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Abstract

One of the simplest, and yet most consistently well-performing set of classifiers is
the näıve Bayes models (a special class of Bayesian network models). However, these
models rely on the (näıve) assumption that all the attributes used to describe an
instance are conditionally independent given the class of that instance. To relax
this independence assumption, we have in previous work proposed a family of mod-
els, called latent classification models (LCMs). LCMs are defined for continuous
domains and generalize the näıve Bayes model by using latent variables to model
class-conditional dependencies between the attributes. In addition to providing good
classification accuracy, the LCM model has several appealing properties, including
a relatively small parameter space making it less susceptible to over-fitting. In this
paper we take a first-step towards generalizing LCMs to hybrid domains, by propos-
ing an LCM model for domains with binary attributes. We present algorithms for
learning the proposed model, and we describe a variational approximation-based
inference procedure. Finally, we empirically compare the accuracy of the proposed
model to the accuracy of other classifiers for a number of different domains, includ-
ing the problem of recognizing symbols in black and white images.
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1 Introduction

Classification is the task of predicting the class of an instance from a set of
attributes describing that instance, i.e., to apply a mapping from the attribute
space into a predefined set of classes. When learning a classifier we seek to find
such a mapping based on a database of labelled instances. Classifier learning,
which has been an active research field over the last decades, can therefore be
seen as a model selection process where the task is to find the single model,
from some set of models, with the highest classification accuracy.

One of the simplest and yet still well-performing set of classifiers is the näıve
Bayes model [1,2]. Generally, in the näıve Bayes models all attributes are as-
sumed to be conditionally independent given the class variable. This assump-
tion is clearly violated in many real world domains, and it has inspired several
extensions of the basic model. These extensions can roughly be characterized
as either (i) using a set of models that admits a more general correlation
structure or (ii) relying on a preprocessing of the data. As an example of the
former, Friedman et al. [3] propose the tree augmented näıve Bayes (TAN)
model; in the TAN framework, each attribute is allowed to have at most one
parent besides the class variable. Another approach is to preprocess the data
before learning the classifier s.t. the transformed data abides to the indepen-
dence assumptions of the model class. This approach has been pursued by e.g.
Bressan and Vitria [4], who consider applying a class conditional independent
component analysis [5] and then using a näıve Bayes model on the transformed
data.

Transforming the data to fit the independence assumptions needs not be per-
formed as a filtering step (independent of the classifier), but can instead be
integrated into the model structure. This is, for example, the approach imple-
mented in the framework of latent classification models [6]. In a latent classi-
fication model (LCM), the conditional dependencies among the (continuous)
attributes are encoded using latent variables, which allow the model to be
interpreted as a combination of a näıve Bayes model and a mixture of factor
analyzers [7]. Besides providing a high classification accuracy, the parameter
space of LCMs is also relatively small making the model less susceptible to
overfitting [8]. Moreover, the use of latent variables provides a well-defined
semantics and a transparent model structure that admits analysis.

In this paper we propose an extension to our previous work on latent classifi-
cation models [6]. Compared to LCMs, which target domains containing con-
tinuous attributes only, the present paper introduces binary LCM (bLCM),
which takes a first step towards general hybrid domains by focusing on do-
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mains with binary attributes. More specifically, the bLCM model shares the
latent structure of the original LCM model, but instead of focusing on con-
tinuous attributes the bLCM model assumes all attributes to be binary. We
describe algorithms for doing both learning and inference in bLCMs, and we
present promising results from a comparison of the classification accuracy of
the proposed classifier and the accuracy of other classifiers in these types of
domains.

2 Notation

In the context of classification, we shall use {T1, . . . , Tn} to denote the at-
tributes describing instances to be classified; when considering continuous
domains we let sp (Ti) = R and when focusing on binary domains we let
sp (Ti) = {0, 1}, for all 1 ≤ i ≤ n. Furthermore, we shall use Y to denote
the (discrete) class variable, where sp (Y ) is the set of possible classes (for
notational convenience we also assume that sp (Y ) = {1, 2, . . . , |sp (Y )|}).

When doing classification in a probabilistic framework, a Bayes optimal clas-
sifier will classify a new instance t = (t1, . . . , tn) to class y∗ according to

y∗ = arg min
y∈sp(Y )

∑

y′∈sp(Y )

L(y, y′)P (y′|t), (1)

where L(·, ·) is the loss-function, see e.g. [8–10]. An example of such a loss-
function is the 0/1-loss, where L(·, ·) is defined s.t. L(y, y′) = 0 if y = y′ and 1
otherwise. When learning a probabilistic classifier, the task is therefore to learn
the probability distribution P (Y = y|T = t) from a set of N labeled training
samples DN = {D1, . . . , DN}, where Di = (ti1, . . . , t

i
n, yi) is a configuration

over the attributes together with a class label.

3 Binary Latent Classification Models

As mentioned in Section 1, one approach for handling the conditional depen-
dencies between the attributes is to perform a data transformation within the
classification model. For example, the LCM model [6] embeds a factor analysis
(FA) model, which makes a dimensionality reduction based on the covariance
structure of the data; the data relevant for classification is thus summarized
by a collection of continuous latent variables. The model proposed in [6] is re-
stricted to continuous domains, but in this paper we take a first step towards
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a generalization to hybrid domains. Particularly, we shall consider the case
where all attributes are binary, resulting in the so-called bLCM model.

In what follows we give a brief description of the LCM model, and after that
the bLCM model is introduced.

3.1 The LCM Model

The LCM model can roughly be seen as combining an FA model with a näıve
Bayes model. The FA model describes the attributes, T , using a q-dimensional
vector of factor variables X (with q ≤ n) and by assuming the generative
model

T = WX + ǫ,

where W is the regression matrix. In its most common setting, the FA assumes
X ∼ N (0, I), and ǫ ∼ N (0,Θ) is an n-dimensional random variable with
diagonal covariance matrix Θ, leading to the assumption that T follows a
Gaussian distribution as well. In this model, the factor variables model the
dependencies among the attributes, and ǫ is interpreted as the sensor noise
associated with the attributes. In the LCM setting, the FA model was extended
to suit classification by specifying a class-conditional prior distribution for the
latent variables X, i.e., X | {Y = y} ∼ N (µy,Γy), where Γy is a diagonal
matrix (see Fig. 1).

