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ON-LINE MULTIPLE-MODEL BASED ADAPTIVE

CONTROL RECONFIGURATION FOR A CLASS OF

NONLINEAR CONTROL SYSTEMS

Zhenyu Yang, Roozbeh Izadi-Zamanabadi and Mogens Blanke

Department of Control Engineering, Aalborg University,

Fredrik Bajers 7C, DK-9220, Aalborg East, Denmark,

Email: yang,riz,blanke@control.auc.dk.

Abstract: Based on the model-matching strategy, an adaptive control recon�guration
method for a class of nonlinear control systems is proposed by using the multiple-
model scheme. Instead of requiring the nominal and faulty nonlinear systems to
match each other directly in some proper sense, three sets of LTI models are
employed to approximate the faulty, recon�gured and nominal nonlinear systems
respectively with respect to the on-line information of the operating system, and
a set of compensating modules are proposed and designed so as to make the local LTI
model approximating to the recon�gured nonlinear system match the corresponding
LTI model approximating to the nominal nonlinear system in some optimal sense. The
compensating modules are designed by the Pseudo-Inverse Method based on the local
LTI models for the nominal and faulty nonlinear systems. Moreover, these modules
should update corresponding to the updatings of local LTI models, which validations
are determined by the model approximation errors and the optimal index of local
design. The test on a nonlinear ship propulsion system shows the promising potential
of this method for system recon�guration.

Keywords: Multiple-model, adaptive control, control recon�guration, nonlinear
control systems

1. INTRODUCTION

Control Recon�guration (CR) implies use and im-
plementation of proper control techniques in order
to recover the faulty system operation/functionality
to its nominal level. In general, the CR can fall
into two categories with respect to di�erent design
strategies:

� Requirement-oriented CR strategies: These
strategies can be regarded as a kind of control
design procedures, i.e., when some fault(s)
happened inside the system, a new controller
will be designed based on the faulty system
information provided by FDI sub-systems so
as to make the new closed-loop system (re-
con�gured system) still satisfy the require-

ments originally proposed for the nominal
system. The example in this category is
the Model Predictive Control based method
(Huzmezan and Maciejowski (1999)).

� System-oriented CR strategies: Within these
strategies, the CR is regarded as a kind of
system property recovery, such as the dy-
namic or functionality recovery (Frei et al.
(1999)). The CR design following this kind
of strategies does not consider the concrete
system requirements, alternatively, the whole
design is based on the inherent informa-
tion of nominal and faulty systems, such as
the control mixer based methods by Gao
and Antsaklis (1991) and the model-following
method by Huang and Stengel (1990).



The �rst kind of CR strategies depends on con-
crete system requirements, however, when these
requirements are exible, this kind of strategies
will not be suÆcient. With respect to the bene�t
of the essential dynamic/functionality recovery,
the system-oriented strategies are causing more
and more attention. From the system engineering
point of view, the second kind of CR strategies
�ts the model following/matching scheme well if
we regard the nominal system as the reference
model. Once the (recon�gured) system output or
state rate is required to follow that of the nom-
inal system, these approaches are referred to as
the explicit or implicit model-following methods
as studied by Huang and Stengel (1990). When
some system properties of the recon�gured sys-
tem, such as the eigenstructure (Jiang (1994)),
the closed loop system matrices (Gao and Antsak-
lis (1991)) or the I/O functionality (Yang and
Blanke (2000)), are required to match those of the
nominal system in some sense, these approaches
are referred to as the model-matching methods
(Yang (2000)). The biggest advantage of using
the model-matching methods comparing with the
model-following methods is that the reference
model (nominal system) does not need to operate
parallel with the practical system, therefore the
recon�gured system has a simple structure and
eÆcient computation.

