervisory Control And Data Acquisition (SCADA) networks are
commonly deployed to aid the operation of large industrial facilities.
Modern SCADA networks are becoming more vulnerable to network at-
tacks, due to the now common use of standard communication protocols
and increased interconnection to corporate networks and the Internet.
In this work, we propose an approach to improve the security of these
networks based on flow whitelisting. A flow whitelist describes the legit-
imate traffic solely using four properties of network packets: the client
address, the server address, the server-side port, and the transport pro-
tocol.

The proposed approach consists in learning a flow whitelist by cap-
turing network traffic and aggregating it into flows for a given period
of time. After this learning phase is complete, any non-whitelisted con-
nection observed generates an alarm. The evaluation of the approach
focuses on two important whitelist characteristics: size and stability.
We demonstrate the applicability of the approach using real-world traf-
fic traces, captured in two water treatment plants and a gas and electric
utility.

Keywords: SCADA, security, intrusion detection

2

1 Introduction

Supervisory Control And Data Acquisition (SCADA) networks are
commonly deployed to aid the operation of large industrial facilities, such
as water treatment plants and electric utilities. In the past, these net-
works were completely isolated and relied on purpose-specific hardware
and software, but now they are becoming increasingly interconnected
and are based on commodity hardware, communicating through stan-
dard network protocols (such as TCP/IP). While this new scenario re-
duces costs and improves efficiency, the side effect is that these networks
are now exposed to a much wider range of possible attacks.

In this paper, we propose a flow whitelisting approach to reduce the
number of attack vectors in SCADA networks that use TCP and UDP as
their primary transport protocol. We define a flow as a (bidirectional)
sequence of packets with identical client address, server address, server-
side port, and transport protocol. Flow whitelists represent all legitimate
traffic solely based on the above four properties of network packets.

Flow whitelisting presents several advantages over deep packet inspec-
tion or host level intrusion detection systems [1–3]. By not depending
on the packet payload, flow whitelisting should be able to handle propri-
etary protocols. Furthermore, it operates at the network level, that is, it
is not necessary to modify the hosts. This should overcome a common
resistance of SCADA operators in making changes in their environment.
It should be noted that, although flow-level whitelists are not commonly
used in traditional IP networks, as the number of legitimate connections
is too large to be manageable, they have been proposed to some specific
domains, such as reducing SPAM [6], avoiding phishing [7], guaranteeing
access to important customers during DDoS attacks [8], and preventing
various attacks in VoIP infrastructures [9].

The main motivation for the use of whitelists is that most of SCADA
network traffic is generated by automated processes, like the periodic
polling of field devices. Besides, these systems are closed with very lim-
ited external access, if any. Finally, changes should be rare, that is, hosts
and services are not excepted to be frequently added to or removed from
the network. In fact, the idea of whitelisting can be commonly found
in recommendations for SCADA security. For instance, the Norwegian
Oil and Gas Association suggests that "all access requests shall be de-
nied unless explicitly granted" [10]. The American National Institute of
Standards and Technology (NIST) recommends to "block all communi-
cations with the exception of specifically enabled communications" [11].
However, to the best of our knowledge, the viability of whitelists was
never studied in real-world SCADA environments. In previous work [12],

Barbosa, Sadre & Pras 3

we showed that the connection matrix is remarkably stable in SCADA
networks, suggesting that whitelists might be feasible in these environ-
ments.

The goal of this paper is to present an approach for flow whitelisting
in SCADA networks and to study its capability to assist the network
administrator in detecting illegitimate network traffic. To be viable the
whitelist must present two characteristics. First, its size must be man-
ageable. A very large list with millions of entries, as it would occur in the
Internet, would make the approach hard to implement and to manage.
Second, the whitelist must be stable. If the list is unstable, i.e., it changes
frequently, it either requires continuous updating by the network admin-
istrator or it generates a large number of false alerts. We demonstrate
the feasibility of our approach using real-world traffic measurements cap-
tured in critical infrastructures: two water treatment facilities and one
electric and gas utility.

The remainder of this paper is organized as follows. In Section 2 we
describe our approach to flow whitelists. The experimental results ob-
tained by applying the approach to real-world traffic traces are presented
in Section 3. Section 4 discusses different aspects toward a real-world
deployment of the approach. Finally, in Section 5 we present our con-
clusions.

