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PASSIVITY BASED NONLINEAR ATTITUDE CONTROL
OF THE RØMER SATELLITE

Michael Melholt Quottrup, Jakob Krogh-Sørensen, and Rafał Wiśniewski

Aalborg University, Institute of Electronic Systems, Department of Control Engineering,
Fredrik Bajers Vej 7C, 9220 Aalborg Ø, Denmark.

October 2000

This paper suggests nonlinear attitude control of the Danish satellite Rømer. This satellite will be designed
to fulfil two scientific objectives: The observation of stellar oscillations and the detection and localisation of
gamma-ray bursts. The satellite will be equipped with a tetrahedron configuration of Wide Angle Telescopes
for Cosmic Hard x-rays (WATCH), that serves the dual purpose of X-ray detectors and momentum wheels.
By employing passivity theory it is shown, that the satellite is a passive system. This paper shows, that
global asymptotic stability can be obtained with a passive and an input and output strictly passive system in
a feedback interconnection. It is demonstrated in a simulation study that the resultant controller has a po-
tential for on-board implementation in the acquisition phase, where global stability of the control law is vital.

Keywords: Nonlinear attitude control, Passivity theory, Stability theory, Linear feedback

Nomenclature

The nomenclature used throughout this paper is
listed in Table 1.

{I} Earth Centred Celestial Coordinate
Frame.

{B} Body Axis Coordinate Frame.
{P} Principal Axis Coordinate Frame.
{T} Target Coordinate Frame.
{W} Wheel Axis Coordinate Frame.
i
v; bv; pv; wv Vectorv resolved in the {I}-, {B}-,

{P}-, or {W}-coordinate frame.
Ay The adjoint ofA, i.e.Ay = (AT)

�
.

AR Right pseudo-inverse ofA.
b

wA Transformation matrix: {W}7! {B}.
p

b
A Transformation matrix: {B}7! {P}.
hw Angular momentum of WATCH.
H Operator performing the mapping,

H : u(t) 7! y(t).
In�n A n� n identity matrix.
Ip Principal inertia tensor of satellite.
Iw Inertia tensor of WATCH instrument.
L Angular momentum.
Ndist Environmental disturbance torque.
Next External torque.
Nw Control torque generated by WATCH.
q; q4 Vector and scalar part of unit attitude

quaternionq.
p

i
q Attitude quaternion representing the

orientation of {I} w.r.t. {P}.

i

tq Attitude quaternion representing the
orientation of {T} w.r.t. {I}.

p

t
q Attitude error quaternion.
S(v) Skew-symmetric matrix of a vectorv:

S(v) =

2
4

0 �v3 v2

v3 0 �v1

�v2 v1 0

3
5.

vs Stator voltage to the WATCH.
V
�
x(t)

�
Scalar Lyapunov candidate function.

w
�
u(t);y(t)

�
Supply rate.

xe Equilibrium point.
vT (t) Truncated vector for0 � t � T .
!p;i Angular velocity of {P} w.r.t. {I}.
!w Angular velocity of WATCH.

(v) Skew-symmetric matrix of a vectorv:


(v) =

2
664

0 v3 �v2 v1

�v3 0 v1 v2

v2 �v1 0 v3

�v1 �v2 �v3 0

3
775.

Table 1: Nomenclature.

I. Introduction

Typical actuators are: Momentum wheels,
thrusters or electromagnetic coils. For the Danish
Ørsted satellite1 electromagnetic coils were em-
ployed as attitude actuators, since they are reli-
able, lightweight, and require low power. As a re-
sult of the success of the Ørsted satellite, the Dan-
ish Small Satellite Programme (DSSP) has cho-
sen, that the Rømer satellite shall be the next Dan-
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ish small satellite. To reduce costs and weight,
it has been chosen to use WATCH (Wide Angle
Telescopes for Cosmic Hard x-rays) telescopes,
which perform rotary motion. The WATCH tele-
scopes are placed in a tetrahedron configuration,
which ensures total sky coverage. Attitude actua-
tion using WATCH instruments is possible, since
the scientific observations allow the instruments
to have a varying angular frequency in the range:
�[0:5� 2]Hz.