However, no matter what kind of CR strategies,
most current CR methods are restricted to linear
system models, although in several applications,
the CR design results derived based on linear
system designs were applied into the nonlinear
systems, these procedures are still very ad hoc,
due to

� Lack of systematic analysis and guarantee
for the validation of implementing the linear
design results into nonlinear processes;

� Limited capability of one linear model to
approximate a nonlinear system within its
whole operating range. For example, the dy-
namical model of a airplane within the whole
ight envelop should be represented by a
family of LTI models owing to di�erent ight
heights and speeds.

Therefore, a lot of experiments and simulations
were needed before those design results were ap-
plied in practice.

From the system-recoverable point of view, the
CR for nonlinear systems can be regarded as a
kind of nonlinear model-following or matching
problems, however there are few work to deal with
this kind of problems at present. The current non-
linear design methods such as feedbacklineariza-
tion maybe can cope with the model-following
CR problem, but it would be quite diÆcult for
them to explore the model-matchingCR methods,
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Fig. 1. Considered Nonlinear Control Systems

because til now it is not clear which kind of non-
linear system properties will play a critical rule
in the nonlinear control recon�guration. However,
another challenging way for these problems is to
use the multiple-model scheme, which has showed
elegant potential in dealing with piecewise smooth
nonlinear systems (Murray-Smith and Johansen
(1997)). Besides that, within the multiple-model
framework, many LTI-based design methods can
still be used eÆciently.

In this paper, an on-line multiple-model based
adaptive control recon�guration method is pro-
posed from the system-oriented CR point of view.
Instead of requiring the nominal and faulty non-
linear systems to match each other directly in
some proper sense, a set of compensating modules
are proposed and designed so as to make the lo-
cal LTI model approximating to the recon�gured
nonlinear system match the corresponding LTI
model approximating to the nominal nonlinear
system in some optimal sense. The compensating
modules can be designed by the Pseudo-Inverse
Method based on the local LTI models for the
nominal and faulty nonlinear systems with re-
spect to the model-matching strategy. Further-
more, these modules should update corresponding
to the updatings of local LTI models. The test
on a nonlinear ship propulsion system shows the
promising potential of this method for system
recon�guration.

2. PROBLEM FORMULATION

Consider a class of nonlinear control systems with
static output(state) feedback as shown in Fig. 1
1 . Let the nonlinear plant denote as ��

nonp, which
is assumed to have a general form:�

_x(t) = f(x(t); u(t); �(t)); x(t0) = x0
y(t) = g(x(t); u(t); �(t))

(1)

where x(t) 2 X � Rn, u(t) 2 U � Rm and
y(t) 2 Rr are the state, input and output vec-
tors with proper dimensions. �(t) 2 Rp is called
fault parameter vector, which is piecewise constant
corresponding to abrupt faults and di�erent en-
tries �i(t); i = 1; � � � ; p, represent di�erent fault
situations in the plant. Therefore, case �(t) � 0

1 This con�guration can also describe the cascaded control

systems when we combine the cascaded controller and

plant together into an augmented plant with unit feedback.



represents the nominal situation. Vector function
f : Rn � Rm � Rp 7! Rn and g : Rn � Rm �

Rp 7! Rr are piecewise continuous. The static
feedback as shown in Fig.1 can be described as
u(t) = uref (t) �Ky(t) with assumption that the
matrix K 2 Rm�r makes the nominal closed loop
system stable, which is denoted as �0

non with
vector �eld _xn and output yn.

When some fault(s) happened inside the plant at
instant tf , assume the parameter �(t)=̂�f 6= 0
for t > tf can be provided by FDI mechanism.
Let the faulty plant and the corresponding faulty

closed loop system denote as �
�f
nonp and �

�f
non re-

spectively. Assume that the plant system can not
change arti�cially during the operation, i.e., the
CR design is only restricted to adjusting the feed-
back matrix K as well as pre/post-compensating
the system input uref and output y signals, such
as the possible recon�guration structure as shown
in Fig.2. Here we refer to these modules Kf ,
Ku,Ky and Ku as compensating modules (Yang
and Blanke (2000)). When we consider the match-
ing characters of both the dynamic and output
properties of the considered nonlinear control sys-
tem, an optimal problem can be proposed as:

