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QUANTITATIVE ANALYSIS AND DESIGN OF A
RUDDER ROLL DAMPING CONTROLLER

Gerald Hearns *! Mogens Blanke **

* Industrial Control Centre, Strathclyde University, Glasgow, UK
** Dept. of Control Engineering, Aalborg University, Denmark

Abstract: A rudder roll damping controller is designed using Quantitative feedback
theory to be robust for changes in the ships metacentric height. The analytical
constraint due to the non-minimum phase behaviour of the rudder to roll is analysed
using the Poisson Integral Formula and it is shown how the design tradeoffs in closed-
loop roll reduction can be approximated using this formula before a controller is
designed. The robust roll and course keeping controllers designed are then tested

using a nonlinear simulation.

Keywords: Ship control, Robust performance, Non-minimum phase

1. INTRODUCTION

Reducing the roll on a cargo ship will prevent
damage to the cargo and reduce the discomfort
of the crew increasing their efficiency. Using the
rudder for simultaneous course keeping and roll
reduction is not a trivial problem since there is
only one actuator thus requiring that the two
objectives are separated in the frequency domain.
This single input-multi output problem is also
non-minimum phase or has a right half plane
(RHP) zero in the channel from the rudder to
the roll. RHP-zeros are typically caused by the
effects of competing slow and fast dynamics. In
this case the zero is produced by the roll moment
exerted on the ship by the rudder competing
with the sway force from the rudder to the roll
moment. RHP-zeros are responsible for the initial
inverse response to a step input and phase-lag in
the frequency domain. We are interested in the
RHP-zero because it imposes some fundamental
constraints on the feedback system. To reduce the
sensitivity of a system with a RHP-zero will mean
that the benefits of feedback will be lost in another
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frequency region resulting in a sensitivity there
with a peak greater than unity. This means there
is an inherent design tradeoff as a consequence of
the systems physical properties. The worst case
would occur if the zero was in the same location
as the frequency region which roll reduction is
required.

The analytical constraint due the RHP-zero will
be examined using the Poisson Integral Formula
to predict the roll amplification if the roll is re-
duced in another frequency region. This formula
enables the possible closed-loop roll sensitivities
to be examined before a controller is designed.
To design roll and course keeping controllers
Quantitatvie Feedback Theory will be used since
it enables the design tradeoffs and robustness to
be easily seen. In particular the controllers will be
designed to be robust for a changing metacentric
height (GM) which may change during a voyage
due to consumption of fuel, changes to the ballast
and change of mass and location of the cargo. The
model used for this design exercise was previously
described in Blanke and Jensen [1].
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Fig. 1. Closed-loop for rudder roll damping.
2. CLOSED-LOOP OBJECTIVES

The feedback structure is shown in Fig. 1 with the
roll controller (C,) and the yaw controller (Cy).
The outputs of the controllers are summed to form
the command signal to the rudder. The linear
design system includes the output disturbances
¢, and (y for the roll and yaw respectively.
The closed-loop sensitivities which relates the
disturbances to the roll and yaw are hence:
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Figure 2 shows the desired frequency objectives
for the sensitivity magnitudes. The roll sensitivity
Sy, should have an upper bound of a bandstop
filter between frequencies wy,; and wy, with a
minimum attenuation of a, dB. Outwith that
frequency range the peak sensitivity should be
less than M,,. The yaw sensitivity Sy, should
have low frequency attenuation below wyp (wy <
wei < Wey) and above that frequency the peak
sensitivity should be less than Myy. The off
diagonal sensitivities are specified by a constant
upper bound.
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Fig. 2. Sensitivity frequency objectives.