Attitude control of the Rømer satellite, using
WATCH instruments, is the topic of this pa-
per. Because the satellite model is nonlinear, and
global stability is required, passivity theory has
been selected for the analysis and design of the At-
titude Controller (AC). Passivity theory has a very
physical and intuitive appeal.

The application of passivity and nonlinear control
theory has proven to be feasible for the attitude
control of satellites. As compared to linear con-
trol methods, nonlinear methods do not use model
approximations. This means that global stability
can be guaranteed, and that system behaviour is
not restricted to a certain neighbourhood of a spe-
cific operating point.

Attitude control of satellites using passivity the-
ory has been covered well in literature. Willems
(1991) was the first to show, that a passive non-
linear system could be rendered globally asymp-
totically stable to an equilibrium point, by using
pure gain output feedback.2 Egeland and God-
havn (1994) derived an adaptive attitude controller
for a rigid spacecraft, that was based on a linear
parameterisation of the equation of motion.3 The
tracking error was described using Euler param-
eters. Passivity theory was then utilised to show
global convergence of the tracking error to zero. A
linear global asymptotic stabilising controller was
derived by Tsiotras (1995), for the attitude mo-
tion of a rigid spacecraft.4 This was done in terms
of non-redundant kinematic parameters (Modified
Rodrigues parameters). Using the inherent pas-
sivity property of the system it was shown, that
the achieved results could be extended to stabil-
ising control laws without angular velocity mea-
surements. The rigid body stabilisation problem,
without angular velocity measurements, was also
treated by Lizarralde and Wen (1996).5 A passiv-
ity approach was used to derive a wide class of
filters for the error quaternion, which was used

to replace the angular velocity in a standard PD-
control law. Global asymptotic stability of the
closed-loop system was shown using LaSalle’s in-
variance principle. The derivation of a dynamic
attitude controller for a spacecraft with flexible
appendages was considered by Gennaro (1998).6

The controller was able to perform slew manoeu-
vres, using only attitude measures. The passiv-
ity concept was used to ensure asymptotic conver-
gence to the reference point.

The paper demonstrates, using the concepts of sta-
bility and non-linear system theory, that global
asymptotic stability of a desired reference is
achievable.

In this paper the attitude dynamics of the Rømer
satellite and the WATCH dynamics will be mod-
elled. By analysing the satellite’s subsystems, it
will be shown, that the satellite is a passive sys-
tem. By using a memoryless state feedback, simi-
lar to the one obtained by Lizarralde5, Dalsmo and
Egeland7, a feedback interconnection is obtained,
capable of achieving global asymptotic stability of
a reference operating point.

This paper is organised as follows. Section II con-
siders passivity theory at large. In section III the
Rømer satellite configuration, the modelling of the
attitude dynamics, and the WATCH dynamics are
described. By dividing the satellite attitude dy-
namics into dynamics and kinematics, it is shown
that the satellite is a passive system. An AC with
vector quaternion and angular velocity feedback is
introduced. By having an AC which is input and
output strictly passive it is shown, that the feed-
back interconnection renders the operating point
global asymptotic stable. Control torque gener-
ation using the WATCH instruments is demon-
strated. Finally, the principle of introducing the
attitude reference is terms of an error quaternion
is described. In section IV the results of a numer-
ical simulation are presented. In section V the re-
sults are commented and discussed. Section VI
presents the conclusions.

II. Passivity Theory

Some preliminaries of passivity theory used in this
paper will be shortly reviewed for the consistency
of the presentation.