X1 X2

T5T4T3T2T1

Y

Fig. 1. The Bayesian network representation of an LCM with n = 5 attributes and
q = 2 latent variables. Note that all latent variables as well as the attributes are
continuous (indicated by double circles).

3.2 The bLCM Model

The factor analysis setup used in [6] has many desirable properties, including
a relative small parameter space and a robust and simple parameter esti-
mation procedure (based on the maximum likelihood principle [11]). When
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generalizing the LCM model to discrete domains we still assume continuous
latent variables, resulting in a so-called latent trait model [12]. 1 That is, we
assume that there exists a vector X of latent variables and local probability
distributions P (ti|X = x) such that

P (t, y) = P (y)
∫

Rq
f(x | y)

n∏

i=1

P (ti|x) dx.

Analogously to LCMs, a bLCM can be seen as combining a latent trait model
with a näıve Bayes model. Hence, the factor variables X appear as children
of the class variable in the graphical representation of the model (see Fig. 2).
More specifically, the variables can be partitioned into three disjoint subsets:
{Y } is the class variable, T is the set of binary attributes, and X is the set
of latent variables (X has the same role as the factor variables in an FA). In
a bLCM the class variable appear as root, T constitute the leaves with only
latent variables as parents, and the latent variables are all internal having
the class variable as parent and the attributes as children. Note that in a
bLCM, the latent variables are conditionally independent given the class, but
marginally dependent (see Fig. 2).

For the quantitative part of the bLCM, we assume that:

• The class variable, Y , follows a multinomial distribution, i.e., P (Y = j) =

pj, where 1 ≤ j ≤ |sp (Y )|, pj ≥ 0 and
∑|sp(Y )|

j=1 pj = 1.
• Conditionally on Y = j the latent variables X, follow a Gaussian distri-

bution with E [X | Y = j] = µj and Cov (X | Y = j) = Γj. Moreover, it
follows from the model structure that Γj has to be diagonal (meaning that
Xk⊥⊥Xl | {Y = j}, for all k 6= l and for all j = 1, . . . , |sp (Y )|).
• For each Ti there exists a vector wi ∈ R

q and a parameter bi ∈ R that
together take a vector of (unobservable) latent variables and maps it to the
log-odds of the (observable) attribute:

wT

i x + bi = log

(
P (Ti = 1 |x)

P (Ti = 0 |x)

)
.

We define g(v) = (1 + exp(−v))−1, and have that

P (Ti = ti |x) = g ((2ti − 1)(wT

i x + bi)) ,

for ti ∈ {0, 1}.

1 Some researchers assume the latent variables to be discrete and thereby define a
discrete FA, see e.g. [13].
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X1 X2

T5T4T3T2T1

Y

Fig. 2. A graphical representation of a bLCM with d = 5 attributes and q = 2 latent
variables. Note that all latent variables are continuous, whereas the attributes are
binary.

3.3 The Mixture Model

When we consider the bLCM model definition above, it is important to em-
phasize that the attributes are assumed conditionally independent of the class
variable given the factor variables (T⊥⊥Y |X), and that the same mappings,
wi, from the latent space to the attribute space is used for all classes. Thus, the
relation between the class variable and the attributes is conveyed by the latent
variables only, i.e., the latent variables summarize all the information from the
attributes which is relevant for classification. Unfortunately, as we shall see in
the following example, these independence assumptions may severely restrict
the expressive power of the model. As described in Section 4, the marginal
distribution of X cannot be expressed in closed form, thus making a formal
analysis of model expressiblity difficult. Examples 1 and 2 are therefore used
only as qualitative motivation for the forthcoming definition of the full model.

Example 1 To illustrate the expressiveness of the bLCM model, we sample
images of the digits 0, 1, 6, and 7. We do this by first training a bLCM struc-
ture on data consisting of binary images of these numbers, and afterwards
we sample from the learned model (a method for learning bLCMs is described
in Section 5). Consider the re-sampled USPS database [14], prepared by Ras-
mussen and Williams [15], which consists of 16 × 16 grey-scale images of
handwritten digits. We have binarized this data, and used the images of the
digits 0, 1, 6 and 7 (the rest were discarded) to learn a model with q = 35 latent
variables and n = 256 binary attributes, one attribute for each pixel. To make
the problem a bit difficult we specified two classes by grouping together images
of digits 0 and 1, and 6 and 7, respectively. Examples of the samples generated
from the learned model can be seen in the upper row of Fig. 3. From these
samples we clearly see that the bLCM model has poor generative properties for
the present example; several sample images are not readable by humans.

In order to extend the expressibility of the bLCM model we propose a natural
generalization, termed mixture bLCMs or mbLCMs. Intuitively, the mbLCM
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Fig. 3. Samples from a bLCM model with the two classes {0, 1} and {6, 7}. The
images in the upper line are generated from a standard bLCM, the bottom row
shows images generated from a bLCM with two mixture components. The same
random seed was used for both images in any given column, so comparing two
images in a column gives an impression of the expressibility of the two models.

can be interpreted as integrating a näıve Bayes model with either i) a mixture
of latent trait models, or ii) a combined latent trait and latent class model.
More formally, in an mbLCM we have a mixture variable M so that for each
mixture component M = m and attribute Ti there exist a vector wi,m ∈ R

q

and a parameter bi,m ∈ R that together map from the latent variables to the
log-odds of the attribute:

wT

i,mx + bi,m = log

(
P (Ti = 1 |x, M = m)

P (Ti = 0 |x, M = m)

)
.

Based on the specification above, the mbLCM defines a partitioning of the
variables into four disjoint subsets: {Y } is the class variable, {M} is the mix-
ture variable, X is the set of attributes and T is a set of latent variables. The
structure of a mbLCM is identical to the structure of the standard bLCM,
except that we also have the mixture variable M as an internal node having
Y as parent and with all variables in X as children (see Fig. 4). Moreover,
we assume that the mixture variable, M , follows a multinomial distribution,
i.e., P (M = m|Y = j) = pm,j , where 1 ≤ m ≤ |sp (M)|, pm,j ≥ 0 and
∑|sp(M)|

m=1 pm,j = 1, for all 1 ≤ j ≤ |sp (Y )|.