Synthesize modules Ku, Kf ,Ky and Kd, denoted

as fKig, such that the recon�gured closed loop

nonlinear system, denoted as:

�cr
non :

�
_xcr(t) = fcr(xcr(t); uref (t); �f ; fKig);
ycr(t) = gcr(xcr(t); uref (t); �f ; fKig);

(2)

satis�es 8(x; uref ) 2 X � U , there is

min
fKig

J(x; uref ; �f ; fKig); (3)

where

J=̂�(x; uref )k _xn � _xcrk2 + �(x; uref )kyn � ycrk2

Here �(x; uref ) and �(x; uref ) are weighting func-
tions for di�erent operating points (x; uref ) 2 X�
U .

It is obvious that this optimal problem is too
conservative to get a solution. In this paper, in
order to get the matrix-type compensating mod-
ules, a less conservative solution will be proposed
based on the multiple-model scheme, i.e., Eq.(3)
is almost satis�ed at some countable state points
which is obtained by solving some local optimal
problem, meanwhile at any other point the varia-
tion of J is bounded by a scalar positive constant
from a proper local optimal value.

3. LINEAR MODEL APPROXIMATION

Consider the nonlinear system (1) within an open
ball neighborhood of one operating point (x0; u0),
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Fig. 2. Recon�guration Modules

denoted as B(x0; u0) with radius Æ0. With respect
to the nonlinear system theory (Isidori (1995)),
once the vector functions f and g both are C1

di�erentiable in x and u at point (x0; u0), a �-
parameterized LTI system can be obtained as the
local linear approximation of ��

nonp, denoted the

LTI model as ��
linp. Then there is

Lemma 1: The closed loop LTI control system,
denoted as ��

lin, which is con�gured by the linear
plant model ��

linp with the same control struc-

ture as the nonlinear system ��
non, is the local

linear approximation of ��
non within B(x0; uref0),

if Ir�r + D0(�)K is full rank, and uref0 = u0 +

Kg(x0; u0; �), where D0(�) =
@g(x;u;�)

@u
j(x0;u0).

Lemma 2: Once the vector functions f and
g of (1) are C1 di�erentiable in x and u at
(x0; u0), and all corresponding derivatives are l2-
induced norm bounded, there exist two positive
reals related to � and Æ0, denoted as �cx(�; Æ0)
and �cy(�; Æ0), satisfying 8t 2 (t0; t1);8uref 2 Bu
=̂furef j(x; uref ) 2 B(x0; uref0)g, there is

k _xn(t)� _xclin(t)k2 < �cx(�; Æ0);
kyn(t)� yclin(t)k2 < �cy(�; Æ0);

(4)

where _xn(t) and yn(t) ( _xclin(t) and yclin(t)) repre-
sent the tangent and output vectors of the closed
loop nonlinear (linear) system at instant t, and
(t0; t1) denotes the time range when the system
operates within B(x0; uref0).

Theorem 1: The nonlinear control system ��
non

within its whole operation range X � U can
be linearly approximated by a family of �-
parameterized LTI control systems, denoted as
f��i

ling
N
i=1, once there exists a set of ordered points

(xi; urefi) 2 X � U and a set of corresponding
neighborhoods B(xi; urefi) i = 1; � � � ; N , where N
can be a �nite integer or +1, satisfying

N[
i=1

B(xi; urefi) � X � U; and

B(xi; urefi)
\
B(xi+1; urefi+1) 6= �; (5)

where � represents the empty set. Functions f and
g belong to C1 in x and u at any point (xi; ui), and
all the matrices Ir�r+D

i
0(�)K are full rank, where

Di
0(�) =

@g(x;u;�)

@u
j(xi;urefi) and ��i

lin has the form�
_xiclin = Ai

c(�)x
i
clin +Bi

c(�)uref + �ic(�);

yiclin = Ci
c(�)x

i
clin +Di

c(�)uref +  i
c(�);

(6)
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Fig. 3. Recon�guration for Linear Control System

for xiclin(t
i
0) = xi and (xclin; uref ) 2 B(xi; urefi).

