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Abstract

This article realizes nonlinear Fault Detection and Isolation for a momentum wheel. The Fault
Detection and Isolation is based on a Failure Mode and E�ect Analysis, which states which faults
might occur and can be detected. The algorithms presented in this paper are based on a geometric
approach to achieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested
in a simulation study and the pros and cons of the algorithm are discussed.

1. INTRODUCTION

The stress on a new generation of spacecraft is on reducing the overall cost of a mission. This can be done be
decreasing the size and complexity of the spacecraft and/or increasing the on-board autonomy. An autonomous
spacecraft shall reduce the interaction with the ground-station's personal to the absolute minimum.

A signi�cant part of the development of the on-board autonomy is an issue of making the spacecraft tolerant
towards these faults, which can jeopardise the whole mission. In this article the focus is on momentum wheels.
The model for the momentum wheel is based on the digital momentum/reaction wheel of the model TELDIX
\ASSY RSI 01-5" for small and low-cost spacecraft and the momentum wheel for the R�mer satellite.

This article will contain a FMEA (Failure Mode and E�ect Analysis) and geometric FDI (Fault Detection and
Isolation) algorithms for the presented momentum wheel.

The �rst part of the paper is devoted to the possible faults occurring in a momentum wheel are identi�ed. The
faults are identi�ed using FMEA. The third section contains a an overview of the geometric approach to FDI.
In the fourth section nonlinear FDI algorithms are developed for isolating and detecting the faults described
in the second section. The algorithms are then validated in a simulation study. Finally in the last section, the
geometric method for deriving nonlinear FDI algorithms are discussed.

2. FMEA FOR A MOMENTUM WHEEL

This analysis helps to generate the proper residuals used for FDI. It also reveals which faults are observ-
able/detectable.

The �rst part of FMEA is the failure causes. The failure causes for a momentum wheel are: Wear/tear
(Usage/Radiation), transport to launch site, a too large acceleration during launch and too high or low power.
The severity class of the failures depends on the number of momentum wheels on the spacecraft.



Table 1. Severity class [1] of failures and causes.

Function Item Number of Momentum Severity Class of Failure

Wheels on the spacecraft 1 Fails 2 Fails 3 Fails

Actuators Momentum Wheel 4 III II I

Actuators Momentum Wheel 3 II I I

Table 2. Faults in Momentum Wheel (MW) caused by outside components and faults in the motor.

Item Failure Failure E�ects

Modes Local Next Level End

E�ects E�ects E�ects

MW Loss of Power MW stops No control momen- Slower slew

(100 %) tum from this MW

MW Loss of Power Watchdog detects No control momen- Slower slew

(Brown out) and stops MW tum from this MW

MW motor Mechanical Friction increases No control momen- Slower slew

(bearing) breakage until rotor stops tum from this MW

MW motor Overheating/Me- Friction increases Less control Slower slew and

(bearing) chanical breakage periodic/constant momentum jitter in attitude

MW motor (Shaft Mechanical Wheel stops No control momen- Slower slew

or coupling) breakage tum from this MW

(Shaft break)

MW motor (Shaft Loose connection More heat generated Less control Slower slew and

or coupling) (Coupling break) and slower wheel spin momentum jitter in attitude

MW motor Overheating Resistance in stator Longer reaction Higher power

(Stator Windings) and heat increases time usage

MW motor Overheating/Me- One of the windings Loss of motor eÆ Slower slew and

(Stator Windings) chanical breakage is disconnected -ciency and torque jitter in attitude

MW motor Insulation Lower resistance Less control Slower slew and

(Stator Windings) breakdown in stator momentum jitter in attitude

MW motor Insulation One of the windings Loss of motor eÆ Slower slew and

(Stator Windings) breakdown short circuit -ciency and torque jitter in attitude

and damage to

electronics

MW motor Electrical fault Periodic/constant Loss of motor eÆ Slower slew and

(Stator Windings) or malfunction short circuit -ciency and torque jitter in attitude

and damage

to electronics

MW motor Electrical fault Periodic/constant Loss of motor eÆ Slower slew and

(Stator Windings) or malfunction disconnect -ciency and torque jitter in attitude

MW motor Mechanical Overheating Loss of motor eÆ Slower slew and

(Rotor bars breakage /Vibrations -ciency and torque jitter in attitude

or rings) /Torque pulsations/ and further

Speed uctuations/ damage to

current increase in remaining bars

remaining bars



Table 3. Faults in the control logic in a Momentum Wheel (MW).