Passivity is applied to non-linear systems which
are modelled by ordinary differential equations
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with input vectoru(t) and output vectory(t):

H

(
_x(t) = f

�
x(t);u(t)

�
y(t) = h

�
x(t);u(t)

� (1)

The system (1) is dissipative with the supply rate
w
�
u(t);y(t)

�
if it is not able to generate power

by itself, that is the energy stored in the system is
less than or equal to the supplied power8:

V
�
x(t)

�
� 0 and (2)

V
�
x(T )

�
� V

�
x(0)

�
�

Z T

0

w
�
u(t);y(t)

�
dt

Furthermore, the storage functionV
�
x(t)

�
must

satisfy the requirements for a Lyapunov function.

If there exist a positive semidefinite Lyapunov
function, such that:

u
T(t)y(t) �

@V
�
x(t)

�
@x(t)

f
�
x(t);u(t)

�
(3)

+ �uT(t)u(t) + ÆyT(t)y(t)

+ ��
�
x(t)

�
then the system (1) is passive8. A passive system
implies that any increase in storage energy is due
solely to an external power supply.

j

j

-

�

?

�

- -

6-

+
+

+u1(t) e1(t)
H1

y
1
(t)

y
2
(t) e2(t) u2(t)

H2

Fig. 1: Feedback interconnection of two passive
systems.

Consider the feedback system in figure 1 with
memoryless feedback and the dynamics ofH1 as:

_x1(t) = f1

�
x1(t); e1(t)

�
(4)

y1(t) = h1

�
x1(t); e1(t)

�
The systemH2 is memoryless with the form:

y2(t) = h2

�
t; e2(t)

�
(5)

If H1 is passive with a positive definite storage
function V1

�
x1(t)

�
andH2 is just a passive sys-

tem, that is:

e
T
1(t)y1(t) �

@V1
�
x1(t)

�
x1(t)

f1

�
x1(t); e1(t)

�
+ �1e

T
1(t) e1(t) + Æ1y

T
1(t)y1(t)

+ �1 1

�
x1(t)

�
e

T
2(t)y2(t) � �2e

T
2(t)e2(t) + Æ2y

T
2(t)y2(t)

(6)

Then the equilibrium point of:

_x(t) = f
�
t; x(t); 0

�
(7)

is uniformly stable8. If H2 is time invariant, then
the equilibrium point in of the system in (7) is
asymptotically stable in either of the two cases:

1. �1 > 0.

2. �2 + Æ1 > 0 andH1 is zero-state observable.

The origin will be globally asymptotically stable
if V1

�
x1(t)

�
is radially unbounded8.

III. The Rømer Satellite

This section describes the configuration of the
Rømer satellite, the satellite modelling, the
passivity analysis of the satellite model, and the
design of a passivity based attitude controller
capable of providing global asymptotic stability
to a desired reference. Subsequently, control
torque generation using the WATCH instruments
is described.

Satellite Configuration

The Rømer satellite, which is planned to be
launched in year 2003, will carry two scientific
experiments called the MONS (Measuring Oscil-
lations in Nearby Stars) and the Ballerina experi-
ment. The two experiments were suggested as two
separate satellite missions. Due to the great over-
lap between them it was decided to combine the to
missions in one satellite - the Rømer satellite.

The instrumentation of the Rømer satellite must
consequently satisfy the scientific objectives of the
two missions - a challenging task since the satellite
must be very compact in order to be launched as
a secondary payload. The orbit specified for the
Rømer satellite is a Molniya orbit, named after the
orbit used by Russian communication satellites.

3



The scientific objective of MONS is to strengthen
substantially the fundamental basis of astro-
physics which stellar astrophysics provides. This
will be accomplished by carrying out observation
of stellar oscillations at a greatly improved level of
sensitivity. A typical target is going to be observed
for 30-50 days continuously. This is performed to
probe the stellar interior for determination of its
composition, age, and internal rotation. The pri-
mary instrument specified on the MONS mission
is a340mm telescope with a CCD (Charged Cou-
pled Device) detector.

