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Abstract: In this paper we present a prototype software tool that is developed to
analyse the structural model of automated systems in order to identify redundant
information that is hence utilized for Fault detection and Isolation (FDI) purposes.
The dedicated algorithms in this software tool use a tri-partite graph that represents
the structural model of the system. A component-based approach has been used to
address issues such as system complexity and reconfigurability possibilities.

1. INTRODUCTION

Industrial systems usually large number of include
a large number of actuators, sensors, and parts.
Faults in such systems, if allowed to persist and
propagate, can evolve into system failure with
grave consequences (economical/ environmental/
safety) as a result.

The field of Fault diagnosis/monitoring has been
subject to intense research in last two decades.
However, the main focus has been on the dynamic
systems (linear /nonlinear) with limited number of
involved components. With increasing number of
components, the task of modelling and analysis of
such systems, with the purpose of employing fault
diagnosis, will become an overwhelming task and
will require an extensive and very time consuming
effort. In this regard, being able to automatically
analyse the system will be of great advantage and
cost-effective.

The quest for such ability has inspired us to
develop a prototype software tool for automatic
analysis of the available information within a sys-
tem. This design tool is based on a component
approach, where the information is placed in the

components (controllers, actuators, sensors and
plants) and the components are connected to-
gether. The component approach makes it easy
to build models of large and complex systems. It
is also easy to reuse and replace components from
one model to others. The algorithms for finding
FDI possibilities is based on structural analysis
(Izadi-Zamanabadi and Blanke, 2002).

The paper presents a software prototype tool for
analysis of dynamic systems in order to iden-
tify systems’ inherent redundant information. The
information then can be used to develop dedi-
cated algorithms for fault diagnosis/monitoring
purposes. Section 2 provides a short description
of the theory of structural analysis and the defi-
nitions. The design of the prototype software tool
is found in section 3. An example of how to use
the design tool is given in section 4.

2. SYSTEM’S STRUCTURAL MODEL

For a given system S, there exist a set of relations,
which each can be static, dynamic, linear or non-
linear relations. In a structural model these rela-
tions are represented by constraints. Constraints



contain information about which variables are in-
volved in a relation and whether a variable can be
calculated from the relation or not. The set of con-
straints are represented by &% = {fi, f2, .., fm}
and all the system’s variables are represented by
% ={z1,22,..y2n}. & = H UZ, where X is
the set of unknown variables in the system, while
X is the set of known variables in the system.
2 can be divided into the subcategories % and
Y (X =2%UPJH). Where % is the known
controller outputs and % is the measured signals.

The structural model can be represented by a
dedicated tri-partite directed graph. The nodes
(vertices) in this graph can be divided in the three
categories 'K’, 'F’ and 'X’, which have the the
following properties:

(1) No edge (arc) can exist between two 'K’, two
"F’ or two "X’nodes.

(2) No edge can exist between any 'K’ and 'X’
nodes.

Definition 1. (Izadi-Zamanabadiand Blanke, 2002)
The structure graph of the system is a tri-partite
directed graph G(F,%, ) are defined by the
following mappings:

A FxZ —{0,1},
A* ¥ xF —{0,1},
KF : # x t — {0,1}.

€ A,a}; € A*

Where the elements a;; N

KF are defined as

and kfij S

1 iff f; applies to z;,

@ = (fuz) = 0 Otherwise
ooy )1 iff z; is calculable through f;,
o =@ fi) = 0 Otherwise
1 iff f; applies to the
kfi; = (fi,k;) =< known variable k;,

0 Otherwise

An element a;; = 1 means that there is a directed
edge, that connects the 7** relation with the j**
unknown variable; a;; = 0 means that there is no
edge.

The tri-partite graph can be represented by an
incidence matrix. The incidence matrix is defined
as in equation 1.

K F X

4 0 KFO
I"ﬁ' KFT 0 A (1)

Z 0 A* 0

The calculability property, which is used in the
A* is defined as in definition 2.