Item Failure Failure E�ects
Modes Local Next Level End

E�ects E�ects E�ects

MW Communi- Disconnected MW keeps present Constant control mo- Slower slew and
cation (RS485) (Both ways) speed/ACS mentum from this MW problems with

told nothing the estimator
MW Communi- Disconnected MW keeps present Constant control mo- Slower slew
cation (RS485) (No Receive) speed mentum from this MW
MW Communi- Disconnected MW works/ACS Missing input to Problems with
cation (RS485) (No Send) told nothing estimator the estimator
MW EEProm Bit value Reboot by No control momentum Slower slew

change, due Watchdog from this MW, during during reboot
to radiation reboot

MW DSP Dead lock DSP stops working No control momentum Slower slew
and is rebooted from this MW, during during reboot
(Watchdog) reboot

MW Sensors If the Wrong torque and Unknown torque Slower slew,
majority input to MW (Constant/periodic) jitter in attitude
fails controller and ACS and problems

with the estimator
MW 3 Phase Electrical Periodic/constant Loss of motor eÆ Slower slew and
Power FET fault or short circuit -ciency and torque jitter in attitude

malfunction and damage to
electronics

MW 3 Phase Electrical fault Periodic/constant Loss of motor eÆ Slower slew and
Power FET or malfunction disconnect -ciency and torque jitter in attitude
MW Voltage Wrong output MW stops No control momentum Slower slew
Regulator voltage (Watchdog) from this MW

MW Watchdog Fails Reboot of DSP and No control momentum Slower slew
(FPGA) /or MW stops from this MW and jitter in

(Constant/Periodic) attitude

From the FMEA it can be seen that all the faults can be divided into seven groups according to the fault
propagation characteristics. All the groups except the one containing overheating in the stator windings can
be isolated and detected. This fault/group could be detected if a current measurement was available.

3. GEOMETRIC FAULT DETECTION AND ISOLATION

The geometric observer based methods are in the very focus of this paper. The methods are based on the
results developed for nonlinear control theory [2]. The ideas were adopted for the purpose of the FDI by [3].

The main idea of geometric FDI is to design an observer such that only one fault is visible, whereas all the
other faults and the disturbances acting on the momentum wheel are invisible in the residual. In this way the
disturbances and other faults have no e�ect on the residual and there are no wrong fault detections.

Geometry is useful in the design of FDI, since it is a good tool for de�ning un- and observable spaces of a
dynamic control system. The way to use geometry in FDI is to �rst �nd the smallest distribution D1 which
contains all the disturbances (The unwanted faults in the residual are treated as disturbances). This is the
space the geometric FDI algorithm should place in the unobservable space. The second step is to �nd the
largest observable codistribution which does not contain the distribution D1. This information is then used to
make a coordinate transformation, so that the transformed system has at least one state which is e�ected by
the isolated fault and is una�ected by unmeasurable/unpredictable disturbances and unwanted faults. These
states are then used for the observer.



3.1. Unobservability Distribution Algorithm

The unobservability algorithm is described in [4]. The distribution P = spanfp1; : : : ; pdg is spanned by the set
of additional smooth vector �elds p1(x); : : : ; pd(x). The nondecreasing sequence of distributions are de�ned as
follows:

S0 = �P

Sk+1 = �Sk +
mX
i=0

�
gi; �Sk \Kerfdhg

�
; (1)

where �S denotes the involutive closure [5] of S. Suppose there exists an integer k� such that

Sk�+1 = �Sk� (2)

and the set
PP

�
= �Sk� . Then

PP

�
is involutive, contains P and is conditioned invariant [3]. Any distributionD2

which is involutive, contains P and is conditioned invariant satis�es
PP

�
� D2. So

PP

�
is the minimal element

(with respect to distribution inclusion) of the family of all involutive conditioned invariant distributions which
contain P .

The stopping condition (2) holds for some k� � n � 1 if all distributions generated by the algorithm 1 are

nonsingular. If
PP

�
is well-de�ned (i.e. condition 2 holds) and nonsingular, so that its annihilator is locally

spanned by exact di�erentials (because it is by construction involutive), and if
PP

�
\Kerfdhg is a smooth

distribution, then it can be asserted that (
PP

�
)? is the maximal (in the sense of codistribution inclusion)

conditioned invariant codistribution which is locally spanned by exact di�erentials and contained in P?.