The scientific objective of Ballerina is the de-
tection and localisation of GRBs (gamma-ray
bursts). The physical mechanism leading to GRBs
is poorly understood. Gamma-ray bursts occur
randomly and are distributed over the entire sky,
and are known to be among the farthest objects in
the universe. The scientific instrument specified
for the Ballerina mission is an80mm X-ray tele-
scope.

After a GRB has been detected, by one of the
WATCH instruments, and localised at a precision
of approximately 1 arc minute, the satellite turns
autonomously within a few minutes to allow the
X-ray telescope to observe the following after-
glow. The star imager and the X-ray telescope
then determine the precise source of the burst.
Subsequently, results are transmitted to the Earth,
to allow more advanced ground telescopes as well
as space-based telescopes, to perform more de-
tailed observations. The spectral and time evo-
lution of the fading afterglow source is observed
until it is to faint.

In the observation mode the requirement for the
pointing accuracy is 30 arc seconds RMS on all
axes.

The WATCH instruments are organised in a tetra-
hedron configuration, i.e. an angle of109:47Æ ex-
ists between any two instrument axes. The tetra-
hedron configuration offers redundancy in that the
attitude can still be controlled if one of the instru-
ments fails.

The instrumentation of the Rømer satellite is
shown in Fig. 2.

Satellite Modelling

The four WATCH instruments serve both a scien-
tific and a control purpose.

Fig. 2: Proposed layout of the Rømer satellite
- satellite dimensions: 600 � 600 � 800mm
(W�D�H), and weight:120kg.

The WATCH instruments generate the angular
momentump

hw, which is found by adding the
angular momenta generated along the individ-
ual wheel axes. The angular momentum of one
WATCH instrument in the {W} coordinate frame
is given by�:

w _hw(t) = Kt

�
wvs �Ke

w!w

Rs

�
�Bv

w!w

= �

�
KtKe +Bv Rs

Rs

�
w!w +

Kt

Rs

wvs

= �Aw
w!w +Bw

wvs (8)

where the coulomb friction has been omitted. The
rate of change of the total angular momentum of
the satellite10, given in the Principal Axis Coordi-
nate Frame, is described by:

Ip
p _!p;i(t) = � S

�
p
!p;i(t)

�
Ip

p
!p;i(t) (9)

� S
�
p
!p;i(t)

�
p
hw(t)

� p
Nw(t)| {z }

p

wAw _hw(t)

+p
N dist(t)

The external torquepN ext exists due to the pres-
ence of environmental disturbance torques acting
on the satellite.

For representation of the attitude the unit quater-
nion has been chosen. The quaternion attitude

�Standard dynamic model of a DC motor.9
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representation is convenient since only four pa-
rameters are needed to represent the attitude glob-
ally, compared to the nine parameters used in a
direction cosine transformation matrix. The rate
of change of the attitude quaternionpiq is given
by:

d

dt
p
iq =

1

2


�
p
!p;i

� p
iq (10)

where the skew-symmetric matrix

�
p
!p;i

�
is

formed on the basis of the satellite’s instantaneous
angular velocity vectorp!p;i (see the nomencla-
ture in Table 1).

Passivity Analysis of the Satellite

The purpose of this section is to check whether
or not the satellite is a passive system. For this
purpose the satellite model is divided into several
subsystems (see Fig. 3), which are analysed sep-
arately. These mappings will be analysed with re-

Satellite Subsystems

ωp
p,i

i q

i

wh

p

w

q

N
wh

pw

p

pω p,i

Np
dist

p

p

s

4
WATCH

4

w
svw ω w

wI
4

wh w p
b

b
wA

3

Kinematics
3

ω p,i
p

3

ωw
w

s

Configuration
Tetrahedron

DynamicsA
pNw

3

3

v

Fig. 3: Satellite subsystems and mappings be-
tween inputs and outputs.

spect to their passivity properties: The mapping
of the WATCH instrument:wvs 7! w!w, the map-
ping of the dynamics:[phw; pNw]

T 7! p
!p;i, and

finally the kinematic mapping:p!p;i 7!
p
i q.