Observe that the mbLCM model is a proper generalization in the sense that
with |sp (M)| = 1 an mbLCM reduces to a simple bLCM. Thus, in the re-
mainder of this paper, when referring to a bLCM we mean the general mixture
model that includes the simple bLCM model as a special case.

Example 2 In order to illustrate the impact of introducing the mixture vari-
able, consider again the sampling procedure described in Example 1. For this
example we have learned a bLCM with two mixture components and 35 latent
variables. Images from this model were sampled, and the results can be seen in
the lower row of Fig. 3. The results suggests that mixture models are required
if we want a sufficiently expressive class of generative models.
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T5T4T3T2T1

X2X1 M

Y

Fig. 4. A graphical representation of a mixture bLCM with n = 6 attributes and
q = 2 latent variables. Note that if |sp (M)| = 1, then the model simply corresponds
to a standard bLCM.

Y = 1

Y = 2

E[T |Y ] E[T |Y, M = 1] E[T |Y, M = 2]

Fig. 5. The expected values for the attributes after learning a bLCM with 25 latent
variables and 2 mixture components. The first row shows the results for the first
class (digits 0 and 1), the second row gives results for the class containing digits
6 and 7. The first column gives the expected values for the attributes “overall”,
whereas the second and third column give the same results for each of the two
mixture components. We can clearly see that the mixtures are used to model the
separate digits making up each class. Note that this part of the learning is done
unsupervised, as each image is only labelled by its class and not its digit.

We further examine the bLCM by calculating the expected values for the at-
tributes conditioned on the class and the mixture variable. The results are
shown in Fig. 5, which clearly illustrates that the mixture variable accounts for
the different digits making up each class. This points towards a different view
on mixture bLCMs corresponding to Ghahramani and Hinton’s interpretation
of mixtures of FAs [7]: A mixture of factor analyzers concurrently performs
clustering (the mixture model) and, within each cluster, local dimensionality
reduction (factor analysis). Analogously, we can interpret the bLCM model as
concurrently performing clustering and, within each cluster, local classifica-
tion.

With the introduction of the mixture component, we can now show that the
mbLCM can approximate any distribution over {Y } ∪ T arbitrarily well.
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Proposition 1 Assume that Y is distributed as P (Y = i) = pi for i ∈
{1, . . . , |sp (Y )|}, and let P (T1, . . . , Td = t1, . . . , td | Y = y) be given. Then the
joint distribution for (Y, T ) can be approximated arbitrarily well by a bLCM
model.

The proof is constructive, i.e., we will show how to construct a bLCM, which
can approximate any probability distribution P (T = t|Y = y) arbitrarily
well. First, however, we need some notation: The idea of the proof is to let
the mixture variable have one state for each configuration of T , i.e., sp (M) =
{0, 1, 2, . . . , 2d − 1}. Each state of M maps to a specific configuration over
T ; specifically, we use the binary representation of the state of M as the
configuration over T . If, for instance, d = 5, then M has 25 = 32 states. The
configuration t = (1, 0, 0, 1, 0) is represented by the 18th state of M , as 10010
is the binary representation of 18. We use the notation t↔ m to denote that
a state m coincides with the configuration t, so in our example we have that
{M = 18} ↔ {t = (1, 0, 0, 1, 0)}.

Proof 1 Consider a bLCM, where:

• The graphical structure consist of one latent variable X, d binary attributes,
and a mixture variable M .

• The size of the state space of the mixture variable is |sp (M)| = 2d

• Conditional on Y = y, X follows a Gaussian distribution with µX | y = 1
and σ2

X | y = ǫ, for all y ∈ sp (Y ).
• For a fixed m and t↔ m we set wi,m = η > 0 if ti = 1 in t and wi,m = −η

otherwise.

By marginalizing out X from the distribution specified by the bLCM we get:

P (t | y)=
∫

x
P (t | x, y) f(x | y) dx

=
∫

x

∑

m

P (t | x, y, m)P (m | y)f(x | y) dx

=
∫

x

∑

m

P (t | x, m)P (m | y)f(x | y) dx

=
∑

m

P (m | y)
∫

x

n∏

i=1

P (ti | x, m)f(x | y) dx

=
∑

m

P (m | y)P (t |m, y) (2)

Next, let η → ∞ and ǫ → 0 in Equation (2), then P (T = t | Y = y, M =
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m)→ 1 if and only if t↔ m and 0 otherwise. Thus, we have

P (t | Y = y)=
∑

m′

P (t | Y = y, M = m′)P (M = m′ | Y = y)

=P (M = m | Y = y, m↔ t)

in the limit. The last step is to define P (M = m | Y = y), and since we
have as many states of M as there are configurations over t, we can choose
P (M = m | Y = y) = P (t|y, t↔ m), and the result then follows. �

4 Inference in bLCM models

Making classification in a bLCM amounts to calculating P (y | t) (confer Equa-
tion (1)). As P (y | t) = P (y, t)/P (t), where P (t) is independent of y (and
therefore can be regarded as a normalization constant), we will in the follow-
ing focus on calculating

P (t, y) = P (y)
∫

Rq

{
d∏

i=1

P (ti |x)

}
f(x|y)dx, (3)

for a bLCM with a single mixture component, i.e., having |sp (M)| = 1.

It is, however, well known [16,17] that this integral cannot be calculated an-
alytically. In the following we therefore derive a variational approximation
[16–19] for this expression.

As a starting-point, consider the integral

P (t | y)=
∫

Rq

{
d∏

i=1

P (ti |x)

}
f(x | y)dx

=
∫

Rq

{
d∏

i=1

P (ti |x)

}



q∏

j=1

1√
2πσj,y

exp

(
−(xj − µj,y)

2

2σ2
j,y

)

 dx, (4)

where the second equality follows when we assume that Xj | {Y = y} ∼
N (µj,y, σ

2
j,y) and that Xk⊥⊥Xl | Y for k 6= l. This likelihood function can-

not be calculated in closed form, but fortunately Tipping [17] showed how a
similar model can be handled with a variational approximation. Following his
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procedure, we introduce

P̃ (ti |x, ξi) = g(ξi) exp((Ai − ξi)/2 + λ(ξi)(A
2
i − ξ2

i )), (5)

where

Ai = (2ti − 1)(wT

i x + bi) and λ(ξi) =
exp(−ξi)− 1

4ξi(1 + exp(−ξi))
.