3. DESIGN CONSTRAINTS

It is possible to quantify the fundamental limita-
tions on the achievable closed-loop performance.
As well as giving guidelines for the control design
these performance limitations may also indicate
when the performance specifications are unachiev-
able and the open-loop plant should be modified
(redesign the ship). For the rudder roll damping

problem the limitations are due to an unstable
pole and zero (analytic constraint) and the fact
that yaw and roll designs need to have frequency
separation (algebraic constraint) since the rudder
is the only actuator. The algebraic constraint is
fairly transparent since it involve design tradeoff
at the same frequencies. A more subtle limitation
is the analytical limitation due to unstable poles
and zeros which involves design tradeoff at differ-
ent frequencies.

For a function G there will exist an all-pass
function G4, and a minimum-phase function G,
such that G = G4pGmp where G is the product
of all factors of the form zfj_g, Resg > 0. The
separation of a sensitivity function into an all-pass
and a minimum-phase part can be used with the

Poisson Integral Formula [2]:
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This relationship can be used to find a lower
bound on the maximum sensitivity which is due
to a decrease in the sensitivity over a different
frequency range (the waterbed effect). Figure 3
shows the sensitivity being reduced at least over
the range wy to we with a maximum sensitivity
of M; over this frequency range and a maxi-
mum magnitude over all frequencies of M. My =
max |S(jw)|, w1 € w < wa, M2 = ||Y]|o. If P
has a zero at z with Rez > 0 then S(z) = 1,
Smp(2) = Sap(z)™! and log|Sa,(2) 71 = 0. A less
conservative bound on the peak sensitivity may
be found by assuming that the peak occurs close
to the sensitivity reduction or that the sensitivity
is unity at low (w < wj) and high frequencies
(w > wp) as in Fig. 3 which gives the following
inequality when the integral of log|S(jw)| is ap-
proximated by using the idealised bandstop filter:

z log |Sap(2) 7| < [tan‘l(ﬂ) ftan_1<ﬂ)]log(M1)+
2 o0 o0

[tan* ! (L;—; ) —tan! (:—(I)) +tan ! (Z—Z) —tan ! (Z—j) ]log(Mz)
log |Sa,,(z)_1| < c1log(My) + calog(Mz) (3)

with ¢ = 1 — ¢, therefore the maximum sensitiv-

ity has a lower bound of:
e

-1
||S||oo =M > Mp = Sap(z)ﬁMll_cl >1 (4)

Assuming w; and wy are constant the worst case
peak sensitivity with respect to the location of the
RHP-zero will occur when ¢; is a maximum which
is at 09 = y/wiwz. Instead of using the Poisson
integral together with piecewise approximations of
the sensitivity to find a lower bound for the peak
it could be used to analysis an idealised case. If
the trough of the sensitivity is an ideal bandstop
then the location and width of the peaks can
be selected and the peak sensitivity calculated.
Figure 4 shows an ideal piecewise sensitivity which
has a bandwidth and attenuation close to the
actual sensitivity using the controller designed
in section 5. The peaks of the calculated ideal



sensitivity and the actual sensitivity are fairly
close. One reason for this good match is that the
actual sensitivity is nearly symmetrical in shape
with two peaks of roughly the same magnitude.
This enables a quantitative assessment to be made
of the cost of rudder-roll reduction in terms of
the roll amplification at other frequencies without
actually going through the design process.

ch| W, W, cdh W
Fig. 3. Sensitivity for unstable zero with bound.
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Fig. 4. Sensitivity approximation.

4. QUANTITATIVE FEEDBACK THEORY

Quantitative Feedback Theory (QFT) is a power-
ful robust control design technique developed by
Isaac Horowitz [5]. The philosophy of Horowitz
was that the principle reason for the use of feed-
back is plant uncertainty due to parameters and
disturbance. QFT can be described as a trans-
parent technique which uses the uncertainty up-
front and reveals the tradeoff between perfor-
mance specifications, plant uncertainty and the
complexity of the controller. The basic objective
of QFT is to design a SISO controller (cascaded
for MIMO problems) which will have robust sta-
bility and robust performance for parametric un-
certainty and will have the minimum bandwidth
and complexity.