Definition 2. (Calculability).
(Izadi-Zamanabadi, 1999) Let z;,5 = 1,...,p,...,n

be variables that are related through a relation
fi e.g. fi(21, s Zp; -y 2n) = 0. The variable 2, is
calculable if its value can be determined through
the constraint f; under the condition that the
values of the other variables z; = 1,...,n,5 # p
are known.

It is therefore not always given, that a variable
can be calculated through a constraint. This is
illustrated in example 1.

Example 1. A system has the following relation
with saturation:

Ty = azy for —k <z, <k
fi=K s =aforz >k
9 = —a for z1 < —k

For a given value of z; it is always possible to
uniquely determine the value of z2 but it is not
always possible to uniquely determine the value
for z; for a given z, for instance, choose z2 = a,
then multiple choices exist for z;.

O

2.1 Matching and redundancy relations

Matching is a tool for finding the redundancy
relations in a system. The matching concept is
in general terms a way for finding which and how
unknown variables can be computed from known
variables.

Definition 3. (Declerck and Staroswiecki, 1991)
The (sub)graph G(Far, Xar, An) is a matching on
G(F,X,A) ', Fyy C F and Xy C X iff:

(1) Ay C A,
(2) Val,a2 € Ay 2 | al # a2 & Fuy(al) #
FM(G,Q)/\XM((ZI) #XM(GZ).

A complete matching w.r.t. F is obtained when
Fy =F.
A complete matching w.r.t. X is obtained when
Xy =X.

When a matching is made upon a system, a
system can be decomposed into three kinds of
subsystems:

e over-determined subsystem, denoted by Gt (F*,

Xt, AT,
o just-determined subsystem, denoted by G=(F’
X=,A%), and

b

e under-determined subsystem, denoted by G~ (F'—,

X, A7)

LFCF XCX, AC
2 a; is a edge between a constraint f, = F(a;) and a
variable 4 = X (a;) ( F(as) ¢ X(a;) )



The over-determined subsystem is of interest for
fault diagnosis purposes because it contains the
redundant relations. The three subsystems are
graphically illustrated in figure 1. The grey area in

Unknown variables (X)

J} X: X

A
7 | NG
Q
o
2
— =1
T z
C)
F G

Figure 1. Decomposition of a system into over-
(GT), just-(G=) and under-determined sub-
systems (G™)

figure 1 contains both one and zeroes, while the
white area containing only zeroes meaning that
there is no link the variables and constraints. In
GT there is more constraints that variables. In G~
there is the same numbers of variables as numbers
of constraints. While G~ has more variables than
constraints. The thick line illustrate the match-
ing, where the matched pairs of constraints and
variables are placed on the line.

The principles for the matching procedure can be
explained though figure 2. The figure shows that

Figure 2. Matching of constraints and variables

the matching starts with the set of known vari-
ables (¢). It then finds all the constraints that
contain only one unknown variable and match the
unknown variables to the known variables. In the
case of figure 2 f; only contains the unknown
variable z1, and f; contains only the unknown
variable z5. 1 and z2 are now added to the set
of known variables (¢ = & U{z1}U {22}). The
procedure repeat the matching until there are no
more unknown variables that can be matched. As
it is illustrated in the figure, the first matchings
has made it possible to match 3 and the matching
procedure has then met its stopping criteria. The
matching algorithm is described in more details in
next section.

2.1.1. Loop problems For some systems there
exist loops in the structural model, where two
or more variables have to be determined simul-
taneously. These loops can be divided into two

kinds of groups: algebraic loops and differential-
algebraic loops ((Blanke et al., 2003), Ch. 5).
An example of a loop can be seen graphically
in figure 3. It can be seen in figure 3 that both

Figure 3. An example of an algebraic loop.

z1 and z2 have to be determined simultaneously.
Matching can be performed on a loop by assuming
that one unknown variable as known, and then
match the other unknown variables. When the
other variables are matched, the variable which
was assumed to be known is set to unknown, and it
will then be matched. The main condition, which
has to be fulfilled, is that number of constraints
may not be smaller than the number of variables.

