

Aalborg Universitet

Multi-Robot Motion Planning: A Timed Automata Approach

Quottrup, Michael Melholt; Bak, Thomas; Izadi-Zamanabadi, Roozbeh

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Quottrup, M. M., Bak, T., & Izadi-Zamanabadi, R. (2004). Multi-Robot Motion Planning: A Timed Automata
Approach. <Forlag uden navn>.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 11, 2025

https://vbn.aau.dk/en/publications/312a9fe0-9c2d-11db-8ed6-000ea68e967b

Multi-Robot Planning : A Timed Automata
Approach

Michael Melholt Quottrup
Aalborg University

Department of Control Engineering
Fredrik Bajers Vej 7C

DK-9220 Aalborg Øst, Denmark
Email: mmq@control.auc.dk

Thomas Bak
Danish Institute of Agricultural Sciences
Department of Agricultural Engineering

Schüttesvej 17
DK-8700 Horsens, Denmark
Email: thomas.bak@agrsci.dk

Roozbeh Izadi-Zamanabadi
Aalborg University

Department of Control Engineering
Fredrik Bajers Vej 7C

DK-9220 Aalborg Øst, Denmark
Email: riz@control.auc.dk

Abstract— This paper describes how a network of interacting
timed automata can be used to model, analyze, and verify motion
planning problems in a scenario with multiple robotic vehicles.
The method presupposes an infra-structure of robots with feed-
back controllers obeying simple restriction on a planar grid. The
automata formalism merely presents a high-level model of envi-
ronment, robots and control, but allows composition and formal
symbolic reasoning about coordinated solutions. Composition is
achieved through synchronization, and the verification software
UPPAAL is used for a symbolic verification against specification
requirements formulated in computational tree logic (CTL). In
this way, all feasible trajectories that satisfy specifications and
which moves the robots from a set of initial positions to a set
of desired goal positions may be algorithmically analyzed. The
trajectories can then subsequently be used as a high-level motion
plan for the robots. This paper reports on the timed automata
framework, results of two verification experiments, promise of
the approach, and gives a perspective for future research.

I. INTRODUCTION

The problem of controlling mobile multi-robot systems
in a coordinated manner is becoming an important research
issue. The vision being that multiple robotic vehicles may
perform tasks faster and more efficient that a single robot.
The application domains include container transshipment tasks
in harbors, airports, and manufacturing areas, and formation-
keeping and control in military applications [1], [2].

A number of different approaches have been taken in order
to coordinate multi-robot system. A formalism for the compo-
sition of concurrent robot behaviors, using threaded petri nets,
has been developed and used for the construction of simple
automated factories, such as mobile robot bucket brigades [3].
In [4] multi-robot coordination is achieved by employing
a plan-merging paradigm that guarantees coherent behavior
of all the robots in all situations. A distributed negotiation
mechanism for multi-robot coordination is considered in [5].
A hybrid control approach to action coordination and collision
avoidance was taken in [6], [7]. A formal hybrid approach to
the modeling and analysis of coordinated multi-robot systems
was taken in [8].

In this work we provide a novel framework for the modeling
of a mobile multi-robot system as a network of interacting
timed automata [9] based on synchronization. The model
is verified against specification requirements formulated in

computational tree logic (CTL) using the verification tool UP-
PAAL [10]. For timed automata, problems such as reachability
and CTL model checking are decidable [11], [12].

The methods developed here presupposes an infra-structure
of robots with feedback controllers that constrain the robot to
move in a planar grid, i.e. motion from one cell in the grid
to a neighboring cell is constrained to move within the two
cells. The automata formalism merely presents an abstraction
(or high-level model) of this, but allows composition and
formal symbolic reasoning about coordinated solutions. The
system is described as interacting models of the possible
behaviours of robots, control and environment, under velocity
constraints set by the assumed hardware. Posing the problem in
UPPAAL, enables us to algorithmically verify safety questions
such as: will they collide?; and liveliness questions such as:
are all robots able to reach their goal positions? We may
also algorithmically investigate all feasible trajectories (or
corresponding control actions) that satisfy specifications and
which moves the robots from a set of initial positions to a set
of goal positions. The trajectories are subsequently use as the
high-level motion plan for the robots.