2 The Flow Whitelisting Approach

Our approach to flow whitelisting is outlined in Figure 1. First, the
traffic in the SCADA network is captured, aggregated to connections, and
finally aggregated to flows. These steps are described in Section 2.1. In
the learning phase (see Section 2.2), the flows observed in a certain period
of time are used to create an initial flow whitelist. A flow whitelist is a list
of entries of the form (client IP address, server IP address, server port,
IP protocol). Once the whitelist is generated, connections are analyzed
in the detection phase (see Section 2.3). All network traffic matching a
whitelist entry is considered legitimate. Every connection not matching
an entry generates an alarm.

2.1 Connection and Flow Creation

Since our approach relies on information from the IP packet header,
packet headers have to be captured in the (sub)networks to be monitored
by the whitelist. In this paper, we consider only TCP and UDP packets.
The connection creation consists in aggregating the captured packets
to connections. We define a connection as all packets with the same
source/destination IP address, source/destination port and IP protocol,

4

Packets Connections
Whitelist

Flow
Creation

Learning

Detection

Connection
Creation

Flows

Alarms

Figure 1: Outline of the flow whitelisting approach

regardless of the direction. The end of a connection is determined either
using the TCP state machine or an inactivity timeout of 300s. In our
experiments (see Section 3), we perform this task with the open source
tool argus1.

The flow creation step identifies the client and server sides of the
connections and further aggregates the connections according to our 4-
tuple flow definition given in Section 1. We sequentially apply four rules
to identify the server side:

Rule 1 applies to all TCP connections for which we observe the
3-way handshake. The server is set to be the host which received
the SYN packet or sent the SYN/ACK packet.

Rule 2 is applied if a well-known port (bellow 1024) is observed:
the host using such port is set as the server2.

Rule 3 is a heuristic. If the same protocol and port are re-used by
a host in multiple connections, this host is set as the server and we
use this protocol/port combination to identify the service. We rely
on the fact that client ports normally vary with each connection,
and are less likely to be repeated. This rule makes it necessary
to keep every connection not classified by rules 1 or 2 in memory
until a second connection with a repeated host address, protocol
and port is observed, potentially indefinitely delaying the analysis.
For an online implementation, we would recommend the use of a
timeout, after which the connection should be classified by rule
4. In this paper, we have implemented an offline analysis with an
infinite timeout.

Finally, for flows which do not match any of the previous rules, rule
4 sets the server to be the destination of the first packet observed
in the connection.

Barbosa, Sadre & Pras 5

Note that our rules implicitly assume that every transport port and
IP protocol pair used by a server uniquely identifies a service in the
SCADA network. This definition is particularly problematic with net-
work services that use Dynamic Port Allocation (DPA), such Microsoft’s
Active Directory. In this service, high ports (above 1024) are dynamic
allocated for Remote Procedure Calls [13]. We acknowledge this limita-
tion, and discuss its effects when presenting our experimental results in
Section 3.

2.2 The Learning Phase

Ideally, the network administrator knows all services deployed in the
network. Therefore, the flow whitelist could be constructed from this
knowledge. In practice, however, complete information is rarely avail-
able, partly due to the involved proprietary protocols.

The goal of the learning phase is to automatically create an initial
whitelist from a given period of traffic, the learning time. This whitelist
contains the entries for all flows observed during the learning period. We
make two assumptions: (i) all flows in the learning period are legitimate
and (ii) most legitimate flows can be observed in the learning period.
We argue that the first assumption is valid, as anomalous or malicious
events are much rarer in SCADA networks than in the Internet. In fact,
no attacks were reported during the capture of our datasets. The second
assumption is based on the expectation that most of the traffic in SCADA
networks is automated, thus flows should be repeated fairly often. We
discuss how to set the duration of the learning phase in Section 3.3.

Note that we do not expect to see all legitimate flows in the learn-
ing phase. For example, manual changes in the configuration of PLCs
could, depending on the setup, only happen rarely, thus flows related
to this activity will probably not be present in the whitelist. Hence,
the whitelist can be extended by the network administrator during the
detection phase.