The function P̃ (ti |x, ξi) is a variational approximation to P (ti |x), hence P̃ (ti
|x, ξi) ≤ P (ti |x) for all ξi and P̃ (ti |x, ξi) = P (ti |x) for some particular
choice of ξi. It can easily be verified that equality is obtained if and only if
ξi = (2ti − 1)(wT

i x + bi).

Example 3 The left pane of Fig. 6 shows the logistic function together with
three variational approximations defined by ξ = 1, 2, 3. From the example, we
see that for a given value of A = wTx + b the quality of the variational ap-
proximation depends on the chosen value of ξ. For instance, with ξ = 1, the
approximation is accurate for A ≤ 1.5. The right figure shows the variational
error for P̃ (T = 1 |X, ξ = 1) as a function of A (dotted line). Using N(0, 1) as
prior distribution for X, the figure also shows the resulting variational approx-
imation for the posterior distribution for X given T = 1 (specified below). 2

K3 K2 K1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ξ = 1

ξ = 2

ξ = 3

g(·)

A
K3 K2 K1 0 1 2 3

0.05

0.10

0.15

0.20

A

Fig. 6. The left pane shows P (T = 1 |X) (solid line) and P̃ (T = 1 |X, ξ) as functions
of A; for the variational approximations we have used ξ = 1, 2, 3. The right pane
shows the variational error for P̃ (T = 1 |X, ξ = 1) as a function of A (dotted line),
as well as the (scaled) variational approximation for the posterior distribution for
X given T = 1.

Since the variational distribution is of a Gaussian shape (quadratic in xj in the
exponential), the variational approximation of the posterior of X , X | {T =
t, Y = y, ξ}, is also of this type. We use µp

y and Γp
y for the expectation and

2 The posterior approximation is scaled to fit the graph.
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variance of this posterior. The updated parameters can be found after some
algebraic manipulation (see Appendix A):

Γp
y =

[
Γ−1

y − 2
d∑

i=1

λ(ξi)wiw
T

i

]−1

; (6)

µp
y =Γp

y

{
Γ−1

y µy +
d∑

i=1

[
ti −

1

2
+ 2λ(ξi)bi

]
wi

}
, (7)

where, µy = (µ1,y, . . . , µq,y)
T and Γy = diag(σ2

1,y, . . . , σ
2
q,y) are the a priori

expectation and variance of X given Y = y.

We are also able to calculate a lower bound for the integral in Equation (4)
(see Appendix B):

f(t | y)≥
∫

Rq

{
d∏

i=1

P̃ (ti |x, ξi)

}



q∏

j=1

1√
2πσj,y

exp

(
−(xj − µj,y)

2

2σ2
j,y

)

 dx

= exp

{
−1

2
µT

yΓ
−1
y µy +

1

2
(µp

y)
T(Γp

y)
−1µp

y +
1

2
log

( |Γp
y|
|Γy|

)}
·

exp

{
d∑

i=1

{
log(g(ξi))− ξi/2 + λi(b

2
i − ξ2

i ) +
1

2
(2ti − 1)bi

}}
. (8)

The approximation above depends on ξ = (ξ1, . . . , ξd)
T, but since X is not

observed we cannot directly calculate the value for ξ that maximizes the lower
bound f̃(t | y, ξ). Instead we can maximize the expected complete data log-
likelihood E(log f(t, x | y, ξ)). It was shown by Murphy [20] that the ξi maxi-
mizing this expression is determined by ξ2

i = E [(wT

i X + bi)
2|y, T ]. However,

since this value depends on Γp
y and µp

y an iteration scheme is required, as
shown in Algorithm 1.

For the initial guesses on Γp
y and µp

y we simply use the prior covariance matrix
and mean vector. For the initial value of ξ we follow the approach by [20]: for
a data case with Y = y, we take Γy and µy and plug them into Equation (9) to
estimate ξ. That is, the initial estimate is found by only taking the state of Y
into account. For instance, in Example 3 we used N(0, 1) as prior distribution
for X, which resulted in the initial estimate ξ = 1. Moreover, by conditioning
on T = 1 the iterative updating procedure above returns Γp

y = 0.812 and
µp

y = 0.406 after three iterations (see the right pane in Fig. 6).
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Algorithm 1 Approximate f(t|y) using the variational approximation

1: Start with initial guesses for Γp
y, and µp

y. w1, . . . , wd and b are assumed
to be known.

2: repeat

3: Update values for ξ by setting

ξi←
√

E [(wT

i X + bi)2|T , y]

=
√

(µp
y)Tµ

p
y + wT

i Γ
p
ywi + 2biw

T

i µy + b2
i (9)

4: Calculate Γp
y and µp

y using the current ξ (Equations 6 and 7).
5: until Finished

It should also be noted that although we can always fix ξ and make the lower
bound arbitrarily tight for given values of Ai = (2ti− 1)(wT

i x + bi), the lower
bound is tight only point-wise. However, when approximating the likelihood
f(t, y) variationally, we will select one value for ξi when defining P̃ (ti |x, ξi),
i.e., we treat ξi as a constant when we integrate over x. This will give us a
“variational error”; to obtain equality we would have to set ξi equal to Ai for
each x (and Ai is obviously not constant in x). This is illustrated in the right
pane of Fig. 6, where the total variational error can be found by integrating
the error function (with the updated value for the variational parameter) using
the prior distribution over X.

4.1 Inference in Mixture Models

When performing inference in a bLCM with a mixture variable M , we need
to calculate

f(t | y) =
∫

Rq

∑

m∈sp(M)

P (y)P (m | y)f(x | y)P (t |x, m)dx

= P (y)
∑

m∈sp(M)

P (m | y)
∫

Rq
f(x | y)P (t |x, m)dx.