The paper is organized as follows: In Section II we in-
troduce timed automata to model the mobile multi-robots. In
Section III we describe the modeling of mobile multi-robots.
In Section IV we verify (in UPPAAL) that the developed model
satisfy the specification requirements. Finally, we discuss the
developed approach.

II. TIMED AUTOMATA

A timed automaton is a finite-state automaton extended
with a finite collection of real-valued clock variables [9]. The
clocks are assumed to proceed at the same rate and measure
the amount of time that have elapsed since they were reset.
The clock values may be compared with natural numbers and
reset to zero. Let C be a set of real-valued clock variables.
Then B(C) is the set of formulas that are conjunctions of
atomic constraints of the form c �� n and c − d �� m for all
c, d ∈ C, ��∈ {≤, <,=, >,≥}, n ∈ N and m ∈ Z. Elements
of B(C) are called guards over C and 2C denotes the power set
of C. We adopt the definition of a timed automaton from [13].

Definition 1 (Timed Automaton): A timed automaton A
over actions Act, atomic propositions P , and clocks C is a
tuple A = (L, l0, E, I, V), where:

• L is a finite set of control locations;
• l0 ∈ L is the initial control location;
• E ⊆ L × B(C) × Act × 2C × L is a finite set of edges,

where an edge contains a source control location, a set of
guards, a set of actions to be performed, a set of clocks
to be reset, and a target control location;

• I : L → B(C) is a function which for each control
location l assigns a clock constraint, also called the
invariant condition of the control location;

• V : L → 2P is a proposition assignment function
which for each control location gives a set of atomic
propositions true in that control location. 2P denotes the
power set of P .

A timed automaton can be viewed as a hybrid system in
which there is one or more continuous variables ci, di ∈ C

that satisfies the differential equation ċi = 1, ḋi = 1. A state
of a timed automaton A is a pair (l, u) where l is a control
location of A and u holds the current values for the clock
variables. The initial state of A is (l0, u0), where u0 assigns
zero to all clocks in C.

Definition 2 (Control location trajectory): A control loca-
tion trajectory is a sequence of control locations l0 l1 l2 . . .
such that (li, li+1) ∈ E, ∀i ≥ 0.

A. Formal Analysis

Formal analysis is concerned with verifying whether a
system satisfies a desired specification. Properties about the
behavior of a system over time are naturally expressible in
temporal logics, e.g. computation three logic (CTL) [14]. CTL
is a temporal logic that contains existential quantifiers that
range over trajectories and it allows to reason about how the
states of the system evolve over time.

Formulas of temporal logic are thus used to formally specify
desired properties of systems, such as reachability (whether a
certain region of the state-space can be reached) and invariance
properties. CTL formulas consists of atomic propositional
logic formulas and temporal operators. The propositional logic
formulas are expressions about the state of the system and
temporal operators are expressions about trajectories into the
future that the state of the system can follow. CTL formulas
are interpreted over the tree of control location trajectories
generated from a given state of the automaton.

In this approach we use CTL to specify and verify desired
safety and liveness properties of a systems consisting of
multiple mobile robots.

III. MODELING MULTI-ROBOTS

The following describes the modeling of multiple mobile
robots as a network of timed automata that interact through
synchronization channels. The system being modeled is di-
vided into: environment (workspace and obstacles), robots, and
control.

To allow formal analysis and verification of the system just
described, we first partition a subset of the planar environment
R

2, into a Cartesian grid of disjoint cells. The robots will be
restricted to move horizontal and vertical in the grid of disjoint
cells. Cells in the grid may be occupied by static obstacles.
The obtained partition of the environment enables the analysis
of desired safety (e.g. obstacle avoidance) and liveness (e.g.
reachability) properties.