In QFT it is assumed that the plant uncertainty
is represented by a set of templates P on the com-
plex plain (polar form) within each is enclosed all
possible frequency responses P(jwy) for some fre-
quency wg. For each frequency the set P, should
consist of a finite number of elements therefore
‘P, should be obtained by using a discrete grid of
uncertain parameters. The performance specifica-
tions consists of constraints (W (w)) on the mag-
nitude of a closed-loop frequency response F(s).

If the controller is C'(s) then the main process in
QFT is translating the frequency domain specifi-
cation W on the uncertain feedback system into
bounds in the complex plain (or Nichols chart)
where the nominal loop transmission (Lo = PyC :
Py € P,) should lie within.

A bound is obtained by determing all possible po-
sitions on the Nichols chart which the uncertainty
template of P(jw) can be translated without rota-
tion such that the performance specification F'(s)
satisfies its magnitude bound of W (w). In the past
this was a manual graphical task in the Nichols
chart which made the calculation of bounds very
laborious. With the advent of computer pack-
ages the bounds could be found by numerical
searches and the state of the art method is now
via quadratic inequalities implemented in [3]. To
demonstrate this the bound calculation is shown
for an output disturbance rejection problem. If the
plant and controller in polar form is P = pe’?
and C = ce’? respectively then the performance
constraint is:
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Square both sides and evaluate the magnitude
gives:

1
c2p? + 2¢cp cos(p +6) +1
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Rearranging gives the quadratic inequality which
maps the uncertain plant and the closed-loop
specification into the QFT bounds:

Elp*H2p cos(¢p + O)H1-W(w) ] >0 (7)

For a plant P € P, a frequency w and the
controller phase ¢ the unknown parameter in
the inequality is ¢ = |C(w)|. If the quadratic
inequality is considered an equality then it has two
solutions ¢(¢) and ¢(¢) which gives the range of
the controller ¢ magnitude for a specific controller
phase ¢. If the uncertain plant is defined by the set
P = {Pi(s),...,Pa(s)} and the controller phase
is the discrete set Q@ = {¢1,...,¢r} then the
bound for the frequency w over the phase range
¢ € Q) with Po(S) € P and vy = ¢ + b is:

Ly(70) = pocmax(9) (8)
Lw (’70) = pOCmin(¢) (9)
emex($) = max[e(Py)], i=1,...,n. (10)
Cmin(¢) = min[c(F;)], i=1,...,n. (11)

Although the bounds can be calculated in terms
of the controller gain and phase it is necessary
to do the loopshaping using the loop gain L
so robust stability bounds can be used. The L
bounds are obtained by multiplying the controller
bounds by the nominal P, which is any one of
the plants from the set P. In practice there will
be a number of performance specifications: robust



performance, robust stability, control effort each
of which will produce a bound for each of the
frequencies chosen. For each frequency the final
bound will be the boundary of the union of the
set of bounds.

Design Specification:

The design specifications can be in the time domain and
translated into the frequency domain although some con-
servativeness may be introduced. Or the specifications may
be directly in the frequency domain as constraints on the
disturbance sensitivity, control sensitivity and robustness
margins.

Representation of Uncertainty:

For a discrete number of chosen frequencies the gain and
phase are needed for a discrete number of different plants.
This information could be obtained from changing param-
eters in a linear model or directly from frequency response
data from the physical plant. The uncertainty templates
on the Nichols chart should be a smooth approximation.
For most problems it is sufficient to use only the boundary
of the templates and not internal points.

Nominal Plant Selection:

Any of the plants can be chosen as the nominal one al-
though it may be convenient to use the plant which has
the most probable dynamics.

Bound Generation:

Once bounds have been computed it may be apparent
that the selection of the frequency array for the templates
may not be ideal. Frequencies should only be used where
templates change shape significantly which is usually not
at high or low frequencies. If after the design is completed
successfully in terms of the bounds on the Nichols diagram
but on a Bode diagram the closed-loop does not meet the
specifications at some frequencies, then these frequencies
should be added for bound recalculation.