2.3 The Detection Phase

The whitelist created by the learning phase is used in the detection
phase to identify illegitimate flows. If the flow is whitelisted, then noth-
ing happens, otherwise an alarm is raised. In a real-world deployment,
an administrator would have either to add the flow that caused the alarm
to the whitelist (treating the alarm as false positive) or to block it (true
positive). Note that, differently to traditional IT networks, where hosts
are commonly put in quarantine in case of malicious activities, an au-
tomatic blocking is not advised for SCADA environments, as blocking

6

legitimate traffic could have dire consequences, such as a blackout. This
topic will be discussed further in Section 4.

3 Experimental Results

In this section, we present the four tests used in our analysis to evaluate
the viability of flow whitelists in SCADA networks. In the first test,
discussed in Section 3.2, we verify whether the size of the whitelist is
manageable by comparing the size of the complete whitelist with the
number of hosts and communicating pairs in a network.

Our discussion over the stability of the whitelists is divided in three
parts. In Section 3.3, we determine the ideal learning time to be used in
the learning phase of our approach. Then, in Section 3.4, we present the
classification method used to discuss the nature of the alarms present in
our datasets. Finally, in Section 3.5, we apply the classification method
to provide an overview of the distribution of the number of alarms over
the classes.

In our experiments, we need to simulate the administrator’s interven-
tion discussed in the detection phase (see Section 2.3). We do this by
always adding the flow which caused the alarm back to the whitelist, and
at the same time storing the alarm for post processing. This means that
an alarm is never repeated, which allows us to focus our analysis on the
nature of alarms, rather their absolute number.

3.1 Datasets

In this paper we use network packet traces collected at three different
SCADA environments: two water treatment facilities and one electric
and gas utility, referred to as water1, water2 and electric-gas. At one of
the water treatment facilities two data collections were performed simul-
taneously, one in the field subnetwork, consisting of programmable logic
controllers (PLCs), Remote Terminal Units (RTUs) and field devices;
and one in the control subnetwork, consisting of servers with different
functions (e.g., polling of PLCs, keeping historical data and perform-
ing access control), and Human Machine Interfaces (HMI), i.e., operator
workstations. In the other locations, a single collection was performed,
containing all data of these two logical subnetworks. All SCADA datasets
consist in full packet tcpdump/libpcap3 traces and we treat each collection
as a separate dataset.

For comparison, we use two additional traditional IT networks
datasets. One is a publicly available tcpdump/libpcap trace captured at
an educational organization: “Location 6” (referred to as loc6) from [14].
We use only a portion of the available data, approximately the first 7.5

Barbosa, Sadre & Pras 7

days of the trace. The last dataset consists of 15 days of NetFlow4 records
collected at an internal router at a university campus, referred to as uni.
An overview of the datasets is presented in Table 1.

Note that we cannot apply the flow creation step described in
Section 2.1 to the uni dataset. NetFlow records do not contain enough
information to identify which host initiated a TCP connection accord-
ing to the 3-way handshake, which it is necessary for the applicability
of rule 1. Instead, we use the techniques described in [5] to aggregate
the NetFlow records to connections. Therefore, the client side (termed
originator in that work), and, as a consequence, the server side and the
service port of a connection are determined by these techniques.

Table 1: Datasets overview

Name Hosts Duration Packets Bytes Conn.

water1 45 13 days 591M 96GB 76K
water2-control 14 10 days 26M 4GB 131K
water2-field 31 10 days 67M 24GB 215K
electric-gas 388 86 days 2G 511GB 179M

loc6 93 7.5 days 53M 53GB 264K
uni 22685 15 days 161G 126TB 1G

3.2 Whitelist Size

The first characteristic we study is whether the whitelist size is man-
ageable. In other words, we verify if the connection matrix is sparse,
i.e., the number of acceptable flows should be small in comparison to the
number of possible flows.

We test this characteristic by setting the learning time to the full du-
ration of each trace and count the number of flows observed. This allows
us to estimate the size of a trace’s complete whitelist, assuming no at-
tacks are present in the dataset. While no attacks were reported during
the capture of our SCADA datasets, malicious activities such as network
scans are so common in traditional IT networks that they are most prob-
ably present in the loc6 and uni datasets. We attempt to reduce this bias
by only considering flows for which traffic is observed in both directions.
We argue that this greatly reduces the number of observed flows caused
by network scans and other types of network anomalies.