The system is modeled and verified using UPPAAL [10];
an integrated tool for modeling, analysis, and verification
(model checking) of real-time systems that can be modeled
as a network of timed automata interacting through synchro-
nization channels. UPPAAL allows the construction of process
templates for the system being modeled. A set of process
parameters may be declared for each process template. Process
assignments are then used to declare instances of the process
templates with specific process parameters. This allows the
construction of a system that consists of a set of robots with
different process parameters, a set of static obstacles, and a
set of controls for the robots. Moreover, the movement and
coordination of the mobile robots is handled by the verifier of
UPPAAL.

A. Environment

In the following we consider a team of Rn robots, n =
1, . . . , N , restricted to operate in a planar environment, X ⊂
R

2. We denote by xi =
[
xi1 xi2

]T
, xi ∈ X , a position in

the planar environment. X is partitioned into a Cartesian grid
of disjoint cells with resolution ε ∈ R

+. With a simple layout
of X and a suitable ε, the result is a finite partition,

X =
⋃

U

Cε(zi) (1)

where zi =
[
zi1 zi2

]T
, zi ∈ Z

2, and U is the number of cells
needed to cover X . Each cell in the partition Cε(zi) ⊂ R

2 is
defined by,

Cε(zi) = {xj ∈ R
2 : zi1 − ε

2
< xj1 ≤ zi1 +

ε

2
∧

zi2 − ε

2
< xj2 ≤ zi2 +

ε

2
} (2)

The partition defined by X divides the plane into a grid of
U = (S + 1)(T + 1) cells as illustrated in Fig. 1.

A group of static obstacles may be present in the grid, each
modeled as occupying cells in the partition. The workspace of
the robots W , i.e. the obstacle free space in which the robots
are restricted to move, is hence restricted to,

W = X \
⋃

M

O(zi) (3)

where M denote the number of static obstacles and O(zi)
is an obstacle located at Z

2. Thus, the defined workspace
represents a shared space in which all the robots may move.
With a proper selection of the grid size ε, collision may be
avoided by not allowing the robots to occupy the same cell of
the partition at any time instant.

0

1

0 1

x1

x2

T

S

C
�

(z)i

�

Fig. 1. Partition of X into a grid of cells Cε(zi).

l_init

l_stat

obsNo == obsID,
j < 1
partX[z1Stat][z2Stat] := 1,
j := j+1

obsNo == obsID,
j == 1
j := 0,
obsNo := obsNo+1,
z1 := z1Stat,
z2 := z2Stat

Fig. 2. Obstacle process template.

In the UPPAAL model the partition of X is rep-
resented as a two-dimensional integer array, int[0,1]

partX[hSize][vSize] that is declared globally. hSize and
vSize are constants that define the horizontal and vertical size
of the array respectively. Thus, elements of the array represent
cells in the partition of X . By default all cells of the array are
initialized to zero, marking them as free cells. A particular cell
of the array is marked as occupied by assigning it the value 1.
For example, the assignment partX[1][2]==1 marks the cell
with midpoint zi =

[
1 2

]T
as occupied.

The automaton AO = (L, linit, E), models a static ob-
stacle as shown in Fig. 2. This automaton is used as a
process template for declaring static obstacles. Static ob-
stacles are declared with parameters: const obsID, z1Stat,
z2Stat, where obsID is an unique identifier for the m-
th obstacle, (z1Stat,z2Stat) is the static position of the
obstacle. The local declarations of the obstacle process are:
int[0,hSize] z1; int[0,vSize] z2, where (z1,z2) is the
position of the static obstacle in the Cartesian grid.
AO starts in the control location linit, which is declared

committed. By declaring this control location committed, an
element in the array partX can be marked as occupied by
an obstacle, without allowing any time delay in this control
location. When the guard (obsNo==obsId, j<1) is enabled, the
assignment partX[z1Stat][z2Stat]:=1 is performed and the
index integer j is incremented. The transition from linit to
lstat will then become enabled since the guard (obsNo==obsID,
j==1) is satisfied, resulting in a reset of j, an increment
of obsNo, and the obstacle is given a static position by the
assignments z1:=z1Stat and z2:=z2Stat in the Cartesian grid.

B. Robots

We restrict the robots to move horizontal and vertical in the
Cartesian grid. The rationale behind this restriction is twofold.
First, it reduces the state-space of the system and hence it
reduces the complexity of model checking the system. Second,
it reduces the number of cells that needs to be occupied when
the robot moves.