The parameters in (6) can be obtained by lineariz-
ing the nonlinear control system ��

non at the point
(xi; urefi) or constructing from model ��

linp.

4. LOCAL CR DESIGN BY
PSEUDO-INVERSE METHOD

Due to the simple computation and eÆcient im-
plementation, the Pseudo-Inversed based meth-
ods have been popularly used in the CR design
(Gao and Antsaklis (1991)). Here in order to the
Pseudo-Inverse method for the local CR design,
the faulty, nominal and recon�gured closed loop

nonlinear systems �
�f
non, �0

non, �
cr
non and the LTI

approximation models of them, denoted as �
�f
lin,

�0
lin and �cr

lin respectively, need to be considered.
Furthermore, we assume that a fault happened at
tf with tf > t0 and the CR action begins at tcr
with tcr > tf . The corresponding state and input
at tcr is (x0; uref0) 2 X�U . Denote a small open
ball neighborhood of (x0; uref0) as B(x0; uref0)
with radius Æ0.

4.1 Design for Linear Control Systems

If we assume that no fault has happened till tcr,
the current operating plant should be �0

nonp. We
can get the LTI approximation of �0

nonp within
B(x0; uref0), and denote the LTI model as state
space form (A0; B0; C0; D0; �0;  0) when matrix
I + D0K is invertible. With respect to Lemma
1, the corresponding nominal closed loop linear
system, denoted as �0

lin ((xclin; yclin)), has the
same form as (6), and we also denote �0

lin as form

(Ac; Bc; Cc; Dc; �̂c;  ̂c) and xclin(tcr) = x0.

However, the actually operating plant at tcr is the

faulty plant �
�f
nonp instead of nominal plant �0

nonp

with respect to the fault assumption. Therefore,

a local LTI approximation of �
�f
nonp can also be

obtained and denoted as (Af ; Bf ; Cf ; Df ; �f ;  f )
when Ir�r + DfK is invertible. Similarly, the

corresponding closed loop linear system �
�f
lin has

the same form as (6).

We restrict the considered compensating modules
to matrix-form, i.e., Kf 2 Rm�r, Ku 2 Rm�m,
Ky 2 Rr�r and Kd 2 Rr�m 2 . Furthermore, in

2 Here we use the matrix notation Ki to represent the

corresponding module Ki for i = f; u; y; d.

order to deal with the �c(�) and  c(�) terms in
(6), two local-constant vectors �cr 2 R

n and  cr 2
Rr are also introduced into this recon�gurable
structure.

As a special case of CR design problem (3), when
we choose �(x; uref ) � 1 and �(x; uref ) � 1, the

CR design problem for LTI system �
�f
lin within

local region B(x0; uref0) can be proposed as:

Find a set of compensating matrices, denoted as

Kcr=̂fKf ;Ku;Ky:Kd; �cr;  crg, such that 8(x; uref )
2 B(x0; uref0), there is

min
Kcr

(k _xclin(x; uref )� _xcrlin(x; uref )k2;

+kyclin(x; uref )� ycrlin(x; uref )k)2:
(7)

By employing the Pseudo-Inverse method, a
Pseudo-solution can be obtained for (7) as:8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

K?
f = (Im�m ��fDf )

+�f ;

K?
u = (Bf �BfKf (Ir�r +DfKf )

+Df )
+

(B0 �B0K(Ir�r +D0K)�1D0);
K?

y = (Ir�r +D0K)�1C0((Ir�r
+DfKf )

+Cf )
+;

K?
d = (Ir�r +D0K)+D0 �Ky(Ir�r

+DfK)+Df ;

�?cr = �0 �B0K(Ir�r +D0K)+ 0 � �f
+BfKf (Ir�r +DfKf )