2.1.2. Quality of matching From graph theoret-
ical point of view, redundant relations exist when
there are at least two pathes from the known
variables to an unknown variable. Another inter-
esting issue that is relevant for sensor fusion is to
determine (i.e. compute/estimate) the value of an
unknown variable by using the constraints on the
path on the graph that connects the known vari-
ables to the unknown variable. The constraints
represent information with different quality level,
i.e. they could represent linear or nonlinear equa-
tions (involving some disturbances or uncertain-
ties), or table of data. Hence the quality of the
computed value of an unknown variable may vary
depending on the quality level of the involved
constraints on each path. So, for sensor fusion
(as well as residual generation) purposes, it is
important to find the best solutions, i.e. pathes
with constraints of highest qualities.

To find the solution a quality factor is been
introduced: 4.

Definition 4. The quality of an unknown variable
can be calculated though the following product:
Nz, = Nf, [[Ms;» where f, is used to match z,,
and x; is all unknown variables z; # , which are
involved in relation f,. z; € & .

Mk: = 17 kl eEX

0<ns; <1,m; €R

ny, = 1 means that the relation is pure determin-
istic and without any kind of disturbance.

The quality of a residual can be calculated as
following;:

Nr, = N7, [[72,, where f, is an unmatched rela-
tion, f, € F* which is used as residual, and z; is
all variables involved in f,.



The calculating of the qualities can be illustrated
in the following example.

Example 2. A matching of a given system be done
as in figure 4.

Path 1

Figure 4. Matching procedure with quality factor
introduced

The matching starts by matching z; and zo
though fi and f». The quality for z; is n,, =
Ny = 0.99 and n,, = 1y, = 0.91. Now z3 can be
matched by two path (path 1 and path 2). Path 1
is then chosen. 1;, = 1y, - 7z, = 0.92. f3 can now
be used as a residual, which give the quality for
the residual: r; =1y, -3 -4 =0.84 0

2.1.3. Minimal over-determined subsystems The
minimal over-determined subsystems represent
the smallest subsystems that have redundant in-
formation.

Definition 5. (Izadi-Zamanabadi and Blanke, 2002)
A minimal over-determined subsystem, G, =

(Fntmff, X;inff, A;inff) is the smallest over-
determined (hence observable) subsystem which is
obtained by back-tracking the unknown variables
in an unmatched relation f in F+. For a mainimal
over-determined subsystem, the following state-

ment is valid:
|Fr—7tin—f| = |X1-:_1in—f| +1

where | X| denoted the number of elements in the
set X.

For each minimal over-determined subsystem
there exist an analytical redundancy relation
(ARR). The analytical redundancy relation is of
the form:

f(ziy-y25) =0, 24,...,2; € X (2)

The residual for the same subsystem can then be
defined as:

= f(Ziy-.125), Ziyenrr2j €KX (3)

3. PROGRAM DESIGN

The main focus for the program is on the de-
velopment of a software tool, which can perform
the structural analysis on a complex system, and
it is easy to use. In order to make it easy to

define and analyse systems the prototype tool has
a graphical user interface (GUI). It is chosen that
the tool shall encapsulate the relations in a sys-
tem in components, such that the overall system
view represents the involved physical components
and their connections. One of the advantages of
component based approach is, that the component
only have to be specified once and it can then be
reused over and over again. Another advantage
the component based approach provides, is the
possibility to examine different strategies of plac-
ing sensors, e.g. to ensure the cheapest/fewest set
of sensors while obtaining highest level of fault-
tolerance .

The components are categorised in to four groups
of components; Controller, Actuator, Plant, Sen-
sor.

The controller and the sensor categories are the
only categories, which have known output. These
are the only two categories of components, where
it is possible to specify known variables. The
components are numbered with respect to their
categories. This give the following numeration:

—  Controller col,co02,...,con
—  Actuator acl,ac2,...,acn
— Plant pll,pl2,...,pln

—  Sensor sel, se2,...,sen

The components will be automatically numbered
by these numbers and the numbers from deleted
components will automatically be reused to num-
ber new components. By using automatic numer-
ation the program ensures that identical numera-
tion is not taking place.