The tetrahedron transformation from {W} to {P}
will not be analysed, since it only describes the
orientation of the WATCH instruments. The in-
ertia matrix of the WATCH instrumentIw will
not be analysed since a positive definite matrix
can be shown to be input and output strictly pas-
sive. The differentiator is also passive, since the
storage functionV

�
x(t)

�
= 1

2
x

T(t)x(t) has a
time derivative equal to_V

�
x(t)

�
= x

T(t) _x(t) =
u

T(t)y(t).

The storage function of a rotating wheel is given
by its kinetic energy: V (w!w) = 1

2Iw
w!w

2.
The change in energy storage is given by its time
derivative:

_V (w!w) =
w!w Iw

w _!w (11)

Inserting the dynamic model of the i’th WATCH
instrument from Eq. 8 into Eq. 11, it becomes
possible to isolate the power flowy u = w!w

wvs:

w!w
wvs =

1

Bw

_V (w!w) +
Aw

Bw

w!w
2 (12)

� _V (w!w) ; Aw > 0 ; 0 < Bw < 1

whereBw = Kt

Rs
< 1. Consequently, it can be

concluded, that the WATCH instrument performs
a passive mapping.

If it can be shown, that the mappingpNw 7!
p
!p;i

is passive, then the mappingphw 7! p
!p;i will

also be passive, since a differentiator is a passive
system as shown previously.

The passivity analysis of the satellite dynam-
ics is performed by calculating the inner prod-
uct between the input and output of the mapping
p
Nw 7!

p
!p;i:

hp!p;i;
p
NwiT =

Z T

0

p
!p;i

T(t) p
Nw(t) dt

(13)

Inserting Eq. 9 into Eq. 13, and neglecting the
disturbance torque, it can be concluded, that the
satellite dynamics performs a passive mapping:

hp!p;i;
p
NwiT = (14)

�

Z T

0

p
!p;i

T(t) Ip
p _!p;i(t) dt

�

Z T

0

p
!p;i

T(t) S
�
p
!p;i(t)

�
Ip

p
!p;i(t) dt

�

Z T

0

p
!p;i

T(t) S
�
p
!p;i(t)

�
p
hw(t) dt

= �

Z p
!p;i(T )

p!p;i(0)

p
!p;i

T(t) Ip d
p
!p;i

= �
1

2

h
p
!p;i

T(T ) Ip
p
!p;i(T )

� p
!p;i

T(0) Ip
p
!p;i(0)

i
= �

h
V
�
p
!p;i(T )

�
� V

�
p
!p;i(0)

�i
= �

where � is some finite value, since the
angular velocities have been truncated, and
p
!p;i

T(t) S
�
p
!p;i(t)

�
= 0T. It can be seen,

that a positive work performed on the dynamics
is equal to a positive change in kinetic energy
V (p!p;i) = 1

2
p
!p;iIp

p
!p;i. The minus sign in

5



Eq. 14 is due to the fact, that the control torque
is generated internally.

In order to check passivity of the mapping
p
!p;i 7!

p
i q the inner product between the input

and output is calculated:

h
p
i q;

p
!p;iiT =

Z T

0

p
i q

T
(t) p

!p;i(t) dt (15)

From Eq. 10 it can be found, thatpi _q4(t) =

�1
2

p
i q

T
(t) p

!p;i(t). When inserted into Eq. 15
the following is obtained:

h
p
i q;

p
!p;iiT = � 2

Z T

0

p
i _q4(t) dt (16)

= � 2

Z p

i
q
4
(T )

p

i
q
4
(0)

d
p
i q4

= 2
�p
i q4(0) �

p
i q4(T )

�
Becausepi q4 � cos �

2
is bounded byjpi q4(t)j � 1

for all t, the bracket
�p
i q4(0)�

p
i q4(T )

�
is bounded

by
��p
i q4(0) �

p
i q4(T )

�� � 2. Therefore Eq. 16 can
be written as:

h
p
i q;

p
!p;iiT � �4 = � (17)

Since the inner product is lower bounded by a con-
stant� = �4, it can be concluded, that the map-
ping p

!p;i 7!
p
i q is passive. The exact same result

was obtained by Egeland and Godhavn.3

We have not been able to prove mathematically,
that a series connection of two passive systems
results in an interconnection which is also passive.
A satellite, however, is known to be a conservative
system, and consequently, it has no internal power
production. A system like this is passive.