Loop Generation:

The open-loop frequency response L(jw) = Pp(jw)C(jw)
is shaped by adding dynamic elements to the nominal plant
such that open-loop function lies on or above the bounds.
If the bounds are satisfied for the nominal plant then the
specifications are satisfied for all plants described by the

uncertainty.

5. RUDDER ROLL DESIGN

The closed-loop specifications are defined by:
wpr=0.2rad/s, wy,=0.4rad/s, M,,= -2db, a,=5db,
M,y= 20db, w > 0.05 = wyp rad/s, Syy < Myy
= 10db, w < 0.05rad/s, Syy < 20logio(400(w? +
0.0012)) db, My,= 0db. The uncertainty sets for
yaw (Py) and roll (P,) are constructed from the
frequency responses for

GM = {0.55,0.6,0.7,0.83,0.9,1.0,1.1,1.2} [m]
(Fig. 5) at 13 frequencies.

5.1 Yaw Control

The objective is to find a controller which rolls
off well before the roll natural frequency, of low
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Fig. 5. Variation of Py and P, with GM.
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complexity such that the following specification is
satisfied:
1

1+ Py(jw)Cy (jw)

< Syy(w), VPy € Pf12)

A controller (Fig. 7) which achieves this specifica-
tion is:
—12(s+0.4)

Cy = (+1)(s+1)

(13)
Figure 6 shows the nominal loop (L¢) satisfying
the bounds. The negative controller sign is to
shift the nominal loop into the right phase region,
The zero (z = —0.4) provide phase-lead to satisfy
the high frequency bounds which are the stability
bounds. The two poles (p = —1) are there to
roll off the controller gain before the frequency
region where the roll controller is significant. The
controller is simple and the robust performance
bounds are satisfied by using the gain of 12. The
specification here is not the true yaw sensitivity
when the roll loop is closed but the best approxi-
mation since the roll controller is not yet designed.
Part of the roll design specifications will be to
make sure that the true sensitivity meets the same
specifications. If it doesn’t then the yaw controller
would have to be designed again to prevent the roll
controller design being compromised.
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Fig. 6. Nominal loop for yaw, Lg with bounds.

5.2 Roll Controller Design

The objectives are to find a controller of minimum
complexity such that the following specifications
are satisfied:

Bound on the gain and phase margins for the both the yaw
and roll loops being closed:
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Fig. 7. Frequency response of yaw controller, Cy.

1
14+Py(jw)Cyp(jwHPe(jw)Co(jw)
Roll damping sensitivity:
1+ Py () Cy ()
14+Py(jw)Cy(jwHPo(jw)Co(jw)
Preservation of yaw sensitivity:

1+ P, (jw)cv,(jw)
14+Py(jw)Cy(jwHPp(jw)Co(jw)

Roll-yaw crossover sensitivity:

— Py (jw)Cy (jw)
1+Py(jw) Cyp(dw P jw)C (dw)

Yaw-roll crossover sensitivity:
—Py (jw)Cy (jw)
1+Py(jw)Cy(w)H+Pe(jw)Co(jw)
A controller (Fig.9) which achieves these specifi-

cations is:
—800(5+0.1)?(5240.09455+0.021)

o= (511)2(s%+85+16) (s°+0.145510.021)

Figure 8 shows the nominal loop (L§) and the
bounds. The Nichols plot is single-sheeted since it
only has a phase range of 360°. Since the nominal
loop has a phase range greater than 360° it wraps
around the plot such that frequency w, is after
wgq. The bounds show the resonant characteris-
tics of the system needed for performance while
the bounds around the -1 point show the robust
margins. Frequency point (a) should lie outwith
the contour of bound (a). This is a consequence
of the robust margin not being strictly satisfied
and does not affect the robust performance. Its
possible that a more complex controller could
satisfy this bound or the specifications could be
changed but the violation is not serious to the de-
sign. The significant controller elements are C, =

—800(s+0.1)(s+0.1) (5°40.09455+0.021)
GID(s+1) - The elements S g aoam

are used to achieve robust performance at (b) and
the denominator element (s2 + 8s + 16) is used to
roll the controller off at high frequencies.