Table 2 shows the results. The column Internal Hosts gives the number
of observed hosts located inside the monitored networks. In the column
Host pairs, the number of communicating host pairs and in the column

8

Whitelist, we show the size of the whitelist. In order to make the different
traces comparable, we express these metrics both as absolute values and
as a ratio to the number of internal hosts (in parenthesis).

For most cases, the whitelist size for the SCADA datasets is in the
same order of magnitude as the number of internal hosts, suggesting that
flow whitelisting might be feasible in these environments. In comparison,
the traditional IT counterparts present a whitelist orders of magnitude
larger than the number of internal hosts, illustrating why the approach
does not scale in these environments. Due to the excessively large size
of the whitelist for the traditional IT datasets, we do not consider them
in the tests performed in the remainder of this section.

Another observation is that the difference between the host pair and
the whitelist ratios is not very large, meaning that in average we have
one or two services per server. This means that a whitelist without the
service information, which is less restrictive and, thus, considerably less
secure, would not greatly reduce the size of the whitelist.

The only exception to the results presented here is the dataset water2-
control, in which the whitelist size is one order of magnitude greater
than the number of communicating host pairs. However, we show in
Section 3.4 that this difference is mostly caused by a traffic anomaly.

Table 2: Whitelist size ratios

Dataset Internal Hosts Host Pairs Whitelist

water1 51 58 (1.1) 81 (1.6)
water2-control 22 40 (1.8) 542 (24.6)
water2-field 14 20 (1.4) 23 (1.6)
electric-gas 388 542 (1.4) 1188 (3.1)

loc6 93 23 322 (250.8) 26 759 (287.7)
uni 22 685 56 425 836 (2487.4) 141 744 206 (6248.4)

3.3 Training Set Size

In the following we study the influence of the learning phase dura-
tion on the size of the learned whitelist. Figure 2 shows the size of the
learned whitelist as the percentage of the total number of flows as func-
tion of the learning time. For the datasets water1 and water2-field, over
50% of the flows are observed within the first hour of traffic, with a
few other additions during the first day. This percentage is much lower
for datasets water2-control and electric-gas, around 10% and 15%, re-
spectively. The water2-control dataset shows a significant jump in the

Barbosa, Sadre & Pras 9

list size after around 7 days. The whitelist for the electric-gas dataset
grows steadily from day 10 to day 40. The reasons for this behavior are
explained in the next section.

Despite this difference, one characteristic is shared by all SCADA
datasets: no additions are made to the whitelist in the second day of
traffic. In fact, almost no addition is made up to the third day in the
water datasets, and a even longer period in the electric-gas dataset. Due
to this observation, we set the learning time to 1 day in the following
experiments.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time since start of dataset (days)

0

20

40

60

80

100

O
b
se
rv
e
d
 f
lo
w
s
(%

)

(a) water1

0 1 2 3 4 5 6 7 8 9 10 11 12
Time since start of dataset (days)

0

20

40

60

80

100

O
b
se
rv
e
d
 f
lo
w
s
(%

)

(b) water2-control

0 1 2 3 4 5 6 7 8 9 10 11 12
Time since start of dataset (days)

0

20

40

60

80

100

O
b
se
rv
e
d
 f
lo
w
s
(%

)

(c) water2-field

0 10 20 30 40 50 60 70 80 90
Time since start of dataset (days)

0

20

40

60

80

100

O
b
se
rv
e
d
 f
lo
w
s
(%

)

(d) electric-gas

Figure 2: Number of learned flows over time

3.4 Nature of Alarms

In this section, we present our post-processing analysis of the alarms.
Its goal is to determine the sources of instability in the whitelists, that
is, the nature of the flows not observed during the learning phase.

During our analysis we identified four main alarm classes:

Dynamic Port Allocation Anomalies: As discussed in Section 2.1,
our service definition assumes an one-to-one mapping with trans-
port ports, which is problematic in cases of DPA. We did not at-
tempt to uncover all services using dynamic ports, but we identi-
fied anomalies which are most likely triggered by it. The datasets
water2-control and electric-gas present moments in which several
TCP connections are made by the same hosts in short sequence,

10

with transport port numbers monotonically increasing on both
client and server side. Table 3 shows an excerpt of such moment.