+ f ;

 ?
cr = (Ir�r +D0K)+ 0

�(Ir�r +DfKf )
+ f :

(8)

where M+ represents the Pseudo-Inverse of ma-
trix M , and �f = B+

f (Af � A0 + B0K(Ir�r+

D0K)+C0)C
+
f . This solution satis�es:8>><

>>:
a?=̂min

Kf

kAcr �Ack2; b
?=̂min

Ku

kBcr �Bck2;

c?=̂min
Ky

kCcr � Cck2; d
?=̂min

Kd

kDcr �Dck2;

k�̂cr � �ck2 = 0; k ̂cr �  ck2 = 0:

(9)

Therefore, the solution (8) has the property:8<
:
K?
cr = argmin

Kcr

k _xclin(x; uref )� _xcrlin(x; uref )k2;

K?
cr = argmin

Kcr

kyclin(x; uref )� ycrlin(x; uref )k2:

4.2 Design for Nonlinear Control Systems

The designed compensating matrices and vectors
in Eq.(8) can be implemented directly into the

faulty nonlinear control system �
�f
non, thereby the

recon�gured closed loop nonlinear system by using
modules calculated in(8) has the form:

�cr
non :

8>><
>>:

_xcr(t) = f(xcr(t); u(t); �f ) + �cr;

yp(t) = g(xcr(t); u(t); �f ) +  cr;

u(t) = Kuuref (t)�Kfyp(t);
ycr(t) = Kyyp(t) +Kduref (t);

(10)

with xcr(tcr) = x0 as shown in Fig.4.
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Denote the recon�gured LTI control system by
using modules (8) as �cr

lin, which has a similar
form as (6), then we have

Theorem 2: The (recon�gured) LTI system �cr
lin

is the linear approximation of the recon�gured
nonlinear system �cr

non within B(x0; uref0). Spe-
cially, once vector function f and g in (1) are
C1 in x and u, and all derivatives are l2-induced
norm bounded within B(x0; uref0), there exist two
positive scalar constants related to �f , Æ0 and Kcr,
denoted as �crx(�; Æ0;Kcr) and �cry(�; Æ0;Kcr),
satisfying 8t 2 (tcr; t

0
1), there is�

k _xcr(t)� _xcrlin(t)k2 < �crx(�; Æ0;Kcr);
kycr(t)� ycrlin(t)k2 < �cry(�; Æ0;Kcr);

(11)

where (tcr; t
0
1) represents the time interval that

the nonlinear system �cr
non operates within region

B(x0; uref0).

Proof: From Lemma 1 and Lemma 2.

Remark 1: At the recon�guring instant tcr, the
nonlinear systems �cr

non and �0
non have the rela-

tionship:�
k _xcr(tcr)� _xn(tcr)k2 � a?kx0k2 + b?kuref0k2
kycr(tcr)� yn(tcr)k2 � c?kx0k2 + d?kuref0k2:

(12)

where a?; b?; c?; d? are determined in (9). Case
a? = b? = c? = d? = 0 means when the
linear system �

�f
lin can be completely recovered

by modules in (8), then the nonlinear �
�f
non can

also be completely recovered at point (x0; uref0)
by modules in (8).

5. ON-LINE ADAPTIVE STRATEGY

From the system relationships, we have

k _xn(t) � _xcr(t)k2 + kycn(t) � ycr(t)k2 �
(k _xn(t) � _xclin(t)k2 + kycn(t) � ycnlin(t)k2| {z }

cn�term

+

k _xclin(t) � _xcrlin(t)k2 + kycnlin(t) � ycrlin(t)k2| {z }
lcr�term

+ k _xcr(t) � _xcrlin(t)k2 + kycr(t) � ycrlin(t)k2| {z }
cr�term

):

(13)

It is obvious that the recon�guration design can
be decomposed into two cooperative parts: linear
approximation design (cn-term and cr-term) and