Evaluating the integral is done exactly as before, except that the weight vectors
are also indexed with m. Thus, when applying the variational approximation
to evaluate the integral we introduce a variational parameter ξi,m for each
attribute Ti and for each mixture component m ∈ sp (M).

Finally, since the variational parameters are conditioned on the mixture vari-
able, the updating rule in Equation (9) as well as the posterior covariance
matrix (Equation (6)) and the mean vector (Equation (7)) are of exactly the
same form as before. This also means that the complexity of performing infer-
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ence in a bLCM increases only linearly in the number of mixture components.

5 Learning bLCM models

In this section we describe a method for learning bLCMs from data. The
algorithm basically consist of two parts: a score function for evaluating the
quality of a model and a search strategy for investigating the space of bLCMs.

In the proposed algorithm we score a model based on its accuracy, which is
estimated using the wrapper approach [21]. That is, the score is given as the
average accuracy found by applying cross-validation over the training data.

5.1 The general structure

In order to specify a search strategy, we first note that the space of bLCMs
is defined by (i) the number of latent variables, (ii) the number of mixture
components, and (iii) the parametrization of the probability distributions.

Thus, the learning algorithm can be divided into two parts: (i) a systematic
approach for selecting appropriate values for q and the number of mixture
components, |sp (M)|, and, given such a pair of values, (ii) algorithms for
learning the parameters in the model. More formally, a general bLCM learning
algorithm can be formulated as in Algorithm 2, where appropriate values for
q and |sp (M)| are selected using the wrapper approach.

Algorithm 2 Learn a bLCM classifier from a database DN using the wrapper
approach.

1: for possible values of q and |sp (M)| do

2: Partition the database into W wrapper folds W1, . . . ,WW .
3: for w = 1, . . . , W do

4: Learn a classifier from the dataset DN \Ww.
5: Calculate the accuracy on the remaining training-set Ww.
6: end for

7: Score the parameter-pair (q, |sp (M)|) by the average accuracy ob-
tained over the wrapper folds.

8: end for

9: Select the optimal values of q and |sp (M)|.
10: return classifier learned with these parameters.
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5.2 The EM algorithm

The parameters in the model are estimated by applying an EM-algorithm [22]
for bLCMs. Unfortunately, taking direct outset in the bLCM specification is
not possible, since the E-step of the algorithm requires inference in the under-
lying model, and as we have seen, this is not analytically available. Instead
we focus on the variational approximation. By using the variational approx-
imation we get a lower bound f̃ on the marginal likelihood. Thus, rather
than maximizing the marginal likelihood directly, we instead maximize the
expected data-complete variational log-likelihood E log(

∏N
i=1 f̃(· |Di)), which

is guaranteed never to decrease the marginal likelihood.

In the following we let ~wi be the vector defined by ~wi = [wT

i , bi]
T, and define

~X as the augmented column vector of factors, i.e., ~X = [XT, 1]T. Recall that
we use yj to denote the class belonging of observation Dj, and we shall use
#y to denote the number of observations in D for which Y = y.

The updating rules (M-step) for the EM-algorithm are given as follows (the
derivations can be found in Appendix C):

P̂ (Y = y)← #j : yj = y

N

P̂ (M = m|Y = k)← P̂ (M = m|Y = k)
∑

j:yj=k P (tj|M = m, Y = k)

#{j : yj = k}

µ̂y ←
1

#y

N∑

j=1:yj=y

∑

m

P (M = m |Dj)E(X |M = m, Dj)

Γ̂y ← diag

(
1

#y

N∑

j=1:y:j=y

∑

m

P (M = m |Dj)·

E((X − µy)(X − µy)
T |Dj, M = m)

)

~̂wi,m ← −


2
N∑

j=1

P (M = m |Dj)λ(ξijm) · E( ~X ~X
T|Dj , M = m)




−1

·



N∑

j=1

(
tij −

1

2

)
P (M = m |Dj)E( ~X|Dj , M = m)




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The E-step basically amounts to calculating E(X|Dj, M = m) and E(XXT|
Dj, M = m) (see Appendix C). The expectation E(X|Dj, M = m) is given
by Equation (7) (conditioned on M = m) and E(XXT|Dj, M = m) is found
using

Σp = E(XXT|Dj , M = m)− E(X|Dj , M = m)E(X|Dj, M = m),

where Σp is given by Equation (6). Finally, E( ~X|Dj) = [E(X|Dj)
T, 1]T and

E( ~X ~X
T|Dj) =




E(XXT|Dj) E(X|Dj)

E(X|Dj)
T 1


 .

It should be noticed that the updating steps above depend on the variational
parameters, which in turn depend on Γp and µp. Hence, each iteration of the
EM algorithm also involves updating the values for ξ.

We end this section by noting that as an alternative to the generative models
described here, one could also look for discriminative models inside the class
of bLCM models, i.e., learn the parameters that maximise the conditional
log likelihood, E log(

∏N
i=1 P (yi | ti)) or a variational variant thereof. Empirical

evidence [23–26] support that discriminative models generally obtain better
classification results than generative models. However, learning the parameters
that maximize the descriminative likelihood is NP-hard even when all data is
observed [24], and we therefore leave learning of discriminative models as a
topic for future research.

6 Experimental results

6.1 Classification accuracy

In this section we investigate the classification accuracy of the proposed clas-
sifier. We start by considering classification of handwritten digits collected in
the USPS database [14]. The results are based on the re-sampled database,
prepared by Rasmussen and Williams [15]. This database consists of 4649
training examples and 4649 test-examples. The examples are distributed un-
evenly among the classes, as described in Table 1.

The twenty first images in the test-set are shown in Fig. 7. The images are of
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Digit Training-set Test-set Digit Training-set Test-set

0 767 16.5% 786 16.9% 5 361 7.8% 355 7.6%

1 622 13.4% 647 13.9% 6 420 9.0% 414 8.9%

2 475 10.2% 454 9.8% 7 390 8.4% 402 8.6%

3 406 8.7% 418 9.0% 8 377 8.1% 331 7.1%

4 409 8.8% 443 9.5% 9 422 9.1% 399 8.6%

Table 1
USPS dataset

size 16 × 16 pixels; they were originally grey-scale, but have been binarized
for our application. Most digits are easily recognizable by humans, although
the 16th image is difficult (it is a 4). Note also the difference in writing style
between the different images (there are, for instance, three different ways to
write the number 5 among the 20 examples).