Manual Activity: This class consists in human triggered flows. All
flows which used the following services, identified by a protocol and
port number, fall in this class: telnet (TCP-22), ssh (TCP-23), http
(TCP-80), https (TCP-443), shell (TCP-514), kshell (TCP-544),
rdp (TCP-3389), vnc (TCP-5800 and TCP-5900) and x11 (TCP
6000 to TCP 6007). In addition, for datasets water1 and water2,
we have a list of operator workstations. If the client side of a flow
is on this list, such flow is also classified as manual.

New Host: This class contains all flows for which at least one host
(either server or client) did not communicate during the training
period and, obviously, can not be present on the whitelist.

Other: A catchall class for all flows that do not fit any of the other
classes.

We map each flow to a single class, and membership to a class is tested
in the same order presented here. For instance, consider an alarm for a
flow where the client is not present in the whitelist and where the service
is ssh. In this case, the flow is classified as manual activity, as this class
has precedence over the new host class.

When analysing the electric-gas dataset, we observed two events that
deserve to be studied separately. In SCADA networks, it is very common
for most functions in the network to be replicated, including duplicating
servers, in order to increase reliability. The first event consists in a
single redundant host taking over tasks of one of the main servers in the
network, the SCADA server responsible for polling the field devices.

Just before the change occurs, we observe telnet traffic to some of
the PLCs, issuing a reboot command. We do not observe telnet to all
PLCs, however, as all changes occur in a relatively small time interval,

Table 3: Dynamic port example

StartTime Proto Sport Dport Pkts State

09:26:50.944328 tcp 3714 1178 16 FIN
09:26:50.960961 tcp 3715 1178 2 RST
09:26:50.976884 tcp 3716 1180 16 FIN
09:26:50.990740 tcp 3717 1180 2 RST
09:26:51.007886 tcp 3718 1183 16 FIN
09:26:51.021606 tcp 3719 1183 2 RST

Barbosa, Sadre & Pras 11

we presume they are related. Besides the flows involving the PLCs,
several other long-lived flows present the same behavior, for example,
some ssh flows are also “switched” to the redundant host. According to
the operators, changes like this one are routinely performed in order to
verify if the redundant hosts work properly.

In our analysis, we adopt the following procedure to identify flows
belonging to this event. If one of the hosts in the flow is the SCADA
server, we look for another flow with a similar key, where only the SCADA
server address is changed to its backup or vice-versa.

The second event consists in the relocation of many hosts in the net-
work, mostly PLCs. At times, a continuous range of IP addresses have
their address changed to (logically) separated subnetworks. For exam-
ple, all hosts in the IP address range X.Y.Z.61 to X.Y.Z.71 have their
addresses changed to the range X.Y.A.61 to X.Y.A.71. We observe tel-
net commands being issued to perform the address change, but not to
all hosts. Again, the small time interval between the changes suggests
that they are related. According to the operators, a large subnetwork
was split in several smaller ones. After the change, the logical address
better represents the geographical location of the hosts.

We identify flows belonging to this event simply by verifying if either
host in the flow (client or server) is part of one of the newly created
networks. Its important to note that we do not classify the telnet access
to these hosts leading to these events as part of them. telnet connections
are always classified as manual activity.

3.5 Frequency of Alarms

We apply our classification method to all SCADA datasets to provide
an overview of how frequent each class of alarm is. As discussed in
Section 3.3, the learning time is set to be the first day of the dataset.
The results of the classification are presented in Table 4. This table
presents the absolute number of alarms and approximate percentages for
each class. The results for the electric-gas dataset are broken down in
the two events discussed in the previous section.

In the water1 dataset, the new host alarms consist in a few short
snmp connections, likely due to testing; one ntp connection that seems
to repeat once a week; and one real anomaly: several single packet TCP
connections attempts at port 1010. The single other flow seems to be
caused by DPA; a few moments before it starts, a flow involving the
same hosts, but different server port, ends. Finally, a few http(s) and x11
connections and a connection originated from a operator’s workstation
compose the manual activity alarm class.