3.2. Observability Codistribution Algorithm

The observability codistribution algorithm is described in [6]. Let ! be a �xed codistribution and de�ne
nondecreasing sequence of codistributions (Observability Codistribution Algorithm):

Q0 = ! \ spanfdhg

Qk+1 = ! \

 
mX
i=0

LgiQk + spanfdhg

!
(3)

If all the codistributions are nonsingular, then this algorithm is to be continued until Qk�+1 = Qk� for an
k� � n � 1. Use notation !� = oca(!) for !� = Qk� . Note !� = oca(!�), so oca(!�) is the maximal (in
the sense of codistribution inclusion) observability codistribution contained in !�. With other words if ! is a
conditioned invariant codistribution [3], then oca(!) is an observability codistribution.

If
PP

�
is well-de�ned (i.e. condition 2 holds for some k�) and nonsingular, and that

PP

�
\Kerfdhg is a

smooth distribution. Then oca((
PP

�
)?) is the maximal (in the sense of codistribution inclusion) observability

codistribution which is locally spanned by exact di�erentials and contained in P?.

3.3. Geometric FDI Design method

The design method consists of the following �ve steps:



1. Write system in such a way, that L spans the fault that is going to be isolated and P spans the remaining
faults and disturbances.

2. Find the minimal element (
PP

�
) of the family of all involutive conditioned invariant distributions which

contain P. So
PP

�
spans the space that is e�ected by the disturbances and remaining faults.

3. Then �nd the maximal observability codistribution (
) contained in (
PP

�
)?. This is the observable

space which is not e�ected by the disturbances and remaining faults.

4. The unobservable distribution (�) is equal with 
?.

5. Then use this information to design an observer for the isolated fault. The observer design is based on
the Luenberger observer design and is described in the next �ve points:

(a) The new system has a newP 2 �, newL 62 � and state z 2 �.

(b) Use 
 \ spanfdhg = spanfd(	1 Æ h)g to calculate 	1, where dim(h) = p, dim(
 \ spanfdhg) = n2
and dim(	1) = (p� n2)� p.

(c) The selection matrix H2 is a n2�p matrix, in which some p�n2 columns are zero, while the others
are columns of a n2 � n2 identity matrix.

(d) Use 
 = spanfd 1g to calculate  1, where dim(
) = n1 and dim( 1) = n1 � n.

(e) Find a  3 such that  3 : U
Æ ! R

n�n1�n2 , where UÆ is a neighbourhood of xÆ.

Structure of simple observer and residual generation:

_z = f(y; z) +
mX
i=1

gi(y; z)ui +Kobs(h(z)� y) (4)

r = h(z)� y (5)

4. FAULT DETECTION AND ISOLATION ALGORITHMS FOR A MOMENTUM WHEEL

Geometric FDI for a momentum wheel can not be done for the whole operation range of the momentum wheel,
since the state space model of a momentum wheel (See eq. (6)) is not a smooth C1 manifold. The operation
range can be divided into two open subsets which are smooth. These subsets range respectively from zero to
maximum velocity in one direction and from zero to maximum velocity in the other direction. These ranges
are also the best operating ranges, since zero is one of the most wearing operating points for the motor.

4.1. Actuator Fault

The model for a momentum wheel is based on the model of a motor, which can be derived from [7].

_w!w =
Kt

Rs Iw
vs �

Kt Ke +Bv Rs

Rs Iw

w!w �
Bc

Iw
sign(w!w) + Lw!act;w (6)

The observer is derived according to the presented method. The observer:

_w!obs;w =
Kt

Rs Iw
vs �

Kt Ke +Bv Rs

Rs Iw

w!obs;w �
Bc

Iw
sign(w!obs;w)

+Kobs(
w!w �

w!obs;w)

r = w!obs;w �
w!w (7)



4.2. Actuator Fault and Predicted Disturbance

The model is based on eq. (6), where the predicted disturbance is added to the system.

_�
w!w

w!dis;w

�
=

�
Kt

Rs Iw
0

�
vs �

�
Kt Ke+Bv Rs

Rs Iw

w!w �
Bc

Iw
sign(w!w) +

w!dis;w
0

�

+

�
L
0

�
w!act;w +

�
0
P

�
_w!dis;w

y =

�
w!w

w!dis;w

�
(8)

The unobservability distribution algorithm is used to calculate
PP

�
.