Control Law Design

Having a satellite which is passive, it is possible
to render the satellite globally asymptotically sta-
ble to a reference attitude by using a memoryless
feedback, i.e. a feedback which is input and output
strictly passive.

By choosing the feedback wheel torquep
Nw as:

p
Nw = kp

p
i q + kd

p
!p;i ; kp; kd > 0 (18)

a memoryless feedback is achieved which is input
and output strictly passive. This is demonstrated
in the following.

p
q Np

ωN
Attitude Controller ωp

p,i i q

Satellite

p

KinematicsDynamics &
WATCHs

kd

kp

Fig. 4: Attitude Control System comprised of the
satellite and the Attitude Controller.

The interconnection of the attitude controller and
the satellite is sketched in Fig. 4. By writ-
ing the controller’s output vectorpNw in Eq.
18 as: p

Nw = p
N! + p

N q, it is possible to
analyse the passivity properties of the mapping:
[p!p;i ;

p
i q]

T 7! [pN! ;
p
N q]

T sketched in Fig. 5.
The reason is, that the passivity analysis (the cal-
culation of the inner-product) requires, that the in-
put and output vector are of same dimension. The

N
p

!
p
Nq

!
p

q
p

p,i

�

i

� H2

Fig. 5: Control law from Eq. 18.

controller performs the following mapping:�
p
N!
p
N q

�
| {z }

y

=

�
kd I3�3 0

0 kp I3�3

�
| {z }

H2

�
p
!p;i
p
i q

�
| {z }

u

(19)

wherekp; kd > 0. The matrixH2 : R6 7! R
6

has been chosen such, thatH�1
2 exists, andH2

becomes diagonal.

The power flowyT
u = u

T
y into the system is:

y
T
u = u

THT
2 u = y

T H�1
2 y (20)

Note thatyT
u is equivalent to:

y
T
u =

1

2

�
u

T HT
2 u

�
+

1

2

�
y

T H�1
2 y

�
� 0

(21)

The power flowyT
u is always nonnegative, since

bothHT
2 andH�1

2 will have positive eigenvalues,
due to the structure ofH2. Eq. 21 states, that the
controller is input and output strictly passive, since
both�2 andÆ2 are positive constants.
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If either kd or kp, or both are zero the controller
will not be input and output strictly passive, since
thenH�1

2 will not exists. If eitherkd or kp, or both
are negative,�2 andÆ2 cannot be guaranteed to be
positive for every input and output.

If it can be shown, that the satellite model with the
passive mappingH1 is ZSO, the equilibrium point
will be asymptotically stable:

�2 + Æ1 > 0 ; andH1 ZSO

First of all H2 must be time invariant. This is
also the case. Since�2 > 0 andÆ1 = 0, it only
needs to be shown, that the satellite is ZSO. This
requires, that only the trivial solutionxe of Eq. 9
can stay identically inS = fx(t) 2 R

n jy(t) =
h(x(t);0) = 0g. This is the case for the satellite
model, since the output is in fact the states of the
system, i.e. zero output, with zero input, will in all
future result in the states being equal to zero.

Finally, since the following Lyapunov candidate
function

V
�p
i q4;

p
!p;i

�
= 2 kp

�
1� p

i q4
�

(22)

+
1

2
p
!p;i

T Ip
p
!p;i ; kp > 0

is radially unbounded the equilibrium point
xe =

�
p
!p;ie

; p
i qe

�T
= 0 is globally asymptoti-

cally stable.