Since clocks variables can only have non-negative values
the position of the robots cannot directly be represented in
a timed automaton using a clock. Instead, a clock c ∈ C is
used to represent the time it takes the robot to move from one
particular cell to a horizontal or vertical neighbour cell in the
grid, i.e. d

dtc = 1.
Thus, the clock measures the amount of time spent in a

particular control location, since it was reset. We restricts
the time it takes the robot to move from one particular cell
to a neighbour cell in the grid by imposing the constraint,
cMin < c < cMax, which for cMin ≥ 1 ensures that a move-
ment of the robot takes minimum one time unit. The result is
AR = (L, linit, E, I, V), modeling a robot,

• L = {linit, lstop, lmr, lml, lmu, lmd} is the set of control
locations;

• linit ∈ L is the initial control location;
• E ⊆ L× B(C) ×Act× 2C × L is the set of edges,

e0 = (linit, linit)
e1 = (linit, lstop)
e2 = (lstop, moveRight?, lmr)
e3 = (lmr, cMin < c < cMax, c = 0, lstop)

etc.

• I : L → B(C) is a function which for each control
location l assigns an invariant,

lmr, lml, lmu, lmd : c < cMax

The corresponding robot process template is shown in
Fig. 3.

The local declarations of the robot process tem-
plate are: clock c; int[0,hSize] z1; int[0,vSize] z2;
int[0,50] step, (z1, z2) is the position of the robot in the
Cartesian grid, and step is the number of robot move-
ments. Process instances of the robot process template can
be declared with the template parameters: const robotID,
z1Init, z2Init, cMin, cMax; chan moveRight, moveLeft,
moveUp, moveDown, where robotID is an unique identifier
for the robot, (z1Init,z2Init) is the initial position of
the robot, (cMin,cMax) is the clock constraint on the clock
c,moveRight, moveLeft, moveUp, moveDown are the synchro-
nization channels that allows control of the robot.

The timed automaton modeling the robot process template
starts in the control location linit. In this control location
the robot is placed at its initial position in the grid, as
specified by the parameters z1Init and z2Init. By declaring
this control location committed the robot is placed at its
initial position, without allowing any time delay in this control

l_stop

l_init

l_ml
c < cMax

l_mu
c < cMax

l_mr
c < cMax

l_md
c < cMax

robotNo == robotID,
i == 1
i := 0,
robotNo := robotNo + 1,
z1 := z1Init,
z2 := z2Init

robotNo == robotID,
i < 1
partX[z1Init][z2Init] := 1,
i := i+1

z1 > 0,
partX[z1-1][z2] == 0 moveLeft?
partX[z1-1][z2] := 1

c > cMin, c < cMax

c := 0,
partX[z1][z2] := 0,
z1 := z1-1,
step := step+1

z2 < vSize,
partX[z1][z2+1] == 0

moveUp?

partX[z1][z2+1] := 1

c > cMin, c < cMax

c := 0,
partX[z1][z2] := 0,
z2 := z2+1,
step := step+1

z2 > 0,
partX[z1][z2-1] == 0

moveDown?

partX[z1][z2-1] := 1

c > cMin, c < cMax

c := 0,
partX[z1][z2] := 0,
z2 := z2-1,
step := step+1

z1 < hSize,
partX[z1+1][z2] == 0moveRight?
partX[z1+1][z2] := 1

c > cMin, c < cMax

c := 0,
partX[z1][z2] := 0,
z1 := z1+1,
step := step+1

Fig. 3. Robot process template.

location. Afterwards the control location lstop is entered and
the robot may receive control signals from the control process
in order to move in one of the four possible directions. In this
control location the synchronization channels are moveRight,
moveLeft, moveUp, and moveDown. The synchronization labels
are moveRight?, moveLeft?, moveUp?, moveDown?.