12

Table 4: Alarm breakdown

Dataset Dyn. Ports Manual New Host Other

water1 0 14 (47%) 15 (50%) 1 (3%)
water2-control 437 (91%) 16 (3%) 6 (1%) 19 (4%)
water2-field 0 5 (45%) 6 (55%) 0
electric-gas 358 (35%) 269 (26%) 274 (26%) 136 (13%)

Redundant 0 13 (5%) 16 (6%) 75 (56%)
Relocation 0 14 (5%) 148 (54%) 1 (0%)
Remaining 358 (100%) 242 (90%) 110 (40%) 60 (44%)

The leading cause of alarms in the water2-control dataset is a DPA
anomaly, being responsible for around 91% of the alarms. This anomaly
is responsible for the majority of the flows which compose the jump
present at Figure 2b. In fact, if we remove the flows generated by this
anomaly, over 60% of the flows would be present in the whitelist (i.e., be
observed in the training period), much like the other water datasets. In
addition, the ratio between the size of the whitelist and the number of
internal hosts would be considerably smaller, 4.7 instead of 24.6, thus in
the same order of magnitude as the other SCADA datasets.

In the water2-control and water2-field datasets, most new and other
alarms involve a server which, according to the network administrator,
relates to user authentication and thus, probably are generated due to
manual activity. An unexpected behavior is that some connections are
made from this authentication server, which is in the control network, di-
rectly to PLCs, which are in the field network. According to the network
administrator, this type of connection is not allowed. All connections
from the control network to the field should be done through a specific
server. The remaining alarms involve hosts foreign to the control and
field networks where the data collection was performed. It is not clear if
these connections should be allowed.

In comparison to the other datasets, the electric-gas dataset contains
a considerably larger number of alarms: 1037 of the flows are not ob-
served in the training period. Like water2-control, the largest class is
DPA anomalies, accounting for 35% of the total. The redundant and re-
location events are responsible for over half of the other and new alarms,
respectively.

Figure 3, shows a time series for the alarms observed daily, broken
down per alarm class. We show only the most active period. DPA
connection bursts happen at 4 distinct times (one not shown), accounting
for the largest peaks. The redundant event happens on day 15, and a

Barbosa, Sadre & Pras 13

portion of the manual alarms present on the same day represent the
telnet connections used to reboot the RTUs. Interestingly, a larger peak
classified as redundant appears before, on day 11. All flows in this peak
represent single packet connections, sent by the redundant host to several
RTUs. This was probably a test or caused by a configuration mistake.

Peaks of manual activity happen on days 20, 25 and 29. On each of
these days a large portion of the address space is accessed, for various
reasons. For instance, connections are configuring hosts for the first time,
some which appear later as new, around days 35 and 40.

Most of the hosts are relocated around day 55 and 61. Note that no
peak of manual activity happens around theses days. The telnet connec-
tions used to change the hosts’ addresses were previously accounted for
in the peaks of manual activity.

These peaks account for the majority of alarms in the dataset. The
remaining alarms consist mostly of some manual ssh, x11 and http flows;
a few samba related ports (e.g., TCP/UDP 137-139 and 445); and several
high port flows, which might be caused by DPA.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 15 20 25 30 35 40 45 50 55 60 65

N
um

be
r

of
 A

la
rm

s

Time since start of dataset (days)

other
new

manual
redundant
relocation

dynamic

Figure 3: Time series for alarms in electric-gas dataset

4 Discussion

In this section we discuss some of the practical issues network ad-
ministrators will face when implementing flow whitelists in real-world
environments.

Dynamic port allocation (DPA): By far, the largest class of alarms
identified in our analysis is due to DPA anomalies, and we only iden-
tified a portion of the port and protocol pairs used by these services.
In practice, there are more connections using DPA in our datasets. For
a flow level whitelisting approach to work with this type of service, it

14

is necessary to whitelist the whole range of transport ports that might
be used by these service. This is not an ideal solution, as it makes the
whitelist more permissive.

One of the main advantages that security experts have in protect-
ing SCADA environments is that traffic patterns are rather predictable,
when comparing with traditional IT environments. DPA reduces this
predictability. We argue that SCADA systems should be designed with-
out the use services which make use of DPA or, at least, these services
should be restricted to a non-critical segment of the network.