Fig. 7. The first 20 images of the test-set.

When learning the bLCM models we use Algorithm 2 with 10 wrapper folds.
We report results for bLCMs without mixtures (denoted bLCM (|sp (M)| = 1)
in Table 2), as well as the general mbLCM model. 3 In order to learn the prob-
ability parameters in the models we applied the EM algorithm with standard
parameter settings: The algorithm terminates when the relative increase in log
(variational) likelihood falls below 10−3 or after a maximum of 50 iterations.
The EM algorithm was run with 10 restarts; this gives a number of different
candidate models from which we should select one. The standard solution is
to choose the candidate model with the highest log-likelihood on the training
data. However, since our focus is classification we instead pick the model that
obtains the highest classification accuracy on the training-set. 4 The iterations
of the variational approximation (Algorithm 1) were terminated when the rel-
ative increase in log (variational) likelihood of the data was less than 10−3, or
when a total of 10 iterations had been performed. 5

3 For the tests reported in this section, we have restricted q to take values form the
set {2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100}. We have considered a maximum of 2
mixtures.
4 This is motivated by Vapnik’s bound (see, e.g., [27, Section 2]), and the fact that
all candidate models per definition have the same VC-dimension.
5 Earlier work, including [17,19] conclude that the variational iterations converge
very quickly, and that seldom more than three iterations are required to obtain
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For comparison, a number of other classification algorithms have also been
tested on the same dataset. The classification accuracies of the straw-men
(further described in Appendix D) are given in the left column in Table 2. For
each classifier, we give the results for three different classification problems for
the USPS dataset: “{0, 1} vs. {6, 7}” (as presented in Example 1), the ten-
class problem of classifying all digits (denoted “{0} – {9}”), and the “{3} vs.
{5}” dataset. The results show that, except for {0} – {9}, the classification
accuracy of the bLCMs is higher than the accuracy of the other classifiers
in this domain. Of particular interest is the “{3} vs. {5}” dataset, which
was singled out as being particularly difficult by Rasmussen and Williams
[15]. 6 The 20 images from the “{3} vs. {5}” dataset that the bLCM classified
wrongly are shown in Fig. 8. Although some of the images can be classified by
humans (most notably images 1, 5, 6, and 7, 11 and 12), others are inherently
difficult (i.e., images 3, 4, 9, 10, 15, 16 and 17).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 8. The 20 images that were misclassified by the bLCM classifier.

Next, we turn to classification of text documents, and the REUTERS-21578
dataset (Release 1.0) as used by Vomlel [28]. The split of data into training
and test sets was made according to the time of publication of the docu-
ments (ModApte). Classes that contained only one document were eliminated
together with the corresponding documents. The resulting datasets contain
7769 documents for training and 3018 documents for testing. The tests were
performed on the three classes containing the most documents, and for each
document-class we created a classification problem, where the task was to
decide whether or not a test document belonged to that particular document-
class (hence, we made three two-class classification problems). After remov-
ing function words and words that appear in only one document, a total of
15515 words remained. The words were coded as binary attributes, were each

a good approximation. In our high-dimentional data we have observed a different
effect, and conclude that up to ten iterations are sometimes required for approxi-
mations that are accurate enough for our learning procedure.
6 Rasmussen and Williams [15] reported a classification accuracy of 97.28% for
their Gaussian process classifier (with expectation propagation) on the “{3} vs.
{5}” dataset using the original grey-scale images; using the the binarized data we
obtained an accuracy of 95.99%. For additional comparison, we can also mention
that the accuracy of the classifier was found to be 98.71% for the “{0, 1} vs. {6, 7}”
problem using binarized data. Note that Rasmussen and Williams’ implementation
only supports two-class problems, hence fails to handle the “{0} – {9}” dataset.
We were also not able to obtain results for the REUTERS datasets; tests were
terminated after 48 hrs. CPU time on a MacBook Pro 2.6GHz Intel Core 2 Duo
with 4GB RAM.
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Classifier {0&1} vs. {6&7} {0} – {9} {3} vs. {5} crude earn acq

Majority Vote 63.72% 16.91% 54.08% 93.74% 63.98% 76.18%

Winnow 61.32% 60.77% 83.83% 97.42% 97.22% 90.95%

ANN 96.27% 94.04% 95.34% 97.35% 98.51% 97.38%

ADTree 95.02% 83.63% 92.24% 97.45% 96.36% 89.89%

1-NN 98.31% 92.88% 95.73% 95.99% 95.69% 93.24%

SVM 96.27% 84.82% 95.34% 97.78% 98.51% 97.18%

Näıve Bayes 89.42% 85.33% 94.44% 95.16% 94.00% 96.95%

TAN 96.04% 88.41% 94.44% 96.36% 93.47% 96.72%

ID3 95.33% 80.68% 89.91% 96.72% 96.42% 94.10%

Logistic Regression 92.62% 79.74% 92.63% 95.43% 96.39% 94.30%

Radial Basis Functions 92.89% 88.15% 94.67% 96.55% 94.47% 96.82%

AODE 97.69% 91.37% 95.86% 97.71% 97.65% 97.12%

HNB 96.13% 87.80% 95.47% 96.58% 92.88% 96.79%

BayesNet 89.42% 85.37% 94.44% 95.20% 94.07% 96.92%

bLCM (|sp (M)| = 1) 98.84% 89.09% 97.41% 97.91% 97.55% 97.28%

mbLCM 99.20% 93.44% 97.41% 97.02% 98.38% 97.32%

Table 2
Classification results for different digit collections from the USPS database as well
as the REUTERS datasets. Both probabilistic as well as non-probabilistic classifiers
are included (separated by the horizontal line).

attribute told of the existence (or non-existence) of a specific word in a docu-
ment. For each classification task, we then selected the 500 most informative
features using the expected information gain as feature selection criteria. The
results can be seen in the right column of Table 2. In particular, we see that
bLCMs and ANNs perform at comparative levels, and that both perform bet-
ter than the other classifiers within this domain. To put the accuracy differ-
ences into perspective, we see that when the ANN obtain better results than
the bLCM the difference reduces to a misclassification of at most four instance
(out of a total of 3018 test instances). As noted by, e.g., Kohavi [29], the gen-
erated accuracies are in fact estimators with their own underlying statistical
distribution. The standard deviations of the estimators reported in Table 2 are
of the order of approximately .5%. For instance, the 95% confidence interval
for the mbLCM accuracy on the earn dataset is [97.86%, 98.77%].