Each component in the system is symbolized by
a box with a number of pins. The relations in a
component can be entered by opening a window
for the components properties. It had been chosen
to make it possible to enter linear differential
equations as well entering constraints directly.
The program will also automatically add an extra
constraint, when a differential equation is entered.
This constraint is the relation between z; and z;.
Z; is entered in the program as dz ¢, where '’
is used to separate the variable (dz,z,y,u) and
the index numbers. A none-calculable variable in
a constraint is symbolized by entering a '#’ like
z_14#. The constraints number are automatically
added, when the constraint is entered. The id
number of the component is added to the con-
straint and variable names, when these are shown
outside the component. The in- and output for
the component is specified by the drag and drop
the variables to either input or output. All known
variables (y and u) are automatically specified as
output.

The input and output from the components can
be connected by drawing a line between them, so
the output variable from one component becomes



a synonym with the input variable of the other
component it is connected to.

3.1 Algorithm for structural analysis

When the whole system design has been made
(all components are added, specified and con-
nected), the program can make an analysis. The
analysis starts with building the system struc-
tural model. Thereafter the program performs
all possible matchings. A decomposition of the
results from the matchings are thereafter made.
The program will finally present all the minimal
over-determined subsystems which can be used for
constructing the ARRs.

The structural model is built by taking all the
components in the system. All the input variables
in a component are then replaced by the output
variables, which they are connected to. All the
constraints and variables in a component is then
added the component’s id as and extension, so
all the variables and constraints are unique. The
extended incidence matrix (and a compact version
of it ) are built, and a tri-partite graph is then
constructed.

The matching procedure, which has been de-
veloped for this program is based on the gen-
eral matching procedure (Izadi-Zamanabadi and
Blanke, 2002). The procedure is modified in or-
der to both calculate qualities and make a total
matching and furthermore a level of matching has
been introduced in order to better overview the
order of performed matchings. The procedure for
the program can in general terms be described by
the following algorithm:

Algorithm 1. Initialize:

MatchingNumber = 1.
MatchingLevel = 0.
MatchPair = {}.
Matchings = {}.
PossibleMatchings = {}.

while(other possible matchings exist)

e while(variables are possible to match)

- Project £ via &% onto %£ using the
incidence matrix I.p,,.

- Identify unmatched relations in % that
contain exactly one unknown variable
and fulfill the calculability condition.

- calculate the quality product.

- Register the matched pair(s): MatchPair
MatchPair U (f;, ;)

- Include the matched unknown variable(s)
z; to the set of known variables: ¢ =
H U Tj.

- Exclude the matched constraints: & =
Z\ Jj.

- if (match pair, (fp, ;) also exist)

newPossible Matching = a image
of the matching until now.
Replace (f;,z;) with (fp, 2;)-
Exclude the matched constraints:
F =\ Iy
PossibleMatchings =
Possible M atchings U
newPossible M atching
- Exclude the matched constraints: £ =
- MatchingLevel = MatchingLevel + 1.
e end
o If (matching loop exist)
- Run matching loop algorithm (algorithm
77?).
o If ((This matching)¢ Matchings)
- Matchings = MatchingsU(This match-
ing).
- MatchingNumber = Matching Number+
1
o This matching = Possible M atchings[0].

o PossibleMatchings = PossibleMatchings\(This

matching).

end

The condition, If ((This matching)¢ Matchings),
is introduced in order to avoid identical match-
ings. The problem occur, when there exist several
possible matchings on the same matching levels.
The identical matchings are identified and sorted
out automatically.

The matching algorithm is extended in order to
handle the loop problem , which will not be ad-
dressed in detail in this paper. Additionally, the
program provides a graphical view of the decom-
posed subsystems, e.g. over-, just-, and under-
determined.