TrackingUpdating

err > thres

Linearization Algorithms

Reset of Initial States and Err

A/DSwitcher

Sampling

Coordination Level

Decision Level

Reconfig Module Design Algorithm

reconfigurated nonlinear control system

NonlinearKb

Kf

Ky

Kd

uref ycr

FDI

Ocr
cr

Fig. 5. Adaptive Recon�guration Scheme

local CR design (lcr-term). In the following, an
adaptive CR procedure is proposed after the FDI
system provides the fault parameter �f :

� Step 1: Sample one operating point (xi; urefi)

from the operating system �
�f
non (probably through

�lters), then get the linear approximation �
�f i

lin for

�
�f
non and �0i

lin for the �ctitious nominal system
�0
non both at (xi; urefi);

� Step 2: Employ linear models �
�f i

lin and �0i
lin

for the local compensating module design with
respect to (8), and then implement the designed
Kcr modules into the operating nonlinear system

�
�f
non. Thereby, the current operating system be-

comes the recon�gured nonlinear system �cr
non.

Meanwhile we need to get the linear approxima-
tion �cri

lin for system �cr
non in order to supervise the

model updatings;

� Step 3: From the common initial point (xi; urefi),
keep the �ctitious linear systems �0i

lin and �cri
lin

and nonlinear system �0
non operating parallel (in

software programs) to the practical operating
system �cr

non. Meanwhile, monitor the inequal-
ity: kErr(t)k2 � Thres, where Err(t) represents
proper combination of tracking error functions
of linear models to corresponding nonlinear sys-
tems plus local CR design error, it could be the
weighted right part of inequality (13). Thres is
a given threshold, and it can be selected as an
adaptive one with respect to the local CR design
(8);

� Step 4: When kErr(t)k2 � Thres is valid, keep
the current nonlinear and linear systems operat-
ing, and this case is denoted as the Tracking state
in Decision level in Fig.5; Otherwise, the �ctitious
linear systems as well as the compensating mod-
ules need to be updated according to step (1)-(2),



and this procedure is abstracted as the Updating

state in Decision level in Fig.5.

Remark 2: The model updatings and control
mixer design should be �nished quickly comparing
with the system operation. Otherwise, the evalu-
ation criterion (13) will have no sense.

6. BENCHMARK STUDY

The proposed method is tested in the ship propul-
sion benchmark proposed in Izadi-Zamanabadi
and Blanke (1999). In order to reject the dis-
turbances from the noises and external inputs,
a �lter is used for acquisition of the linearizing
points. Here just the cr-term is used as Err(t)
function, and Thres is selected as an adaptive
one: Thres=̂w�j�

cr
nonj+wnjn

cr
nonj+wujU

cr
nonj, where

w� = 0:1, wn = 0:1 and wu = 0:2. .

(1) When kfr = �kr, this fault caused the
shaft speed overshot the maximum (12.5 rad/sec).
When CR was implemented, the overshot was
avoided as shown in Fig.6. There are total 46 times
of LTI model updatings.

(2) when k
f
t = �kt, this fault caused negative

pitch angle and decreased the ship speed. When
CR was implemented, the nonlinear system is
completely recovered as shown in Fig.7. There are
total 54 times of LTI model updatings.

7. CONCLUSIONS

A multiple-model based adaptive control recon-
�guration method is proposed for nonlinear sys-
tem consideration. The multiple-model concept
has three manifolds: (1) A family of on-line LTI
models is used to approximate the nonlinear sys-
tem operation; (2) A set of linear approximations
(f�0i

ling and f�cri
ling) are used simultaneously for

the local model validations; and (3) The compen-
sating module design is based on the on-line faulty
and nominal linear approximation models (f�0i

ling

and f�
�f i

ling). This method �ts into the hierarchical
hybrid framework well. The test on a nonlinear
ship propulsion system shows the promising po-
tential of this method for system recon�guration.

Discussions about the system stability and robust-
ness by using this method will be the subjects of
our future work.
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