6.2 Generative models

The previous subsection showed that bLCMs offer classification accuracies
at a comparative or higher level than other classifiers. In this subsection we
investigate another aspect of the bLCM classifier, namely how the underlying
generative model can be used for classification and extrapolation of partially
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disclosed images. That is, from a partial observation, the system will generate
not only a classification, but also impute the missing part of the image based
on what is already known. We believe this to be an interesting ability for a
classifier; one potential application being a PDA that can recognize and auto-
complete symbols while they are being written. Note that this is not possible
using e.g. ANNs as they do not specify a generative model.
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Fig. 9. Using a bLCM for classifying and extrapolating an image of the digit 7 as it
is being disclosed.

An example of this process is given in Fig. 9. The first row of images shows
how the information is partially disclosed, and the second row shows how the
probability distribution P (y |Partial image) is changing as more information
is given. The third row shows the expected completion of the image given the
partial observation, and finally the last row shows the most probable (pixel-
wise) completion of the image assuming that the most probable class is indeed
the correct one. 7 Notice how the system, after having seen the two first lines
of pixels (first column of images in Fig. 9), is fairly convinced that the image
is of a 4; only 5 and 7 are considered as possible alternative hypothesis. The
reason for this is that the partial observation is consistent with an already
observed writing-style for the number 4. The second column shows the status
when two more lines of pixels are observed. The system still believes it is a 4,
but now has a different belief regarding the shape of the digit. Note how the
probability for the digit being a 5 has increased considerably. For the third
column, the white part on the left-hand side of the image is not consistent
with the image being a 5, so that is not deemed as probable as before. The
completion of the image is however difficult to interpret. Next, half of the
image is disclosed in the fourth column, and the system recognizes a 7 with

7 This example is used only to illustrate how the generative properties of the bLCM
may be exploited. Ideally, one should consider the most probable configuration over
all the unobserved attributes.
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high confidence. When the remaining pixels in the image are observed, this
hypothesis is confirmed. For comparison, Fig. 10 shows the same process for
the näıve Bayes classifier. The results of the näıve Bayes are not impressive,
as the extrapolated images (bottom row) do not look like real digits. It is also
worth noticing that the näıve Bayes ends up believing that the fully disclosed
image is a 4 instead of a 7.
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Fig. 10. Using a näıve Bayes for classifying and extrapolating an image of the digit
7 as it is being disclosed.

7 Discussion and future work

In this paper we have further developed the class of latent classification mod-
els (LCMs) [6]. Whereas the original model class were used for probabilistic
classification in continuous domains, the present extension focuses on binary
domains, e.g. black and white pictures. A binary LCM (bLCM) can, as the
LCM model, roughly be seen as a mixture of factor analyzers integrated with
a näıve Bayes model. This combination enables concurrent clustering and,
within each cluster, localized classification. bLCMs relax the conditional inde-
pendence assumptions embedded in the näıve Bayes models, thereby allowing
any probability distribution over binary attributes to be approximated arbi-
trarily well.

In our experiments, we have demonstrated that bLCMs provide good clas-
sification results in binary domains, and we found that bLCMs appear to
be better than a wide range of other probabilistic classifiers. Finally, we also
showed how the generative properties of the classifier can be exploited. In par-
ticular, we considered the classification and extrapolation of partial images,
with potential application for e.g. real-time optical character recognition.
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As part of future work, we plan to extend the bLCM/LCM model class to gen-
eral hybrid domains; a process that has already started. First, we note that
merging bLCMs for binary domains with our previous work in continuous
domains [6] is straight-forward using a two-pass scheme: Using evidence from
the continuous attributes only, we calculate the posterior distribution over the
latent variables given this partial observation. Next, we treat the posterior dis-
tribution as a prior distribution, when the binary variables are considered, and
classification can then proceed as previously described. The main challenge is
therefore to extend the bLCM framework to discrete variables. Näıvely, one
could redefine a dataset containing discrete variables by translating each dis-
crete variable into a set of binary variables: Consider the discrete variable D
with r states. Then, D can be represented using ⌈log2(r)⌉ binary variables Bi

[17]. Note that the new variables Bi are conditionally dependent, and that
latent variables must therefore be introduced to model this dependency. From
Proposition 1 we know that this can be handled within the bLCM framework,
but unfortunately the number of mixture components required is exponential
in the number of attributes. In total the number of mixture components re-
quired to model D is linear in the number of states in D. This complexity
is prohibitive, and we should rather try to find a more direct representation.
To support the integration with LCMs, we want to maintain the structure of
the bLCMs, and only modify the distributional assumption for the attributes.
The natural choice is to let the conditional distribution of a discrete variable
D with continuous parents X be defined by the soft-max function. In this
formulation, we have one set of parameters (w and b) per state d of D, and
use

P (D = d |x) =
exp(−(wT

dx + bd))∑
d′ exp(−(wT

d′x + bd′))
.

The lowerbound Equation (8) does not extend to soft-max functions [20,30],
but recent research (see, e.g., [31]) has brought some possible solutions that
we want to pursue in the future.

A The variational posterior distribution for the latent variables

In this section we derive the posterior variational distribution of the latent
variables X given a configuration T = t and Y = y. For ease of notation we
shall restrict our attention to bLCMs having no mixture variables, however,
the generalization to mixture bLCMs is straightforward.
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First of all, recall that

f̃(t, x | y) = P̃ (t |x, ξ)f(x | y)

= (2π)−q/2|Γy|−1/2 exp

(
− 1

2
(x− µy)

TΓ−1
y (x− µy)

)

d∏

j=1

g(ξj) exp((Aj − ξj)/2 + λ(ξj)(A
2
j − ξ2

j )),

where Ai = (2ti−1)(wT

i x+ bi) and A2
i = (wT

i x)2 + b2
i +2wT

i xbi; for the latter
we have used that (2ti − 1)2 = 1.