Torque Generation using WATCH Instruments

When transforming the torque vectorwNw to
the Principle Axis Coordinate Frame bypwA =
p
bA

b
wA, the following is obtained:

p
Nw = p

wA
w
Nw = p

wAAw I4�4
w
!w (23)

� p
wABc I4�4 sign(w!w)

+ p
wABw I4�4

w
vs

Due to the tetrahedron configuration of the
WATCH instruments, the transformation matrix
b
wA is a3� 4 matrix given by:

b
wA =

�
b
ŵ1

b
ŵ2

b
ŵ3

b
ŵ4

�
(24)

=

2
4�0:817 0:817 0 0
�0:577 �0:577 0:577 0:577

0 0 �0:817 0:817

3
5

and the direction cosine transformation matrixb
pA

is given by:

b
pA =

�
b
px

b
py

b
pz

�
(25)

=

2
4 0:23 �0:97 0:01

0:92 0:22 0:33
�0:32 �0:07 0:95

3
5

Solving Eq. 23 with respect to the control voltage
vectorwvs yields:

w
vs = Bw

�1 p
wA

R
h
p
Nw (26)

� p
wAAw I4�4

w
!w

+ p
wABc I4�4 sign(w!w)

i

where the4 � 3 matrix p
wA

R is the right pseudo-
inversey of the 3 � 4 transformation matrixpwA,
which describes the orientation of the WATCH in-
struments within the tetrahedron configuration.

The least squares solution, that minimiseskxk in
the following equation:

A
n�m

x
m�1

= y
n�1

; m > n (27)

is given by finding the right pseudo-inverse of
A

n�m
.11 Consequently,pwA

R is given by:

p
wA

R = p
wA

y
�
p
wA

p
wA

y
��1

(28)

Based on Eq. 26 it is possible to sketch the struc-
ture of the AC (see Fig. 6).
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pqi
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44

4
B c 4 3

p
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b
wAA
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3

3

sign

Control
Law

p
wA wB

-1

3

4

Attitude Controller

Fig. 6: Block diagram of the Attitude Controller
structure.

Introducing the Attitude Reference

In order to make the AC track references the use
of an error quaternion is suggested.10 The princi-
ple is based on a transformation of the satellite’s

yAlso referred to as the Moore-Penrose generalised ma-
trix inverse.

7



attitude quaternionpiq. The principle is sketched
in Fig. 7.

The idea is, that a desired target attitude is formu-
lated by a target quaterniontiq, which describes
the orientation of the Earth Centred Celestial Co-
ordinate Frame {I} with respect to the Target Co-
ordinate Frame {T}. The purpose of the AC is to
minimise changes in the attitude quaternion. By
feeding back the error quaternionptq instead of
the actual attitude quaternionpiq the controller will
initiate the necessary actions in order to realign the
Principal Axis Coordinate Frame with the speci-
fied Target Coordinate Frame.

O

O

O

{P}

{T}

{I}

q
i

p

q

q

t
p

t
i

1.

2.
qt

i

Fig. 7: Transformations used in calculating the er-
ror quaternionptq.

The error quaternionptq is calculated as the error
in rotation between the {T} and the {P} frames.
Since both the orientation of the {P} and the {T}
coordinate frame is known in terms of their orien-
tation with respect to the {I} coordinate frame, the
error quaternion can be calculated as sketched in
Fig. 7. The path from {T} to {P} is given in two
steps:

1. Perform the transformation from {T} to {I}
given by the inverse of the reference quater-
nion, i.e.itq.

2. Transformi
tq with the transformation from

{I} to {P} given by the satellite’s attitude
quaternionpiq.

Using quaternion multiplication10 the error
quaternionptq is given by:

p
tq = i

tq
p
iq =

2
6664

p
i q4

p
i q3 �

p
i q2

p
i q1

�
p
i q3

p
i q4

p
i q1

p
i q2

p
i q2 �

p
i q1

p
i q4

p
i q3

�
p
i q1 �

p
i q2 �

p
i q3

p
i q4

3
7775
2
6664

i
tq1
i
tq2
i
tq3
i
tq4

3
7775

(29)

IV. Numerical Simulation Results

In this section the control law in Eq. 18 will be
tested by means of a numerical simulation.