<2, VB, €P,, VR, EP,

<Spld), VB €Py, VR, €,

<Syylw), VB, €Py, VR, €P,

<Spylw), VB, €Py, VB, €P,

< Syow), VB, €Py, VR, €P,

(14)

The design of the controller follows a similar strat-
egy as suggested by Horowitz for non-minimum
phase feedback systems [4]. The strategy is to have
multiple gain cross-over frequencies and to swing
L(jw) clockwise to a region where |L(jw)| > 1
such that -1 is not encircled. The principle ele-
ments of the controller are used at the low fre-
quency region to shift the phase such that —180°

is passed before the gain is greater than unity. The
next part of the controller is phase lead to post-
pone the next passing of —180° until the gain is
less than unity at the second cross-over frequency.
The complex poles and zeros in the full controller
are there such that this principle holds for the
range of GM to achieve robust performance.
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Fig. 8. Nominal loop for roll, L§ with bounds.

i
107 10" 10
Frequency (rad/sec)

Phase deg
Wb
&
3
T

@

2

3
T

H H
107 107 10 10°

10°
Frequency (radisec)

Fig. 9. Frequency response of roll controller, C,.

5.3 Robust Performance Verification

The closed-loop sensitivities are compared with
the specifications in Figures 10 and 11. All the
frequency domain objectives have been met. The
roll sensitivity attenuation extends far below the
bound which is not quite true to the principles
of QFT in that the controller should have the
minimum gain and be as close as possible to the
bound. The actually roll damping specified was
not very demanding but it was realised that since
a low order controller was to be used that the
roll attenuation would be a lot greater since the
bandstop filter would be close to a notch and
not an ideal trough. The specification could have
been chosen to be closer to the expected shape of
the sensitivity but it would not have affected the
design.

5.4 Simulation Results

The controller is evaluated using a nonlinear sim-
ulation with GM = 0.55m, GM = 0.83m and GM
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Fig. 10. Roll sensitivity with specification.
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Fig. 11. Yaw sensitivity with specification.

= 1.2m. The waves have a significant height of
hi/3 = 3m, a period T,, = 8s and an angle of
X = 20°. The ship is at its nominal speed of
U = 12.7m/s and the rudder has constraints of
|0|maz = 35 and |0|maz = 4.6°/s. Figure 12 shows
the results for GM = 0.55m with and without the
roll controller used (- - only yaw controller). For
this GM in this sea state the rudder is saturating
due to the roll controller. The roll reduction ratio
(rry=1- fopeontroton) ig rpry = 0.2 during rudder
saturation and rry = 0.4 at other times. For
GM = 0.83m (Fig.13) rrgy = 0.52 and for GM
= 1.2m (Fig.14) rry = 0.53. The limited results
do demonstrate that the roll controller has the
desired robust performance for variations in GM
while controlling the ships heading adequately.

6. CONCLUSIONS

The demanding problem of designing controllers
to use the rudder for simultaneous course keeping
and roll reduction was made more transparent
by using approaches which give more insight to
the design process and tradeoffs. A formula for
complex functions was used to quantify the lim-
itations of performance for roll damping before
a controller was designed and QFT was used to
design low order robust controllers. Future work
should incorporate the rudder constraints into the
QFT design process and increase the number of
uncertain parameters.
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Fig. 12. Ship response for GM = 0.55m.
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Fig. 13. Ship response for GM = 0.83m.
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Fig. 14. Ship response for GM = 1.2m.