The program provides a list of all different (but
non-identical) minimal over-determined subsys-
tems by backtracking the variables and con-
straints in each over-determined subsystem that
has been obtained through matching.

4. A SYSTEM EXAMPLE

Consider the following simple system consisting of
a position controller, a DC-motor, and 3 sensors,
modelled by

6 0 1 0]Te 0
gl=10 -2 K| |é|+]0|V (4
A e 3 B i R
? T R ? L

0
y=[100]]|6 (5)

where J is the moment of inertia of the rotor, b is
the mechanical damping ratio, K is the electromo-



tive force constant, R is the (electric) resistance,
L is the inductance and V is the supply voltage.
Parameters are obtainable from The motor can
be specified in the program by dragging a new
actuator (the DC motor) component from the list
of components and drop it on the design area.
The motor can then be specified by right clicking
on the component and entering the relations as
seen in figure 5. Where § = 2 1, 6 = z 2,

51
((Gerenal | Relations | Input | Output |
Differential i
F | Equations
1 dxd=w2
3 o 2=-1.08857x 248487303
15 |ox_3=-0963.67% 2 - 145457 10" "% _3 + 3.6364 "
Output
F Equatians | Guiality |
1
Constraints:
F Constraints | Guiatity |
1
Derivatives:
F | Constraints | Quality|
2 s 1# .01 -
4 v 2% dx 2 | 1|~
Ok Cancel
Figure 5. Entering of relations for the motor
model.
it =z 3and V = z 4. ¢ 4 is then set as

input and z 1,z 2 and 3 are set to outputs.
Then the sensors can be added to the system,
here a tacho-meter, encoder and AM-meter are
added. They are modelled to measure the states
in the motor directly. A controller is added to
specify that V is control signal and is known.
The variables are connected by drawing a lines
between components. The total system view is
now as in figure 6. When the model is set up, then

.|DTSA - matorControldts [0l ]

File Edit Window Help

E@@E i 1 1 ) Y )
Components Design
@ [ 5ensars
© [ Actuatars
¢ 3 contraliers

[ Mew cantroller
€ ] Plants

System

i contronier [t xAmotor
2H oo 201

Figure 6. Total model of the system design.

it is analysed automatically and the results will
be delivered graphically in different windows. The
program finds 8 possible different matchings for
the system. Furthermore the program shows that
all system parts are over-determined. Finally, the
following minimal over-determined subsystems is

provided: All duplicated subsystems are deleted

Unknown variables Constraints
1-f 3,col | x 1,col, dx 1,col f 1,col,f 2,col,
f 3,col
1-f 2acl | dx_1l,acl,x_1l,acl, | f 1,se2,f 1,acl,
x_2,acl f 2,acl,f 1,sel
1-f 3,acl | x_2,acl, dx_2acl, | f 1,se3,f 3,acl,
x_3,acl f 4,acl,f 1,sel
1-f 5,acl | x_2,acl, x_3,acl, f 1,se3,f 5,acl,
dx 3,acl f 6,acl,f 1,sel

Table 1. Minimal overdetermined sub-
systems for the motor position control
example.

and only the disjoint minimal over-determined
subsystems are listed in table 1. The first row in
the table only indicates that all variables in the
controller are known, which is obvious. The three
remaining rows can lead directly to 3 analytical
redundant relations (ARRs) that can be used for
fault diagnosis purposes.

5. CONCLUSIONS

The paper presents a software prototype tool for
modelling and automated analysis of systems. The
main algorithms and functionalities were listed
and an example was provided in order to illus-
trate the programs’s functionality. The program
enables analysis of large and complex systems that
are extremely difficult to handle otherwise. The
program is freely available and it is our hope that
other research groups employ it on their systems
and provide us with feedback in order to deal
with possible insufficiencies in the program. The
program is obtainable via following URL address:

http: / /www.control.auc.dk/ftc

Relevant documentation concerning the theoreti-
cal background and quick user manuals as well as
some examples can be found on the same address.
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