The satellite is a rigid body with the inertia tensor:

Ip �

2
48:3 0 0

0 6:6 0
0 0 4:0

3
5 kgm2 (30)

The satellite is subject to zero initial angular ve-
locity and the initial orientation is given by the at-
titude quaternionpiq(0):

p
iq(0) = [0:462; 0:462; 0:653; 0:383]T (31)

The environmental disturbance torque is modelled
for the Molniya orbit, and includes the solar ra-
diation, the gravity gradient, and the aerodynamic
drag.

It has been chosen to use the following values for
kp andkd:

� The proportional gain:kp = 0:5.

� The differential gain:kd = 2:5.

No quantisations have been introduced in order to
keep the results as clear as possible. The attitude
reference was set to:tiq = [0; 0; 0; 1]T, in order to
perform a slew manoeuvre.

The simulation results are shown in Fig. 8. The
simulation is started at perigee, and it can be seen,
that the environmental disturbance torque (2nd
plot) forces the frequencies of the WATCH instru-
ments (1st plot) to accelerate in order to bring the
attitude error (3th plot) to zero.

V. Discussion of Results

The satellite was confirmed to be a passive sys-
tem and a control law was designed capable of
achieving global asymptotic stability of a refer-
ence point.

Torque control of the WATCH instruments was
made possible by distributing the required control
torque among the four WATCH instruments, us-
ing a right pseudo inverse matrix, i.e. an optimal
way of solving four equations in three unknowns
has been chosen, which minimises the solution (in
this case the control voltage).

Using the concept of an attitude error quater-
nion the ACS was capable of performing reference
tracking using quaternions.

8



0 20 40 60 80 100

−1

−0.5

0

0.5

1

1.5

2

Time [s]

W
A

T
C

H
 F

re
qu

en
cy

 −
 w

ω
w

 [H
z]

WATCH #1
WATCH #2
WATCH #3
WATCH #4

0 20 40 60 80 100

−15

−10

−5

0

5

x 10
−6

Time [s]

E
nv

iro
nm

en
ta

l T
or

qu
e 

−
 N

di
st

 [N
m

]

x
p
−axis

y
p
−axis

z
p
−axis

0 20 40 60 80 100

−1

0

1

2

3

x 10
5

Time [s]

A
tti

tu
de

 E
rr

or
 [a

rc
se

c] Pitch
Yaw  
Roll 

Fig. 8: Numerical simulation results.

As the test results showed, the AC is capable of
stabilising the satellite, even at the perigee pas-
sage, to an accuracy well below the required 30
arc seconds RMS on all axes. If zoomed the re-
sult will be in the range�3 arc seconds. It is also
evident from the attitude error plot, that the AC
is capable of performing slew manoeuvres. De-
tailed slew manoeuvre tests have showed, that a
rotation of180Æ can be performed within approxi-
mately 150 seconds, i.e. a slew-rate of1:2Æ=s can
be obtained.12

VI. Conclusion

The purpose of this paper has been to present
the results obtained through our master’s work.
The main result was the development of a linear

feedback control law capable of achieving global
asymptotic stability of the operating point.

In this paper we have tried to present the theory
of passive systems in a way, that gives a clear
overview of this wide topic. The presentation was
mainly based on Sepulchre8 and Khalil13.

We did not succeed in showing mathematically,
that a series connection of two or more passive
systems is again a passive system.

The test results showed, that the pointing stability
requirements for the Rømer satellite could be met
even at perigee where the environmental distur-
bance are relatively large compared to the distur-
bances encountered at apogee. Simulation results
have showed, that angular momentum dumping of
the WATCH instruments, using for example elec-
tromagnetic coils, must be initiated after a maxi-
mum of 6 orbits (each orbit takes approximately
12 hours).12
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