Synchronization channels are used to synchronize the con-
trol and robot processes as illustrated in Fig. 3 and Fig. 4, re-
spectively. This is done by annotating edges in the models with
synchronization labels evaluating to a synchronization channel.
Complementary synchronization labels are of the form, e.g.
moveUp! and moveUp?. The control and robot processes can
synchronize on edges annotated with complementary synchro-
nization labels if the guards of both edges are enabled. When
the control and robot processes synchronize, both edges are
fired at the same time and the current control location of both
processes is changed.

C. Control

Robot control is achieved by the use of the synchronization
labels, moveRight!, moveLeft!, moveUp!, moveDown!, repre-
senting the set of all possible control actions. This is encoded
into a automaton, AC = (L, lloop), as illustrated in Fig. 4.

This automaton is used as a process template for
declaring control process instances. A control can be de-
clared with the template parameters: chan moveRight,

moveLeft, moveUp, moveDown. The control starts in the con-
trol location lloop. In this control location the control process
may send control signals, through the synchronization labels

l_loop

moveDown!

moveRight!

moveUp!

moveLeft!

Fig. 4. Control process template.

0

1

2

0 1 2 3

x1

x2

R3

R2

R1

G2

G3

4

G1

O4

O33

4

O2

O1 0

1

2

0 1 2 3

x1

x2

O1

4

3

4

O2 O3

O6

O5

O7 O8

O4G1

G2

R1 R2

a. b.

Fig. 5. Multi-robot systems. a. Three mobile robots that transverse a door,
and b. two mobile robots moving in a maze.

moveRight!, moveLeft!, moveUp!, moveDown!, in order to
change the control location of the robot process with the com-
plementary synchronization labels moveRight?, moveLeft?,
moveUp?, moveDown?.

The update expression on the edge using the moveRight!

is executed before the update expression on the edge with
the moveRight? (see Fig. 3). This is interpreted as the control
process sends control signals to the robot process in order to
change its control location.

IV. MODEL CHECKING

A. Multi-robot System

In the following we consider two distinct concurrent mobile
robot systems as illustrated in Fig. 5. The system in Fig. 5.a
involves three mobile robots that have to transverse a door and
the other system (see Fig. 5.b involves two robots that have to
change positions in a maze. The system in Fig. 5.a consists of
the following processes: Three robots (R1-R3), three controls
(C1-C3), and four static obstacles (O1-O4).

The cells denoted G1, G2, G3 marks the goal positions of
robots R1, R2, R3, respectively. The robots have to move from
their initial to their goal positions while avoiding collision with
each other and static obstacles.

The global declarations for the system in Fig. 5.a are,

clock time; const hSize 5; const vSize 3; const N 5;

const M 5; int[0,1] partX[hSize][vSize]; int[0,5] i

,j; int[1,N] robotNo; int[1,M] obsNo; chan mR1,mL1,

mU1, mD1,mR2,mL2,mU2,mD2,mR3,mL3,mU3,mD3;

The clock time is used to measure the global time for the
system. The system is constructed in UPPAAL where process
assignments are used to declare instances of the robot, control,
and obstacle process templates, respectively,

R1:= Robot(1,3,4,1,4,mR1,mL1,mU1,mD1);

C1:= Control(mR1,mL1,mU1,mD1);

O1:= Obstacle(1,2,0);

For example, the instance R1 of the robot process template
is declared with the parameters: robotID = 1, z1Init = 3,
z2Init = 4, cMin = 1, cMax = 4; moveRight = mR1,
moveLeft = mL1, moveUp = mU1, moveDown = mD1. The
instance C1 of the control process template is declared
with the parameters: moveRight = mR1, moveLeft = mL1,
moveUp = mU1, moveDown = mD1. The instance O1 of the
obstacle process template is declared with the parameters:
obsID = 1, z1Stat = 2, z2Stat = 0. The remaining robots,
controls, and static obstacles of the first system are declared
is a similar manner.

System properties to be specified are often expressed in
terms of temporal logic formulas that describe the desired
behavior of the system. The system properties are of the form:
process.controlLocation. In the following we will check
conjunctions of system properties, e.g. R1.z1 and R1.z2.

The following properties of the multi-robot system (see
Fig. 5.a will be checked using the verifier in UPPAAL.