Dealing with real-world attack scenarios: Our datasets contained
no attack data, so we could not test the efficacy of whitelisting against
realistic attack scenarios. We use a list of real-world attack types pre-
sented in a previous work [15] to motivate how these attacks could be
observed. We consider four types of attacks.

The first type is formed by information gathering attacks, such as net-
work scans. These are normally performed by injecting several requests
into the network, with the objective of discovering with services and/or
hosts are available. At the flow level, these attacks not much different
from the DPA anomalies identified in this work. Therefore, they should
be easily identified by our approach, as non-whitelisted connections are
likely to be made. The other three types of attacks are: denial of service
attacks, which prevent a legitimate user to access a service or reduce its
performance; network attacks used to manipulate the network protocols;
and buffer overflow attacks, which attempt to gain control over a process
or crash it by overflowing its buffer. These would only be observed if at-
tempted from a host which is not allowed to access a given server/service
or if they targeted a server/service not existent in the network.

In general, an attack will only remain undetected in two situations.
Either the whitelist is incorrectly constructed, i.e., it contains entries rep-
resenting illegitimate traffic, or the attacker misuses whitelisted traffic,
e.g., an operator machine, normally used to access a PLC, sets an invalid
parameter. In the later case, the connection itself is legitimate, but its
contents are not. Note that our approach does not prevent an attacker
from spoofing an IP address and attempting to masquerade a legitimate
flow. Protection mechanisms against such attacks are discussed in [4].

Blocking or Flagging: In a traditional IT environment is a common
practice to take a host offline in case it is suspected to be under attack.
This is done to limit the impact of the attack, and prevent a possible
spread. However, taking a SCADA host offline might have dire conse-
quences, as a critical process might depend on it.

Barbosa, Sadre & Pras 15

The same reasoning can be applied to blocking traffic, the cost of false
positives might be too great. Whitelists, as any other systems can suffer
from configuration problems. In our analysis, we observed a number of
alarms due to rare activities, such as manual access to PLCs and hosts
switching to backup servers (or being accessed by backup clients), which
might be overlooked while building an whitelist. We recommend that,
when whitelists are first deployed in a real world scenario, connections
that are not whitelisted should only be flagged (raise an alarm). The
decision of blocking the traffic or add it to the whitelist is left to the
network administrators. Only after they are confident that the config-
uration mistakes are solved, they should consider using the whitelist to
automatically block traffic.

Limitation of the learning step: Many alarms are the effect of a
limitation of the technique used for learning the initial whitelist. These
represent connections that do not happen regularly, and it would be im-
practical to extend the learning time in order to include them. The larger
the learning time, the larger is the chance of including an anomalous flow
to the whitelist.

In addition, some alarms are caused by the presence of new hosts, not
observed in the learning step. Although changes in the topology are not
common, they should be taken into consideration when deploying our
approach. For every change in the network, it is necessary to update the
whitelist accordingly, either manually or by triggering a new learning
step. Note however, that this problem is not exclusive to our approach.
Most, if not all, anomaly-based intrusion detection systems would require
a similar update after a change in the network, as the “normal” behavior
has changed.

The limitation of the learning step shows that the network admin-
istrator’s (and/or SCADA vendor’s) knowledge is necessary to build a
complete flow whitelist. However, relying only on this knowledge can
also be dangerous, as mistakes are likely to happen. For instance, the
addition of flows representing backup servers connections or infrequent
ssh connections might be overlooked. Presenting a list of flows learned
from network measurements as proposed in the learning phase, could
help administrators in identifying acceptable flows that might otherwise
be missed.

5 Conclusions

In this work, we present an approach for flow whitelisting in SCADA
networks. Our study shows that it is a practical solution to reduce the

16

number of attacks that a SCADA network is exposed to. The size of
the whitelist is manageable, considering the number of internal hosts.
Besides, the whitelists are fairly stable. In most cases, over 50% of the
acceptable flows can observed within one day of measurement.

Services using dynamic port allocation are the main cause of alarms.
These alarms can be eliminated by adding to the whitelist the complete
range of ports that can be allocated by these services, or by remov-
ing them from critical segments of the network. Most of the remaining
alarms are caused by a limitation the approach used to construct the
whitelists, which, in real-world implementations, would be overcome by
employing the knowledge of network administrators and SCADA vendors
when creating them.