S0 = �P = span

��
0
1

��

S1 = �S0 +
1X

i=0

�
gi; �S0 \Kerfdhg

�
= �S0 (9)

since Kerfdhg = [0 0]
T
.
PP

�
(= �S2) is involutive, contains P and is conditioned invariant, thereby ful�lling

the requirements.

Q0 =

 
PX
�

!?
\ span fdhg = span

��
1
0

��
\ span

��
1
0

� �
0
1

��
= span

��
1
0

��

Q1 =

 
PX
�

!?
\

 
mX
i=0

LgiQk + span fdhg

!
= span

��
1
0

��
(10)

So the unobservable subspace � has to contain span
n
[0 1]

T
o
and the disturbance has to be in the unobserv-

able subspace. Using 
\span fdhg = span fd(	1 Æ h)g to calculate 	1. Since 
\span fdhg = span
n
[1 0]

T
o
,

then 	1 Æ h will only contain the w!w-state. H2 is chosen as [0 1]. This results in the following output for
the coordinate changed system.

y =

�
w!w

w!dis;w

�
=

�
1 0
0 1

� �
w!w

w!dis;w

�
(11)

Using 
 = span fd 1g, the H2 from above and the fact that  3(x) 2 �, the state is derived as:

 (x) =

"
x1
x2
x3

#
=

"
 1(x)
H2h(x)
 3(x)

#
=

�
w!w

w!dis;w

�
(12)
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Figure 1. Test of the FDI algorithm.

So if the disturbance is predicted, then it is possible to isolate the actuator fault from the disturbance. This
gives the following observer:

_w!obs;w =
Kt

Rs Iw
vs �

Kt Ke +Bv Rs

Rs Iw

w!obs;w �
Bc

Iw
sign(w!obs;w) +

w!dis;w

+Kobs(
w!w �

w!obs;w)

r = w!obs;w �
w!w (13)

5. SIMULATION TESTS OF THE ALGORITHMS

The simulation test is divided into four subtests. The �rst subtest examines if the algorithms are sensible to
input change. The second subtest investigates if noise under a certain level e�ects the algorithms. The third
and fourth subtest shows the detection times for slow integrating faults (e.g. 10% power loss) and abrupt
faults (e.g. shaft breakage).

The results from the tests are identical, so only the results for �rst algorithm is illustrated in this paper.

Fig. 1 shows the four subtests. The �rst subtest is in the period 0 to 5 seconds. This subtest shows that the
algorithms are not sensitive to voltage changes, which result in variations up to �10 rad/s. The second subtest
starts after the �rst, and continues to the end of the test. This subtest shows that noise under a certain level
will not e�ect the fault detection. The third subtest (The period from 10 to 14 seconds) shows that a power
loss reduction of 10% is detectable after 0.04 second. The last subtest (From 15 seconds) shows that fast faults
are detectable under 0.0001 second.

6. CONCLUSION

The presented method has improved performance and a lower percentage of erroneous fault detections com-
pared to linear and statistical FDI methods. The method can employ a lower threshold for some systems, and



Table 4. Faults geometric FDI cannot isolate.

L P
PP

�

Actuator fault Sensor fault (Pseudo-actuator fault) span
n�
0 1

�To
Actuator fault Disturbance span

n�
1 0

�T �
0 1

�To
Actuator fault with Sensor fault with span

n�
0 0 1

�To
fault dynamics fault dynamics

Sensor fault with Actuator fault with span
n�
1 0 0

�T �
0 1 0

�To
fault dynamics fault dynamics

Actuator fault with Disturbance with span
n�
1 0 0

�T �
0 0 1

�To
fault dynamics disturbance dynamics

Disturbance with Actuator fault with span
n�
1 0 0

�T �
0 1 0

�To
disturbance dynamics with fault dynamics

consequently the method gains a faster detection time. It further allows the detection of faults of relatively
minor inuence.

The drawbacks of the method are: the need for a full state description and the fact it is not applicable on all
systems. The full state information does however not present a serious problem, since the state description of
satellites is well known, leaving only the constants in the actuators and sensors to be determined. The second
drawback is a bigger problem and limits the use of the method to some systems, but the �rst part of the
method might still be used to analyse the system.

The system con�gurations in table 4 are not isolatable, since there is no observable subspace, where
PP

�
is

in the unobservable subspace. With other words there are no output which is not e�ected by the disturbance
and undesired faults.
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