1) Safety Properties: Prop. 1 (Collision Avoidance): For
all control trajectories the robots never collide, after they start
to move?

A[] not ((R1.z1==R2.z1) and (R1.z2==R2.z2) and

(R1.z1==R3.z1) and (R1.z2==R3.z2) and (R2.z1==R3.z1)

and (R2.z2==R3.z2) and (time >0))

Prop. 2 (Bounded Movement): For all control trajectories
the robots never move outside workspace? (only shown for
R1)

A[] R1.z1>=0 and R1.z1<=hSize and R1.z2>=0 and

R1.z2<=vSize

2) Liveness Properties: Prop. 3 (Reachability 1): Does
there exist a control trajectory where the robots eventually
reach their goal positions?

E<> R1.z1==1 and R1.z2==0 and R2.z1==0 and R2.z2==2

and R3.z1==4 and R3.z2==1

Prop. 4 (Reachability with time requirement): Does there
exist a control trajectory where the robots eventually reach
their goal position within 10 tu?

E<> R1.z1==1 and R1.z2==0 and R2.z1==0 and R2.z2==2

and R3.z1==4 and R3.z2==1 and time<=10

Prop. 5 (Reachability with step requirement): Does there
exist a control trajectory where the robots eventually reach
their goal positions within 10 step movements?

E<> R1.z1==1 and R1.z2==0 and R2.z1==0 and R2.z2==2

and R3.z1==4 and R3.z2==1 and R1.step<=10 and

R2.step<=10 and R3.step <=10

0 1 2 3 4

−2

−1

0

1

2

3

4

5

6

R1

R2

R3

G1

G2

G3

O1

O2

O3

O4

a.

x
1

x 2

R1
R2
R3

0 1 2 3 4

−2

−1

0

1

2

3

4

5

6

R1 R2

G1

G2

O1

O2 O3

O4O5

O6

O7 O8

b.

x
1

x 2

R1
R2

Fig. 6. Robot movements in the x1x2-plane. a. system with three robots, b.
system with two robots.

V. RESULTS

In the following we provide the results from the verification
of the properties of the multi-robot system as described in
Section IV, Fig. 5.a. By construction the first safety property
(Prop. 1) should be satisfied since the robots are able to occupy
the cell they are moving to, enforced by the guards on the
transitions to the move locations, e.g. partX[z1+1][z2]==0,
see Fig. 3. This property was satisfied when using the verifier
in UPPAAL. Moreover, the robots are able to move within
the defined workspace, also enforced by the guards on the
transitions to the move locations, e.g. z1<hSize (see Fig. 3)
and hence Prop. 2 is satisfied. The robot movements in the
x1x2-plane is shown in Fig. 6.a.

As shown the robots are able to reach their goal positions.
Moreover, given the initial positions of the robots it was
possible to verify that the goal positions were reachable within
the specified time requirement (i.e. 10 tu). This is shown in
Fig. 7.

Thus, Prop. 3 and Prop. 4 are satisfied. Finally, Prop. 5 is
satisfied since both robots are able to reach their goal positions
within 10 step movements.

Similar safety and liveness properties were verified for the
multi-robot system involving only two robots as shown in
Fig. 5.b. Given the initial positions of the robots and static
positions of the obstacles, Prop. 1 to Prop. 4 were satisfied
for this system. In Fig. 8 the robot movements in the x1x2-
plane vs. time are shown.

The robot movements in Fig. 8 represents the fastest-time
control trajectories of the robots. Moreover, the lower and
upper bounds on the robot movements are both shown in
Fig. 9. The upper bound represents the maximum time it may
take a robot to reach its goal position.

Fig. 6.b and Fig. 8 shows that R1 and R2 can only reach
their goal positions (the cells marked G1 and G2, respectively)

0
1

2
3

4

0

1

2

3

4

0

1

2

3

4

5

6

7

8

G3

R2

x
1

O1

O2

G1

R1

O3

O4

x
2

G2

R3

tim
e

(t
u)

R1
R2
R3

Fig. 7. Robot movements in the x1x2-plane vs. time.