In future work, we plan to develop an user interface to aid the cre-
ation of the whitelists and facilitate its manipulation by providing more
detailed information about alarms. In addition, we want to investigate
how to improve security by identifying intrusion attempts that (mis)use
whitelisted flows.

Notes

1. http://www.qosient.com/argus/

2. In the case of Active FTP, where the originator of a data connection is the server,
we set the source port (20) as a service port. In the case of protocols which use the same
(well-known) port on both hosts, e.g. NTP, we either use rule 1 or 4 for classification.

3. www.tcpdump.org

4. www.cisco.com/go/netflow

References

[1] S. Cheung, K. Skinner, B. Dutertre, M. Fong, U. Lindqvist,
and A. Valdes, Using Model-Based Intrusion Detection for
SCADA Networks in Proceedings of the SCADA Security Scientific
Symposium, 2007, pp. 1–12.

[2] Digital Bond, Quickdraw SCADA IDS [Online]. Available: http:

//www.digitalbond.com/tools/quickdraw/

[3] D. Hadžiosmanović, D. Bolzoni, and P. H. Hartel, A Log Mining
Approach for Process Monitoring in SCADA, International Journal
of Information Security, vol. 11(4), pp.231–251, 2012.

[4] C. L. Abad and R. I. Bonilla, An Analysis on the Schemes
for Detecting and Preventing ARP Cache Poisoning Attacks, in
27th International Conference on Distributed Computing Systems
Workshops (ICDCSW’07), IEEE, 2007, pp. 60–68.

Barbosa, Sadre & Pras 17

[5] R. Sommer and A. Feldmann, NetFlow: Information Loss or Win?
Universität des Saarlandes, Saarbrücken, Germany, Tech. Rep.,
2002.

[6] Y. Cao, W. Han, and Y. Le, Anti-Phishing Based on Automated
Individual White-List, Proceedings of the 4th ACM workshop on
Digital identity management - DIM ’08, pp. 51–60, 2008.

[7] D. Erickson, M. Casado, and N. McKeown, The Effectiveness of
Whitelisting: a User-Study, in The Fifth Conference on Email and
Anti-Spam - CEAS ’08, Mountain View, California, USA, 2008.

[8] M. Yoon,Using Whitelisting to Mitigate DDoS Attacks, on Critical
Internet Sites Communications Magazine, IEEE, vol.48(7), pp. 110–
115, 2010.

[9] E. Y. Chen and M. Itoh, A Whitelist Approach to Protect SIP
Servers from Flooding Attacks, 2010 IEEE International Workshop
Technical Committee on Communications Quality and Reliability -
CQR ’10, pp. 1–6, Jun. 2010.

[10] Norwegian Oil and Gas Association, 104 - Recommended Guidelines
for Information Security Baseline Requirements for Process Control,
Safety and Support ICT Systems, Norway, 2009.

[11] K. A. Stouffer, J. A. Falco, and K. A. Scarfone, NIST SP 800-82.
Guide to Industrial Control Systems (ICS) Security: Supervisory
Control and Data Acquisition (SCADA) systems, Distributed
Control Systems (DCS), and other control system configurations
such as Programmable Logic Controllers (PLC) Gaithersburg, NIST
Special Publication, United States, 2011.

[12] R. R. R. Barbosa, R. Sadre, and A. Pras, Difficulties in Modeling
SCADA Traffic: a Comparative Analysis, in Proceedings of the 13th
international conference on Passive and Active Measurement - PAM
’12, pp. 126–135, 2012.

[13] Microsoft, Service Overview and Network Port Requirements for
Windows, [Online]. Available: http://support.microsoft.com/

kb/832017

[14] R. R. R. Barbosa, R. Sadre, A. Pras, and R. Meent,
Simpleweb/University of Twente Traffic Traces Data Repository,
University of Twente, Netherlands, 2010. [Online]. Available: http:
//doc.utwente.nl/71273/

[15] R. R. R. Barbosa, R. Sadre, and A. Pras, Towards Periodicity Based
Anomaly Detection in SCADA Networks, in IEEE 17th Conference
on Emerging Technologies & Factory Automation - ETFA 2012,
Kraków, Poland, 2012.