0
1

2
3

4

0

1

2

3

4

0

5

10

15

20

25

R2

G2

O3

x
1

R1

O4

O2

O1

O8

O5

O7

G1

O6

x
2

tim
e

(t
u)

R1
R2

Fig. 8. Robot movements in the x1x2-plane vs. time.

0 5 10 15 20

10

20

30

40

50

60

Number of cell movements

T
im

e
(t

u)

lower bound on time − R1
upper bound on time − R1
lower bound on time − R2
upper bound on time − R2

Fig. 9. Upper and lower bounds on time for robot movements.

if they change position.

VI. CONCLUSION

High level motion planning for multiple robots that perform
various tasks in a common environment is regarded to be a
major challenge and is subject to intense research. In this
paper, we have used a timed-automata formalism to present
robots’ and controller behaviour in an environment that was
restricted to a planar grid.

Subsequently, properties with direct impact on coordination
solution, such as safety and liveness, where algorithmically
verified and illustrated via two simple examples.

The salient feature in timed-automata formalism that is
clocks enable us to refine the models and hence enhance our
ability to address additional issues such as optimal solutions
with respect to time or steps for a coordination problem
involving different robots with different dynamic behaviours.

Understandably, model refinement implies exponential en-
hancement in the search space where the solution should be
found. Finding locally optimal solutions in this respect would
be a logical approach and is the subject of current research.

REFERENCES

[1] T. Balch and R. Arkin, “Behavior-based formation control for multirobot
teams,” IEEE Transactions on Robotics & Automation, vol. 14, no. 6,
pp. 926–939, Dec. 1998.

[2] R. Fierro, A. Das, V. Kumar, and J.P., “Hybrid control of formations
of robots,” in Proc. IEEE International Conference on Robotics &
Automation, vol. 1, May 2001, pp. 157–162.

[3] E. Klavins and D. Koditschek, “A formalism for the composition of
concurrent robot behaviors,” in Proc. IEEE International Conference on
Robotics & Automation, San Franscisco, CA, 2000, pp. 3395–3402.

[4] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert, “Multi-
robot cooperation in the martha project,” IEEE Robotics & Automation
Magazine, vol. 5, pp. 36–47, Mar. 1998.

[5] B. Gerkey and M. Mataric, “Sold: Auction methods for multirobot
coordination,” IEEE Trans. on Robotics & Automation, vol. 18, no. 5,
pp. 758–768, Oct. 2002.

[6] M. Egerstedt and X. Hu, “A hybrid control approach to action coordi-
nation for mobile robots,” Automatica, vol. 38, no. 1, pp. 125–130, Jan.
2001.

[7] M. Egerstedt and C. Martin, “Conflict resolution for autonomous vehi-
cles: A case study in hierarchical control design,” International Journal
of Hybrid Systems, vol. 2, no. 3, pp. 221–234, Sept. 2002.

[8] R. Alur, J. Esposito, M. Kim, V. Kumar, and I. Lee, “Formal modeling
and analysis of hybrid systems: A case study in multi-robot coordina-
tion,” in LNCS 1708, J. Wing, J. Woodcock, and J. Davies, Eds. Berlin
Heidelberg: Springer-Verlag, 1999, vol. I, pp. 212–232.

[9] R. Alur and D. Dill, “A theory of timed automata,” Theoretical Computer
Science, vol. 126, no. 2, pp. 183–235, 1994.

[10] K. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” Interna-
tional Journal on Software Tools for Technology Transfer, vol. 1-2, pp.
134–152, 1997.

[11] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, pp. 3–34,
1995.

[12] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas, “Discrete abstrac-
tions of hybrid systems,” in Proc. of the IEEE, vol. 88, no. 7, July 2000,
pp. 971–984.

[13] K. Larsen, P. Pettersson, and W. Yi, “Model-checking for real-time
systems,” in Proc. of the 10th International Conf. on Fundamentals of
Computation Theory, Dresden, Germany, Aug. 1995, pp. 62–88.

[14] E. Emerson, “Temporal and modal logic,” in Handbook of Theoretical
Computer Science, J. van Leeuwen, Ed. MIT Press, 1990, vol. B,
ch. 16, pp. 995–1072.