By exploiting that

P̃ (tj |x, wj , ξj) = exp

(
log(g(ξj)) +

1

2
(2tj − 1)wT

j x +
1

2
(2tj − 1)bj −

1

2
ξj

+ λ(ξj)(w
T

j x)2 + λ(ξj)b
2
j + λ(ξj)2w

T

j xbj − λ(ξj)ξ
2
j

)

we can write P̃ (tj |x, wj, ξj) on canonical form [32]. That is, P̃ (tj |x, wj , ξj)
can be written as exp(a+

j + b+
j x − xTC+

j x), where a+
j is a constant, b+

j is a
vector, and C+

j is a full-rank square matrix. By letting aj , bj , and cj denote

the contributions from a+
j , b+

j x, and xTC+
j x, respectively, we get: 8

aj = log(g(ξj)) +
1

2
(2tj − 1)bj −

1

2
ξj − λ(ξj)ξ

2
j + λ(ξj)b

2
j ;

bj =
1

2
(2tj − 1)wT

j x + λ(ξj)(2w
T

j xbj) =

(
1

2
(2tj − 1) + λ(ξj)2bj

)
wT

j x;

cj =− λ(ξj)(w
T

j x)2 = −λ(ξj)(w
T

j xwT

j x) = −xTλ(ξj)wjw
T

j x.

Similarly, f(x | y) can be written on canonical form with:

a′ =− q

2
log(2π)− 1

2
log(|Γy|)−

1

2
µT

yΓ
−1
y µy;

b′ =xΓ−1
y µy = µT

yΓ
−1
y x;

c′ =
1

2
xTΓ−1

y x.

Now, for the products P̃ (tj |x, wj, ξj)f(x | y) and
∏d

j=1 P̃ (tj |x, wj , ξj)f(x | y)

8 For this we exploit (x− µy)
T
Γ
−1
y (x− µy) = xT

Γ
−1
y x + µT

yΓ
−1
y µy − 2xT

Γ
−1
y µy.

23



we get:

a′
j =− q

2
log(2π)− 1

2
log(|Γy|)−

1

2
µT

yΓ
−1
y µy + log(g(ξj)) +

1

2
(2tj − 1)bj −

1

2
ξj

− λ(ξj)ξ
2
j + λ(ξj)b

2
j ;

b′j =

(
µT

yΓ
−1
y +

(
1

2
(2tj − 1) + λ(ξj)2bj

)
wT

j

)
x;

c′j =xT

(
1

2
Γ−1

y − λ(ξj)wjw
T

j

)
x,

and

a∗ =
d∑

j=1

g′
j;

b∗ =

(
µT

yΓ
−1
y +

d∑

j=1

(
1

2
(2tj − 1) + λ(ξj)2bj

)
wT

j

)
x;

c∗ =xT

(
1

2
Γ−1

y −
d∑

j=1

λ(ξj)wjw
T

j

)
x,

respectively. From a∗, b∗, and c∗ we have that the posterior for X given t and
y is a Gaussian distribution and by transforming back to moment form we get

Γp
y =

[
Γ−1

y − 2
d∑

j=1

λ(ξj)wjw
T

j

]−1

;

µp
y =Γp

y

[
µT

yΓ
−1
y +

d∑

j=1

(
tj −

1

2
+ 2λ(ξj)bj

)
wT

j

]
.

B A lower bound on f(t)

Since P̃ (t |x, ξ) ≤ P (t |x) for all ξ we have that f̃(x, t) ≤ f(x, t) and there-
fore f̃(t) ≤ f(t). In order to evaluate the integral f̃(t) =

∫
x∈Rq f̃(x, t)dx we
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rewrite f̃(x, t) on canonical form (see Appendix A):

f̃(t) =
∫

x∈Rq
f̃(x, t)dx

=
∫

x∈Rq
exp

(
a + bx− 1

2
xTCx

)
dx

=exp(a)
∫

x∈Rq
exp

(
bx− 1

2
xTCx

)
dx

=exp(a) exp

(
1

2
bC−1bT

)∫

x∈Rq
exp

(
− 1

2

(
xTCx− 2bx + bC−1bT

))
dx

=exp(a) exp

(
1

2
bC−1bT

)∫

x∈Rq
exp

(
(x−C−1b)TC(x−C−1b

)
)dx.

Since

∫

x∈Rq
exp

(
(x−C−1b)TC(x−C−1b)

)
dx = (2π)q/2|C−1|1/2

we get

f̃(t) = exp(a) exp

(
1

2
bC−1bT

)
(2π)q/2|C−1|1/2.

From Appendix A we have that

a =− q

2
log(2π)− 1

2
log(|Γy|)−

1

2
µT

yΓ
−1
y µy +

d∑

j=1

(
log(g(ξj)) +

1

2
(2tj − 1)bj

− 1

2
ξj − λ(ξj)(ξ

2
j − b2

j )

)
;

b =µp
yΓ

p−1;

C−1 =Γp
y.

hence,

f̃(t) = exp

{
−1

2
µTΓ−1µ +

1

2
(µp)T(Γp)−1µp +

1

2
log

(
|Γp|
|Γ|

)}
·

exp

{
d∑

i=1

{
log(g(ξi))− ξi/2 + λi(b

2
i − ξ2

i ) +
1

2
(2ti − 1)bi

}}
.
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C The EM algorithm for bLCMs

In this section we derive an EM algorithm for bLCMs. Unfortunately, taking
direct outset in the bLCM specification is not possible, since the E-step of the
algorithm requires inference in the underlying model. In particular, we should
be able to calculate the marginal likelihood of the data:

f(t, y) = P (y)
∫

Rq

{
d∏

i=1

P (ti |x)

}
f(x|y)dx,

but this integral cannot be evaluated analytically. Instead we use a variational
approximation P̃ (ti |x, ξi) (see Equation 5) to the logistic function, which
ensures that P̃ (ti |x, ξi) ≤ P (ti |x) for all ξi and P̃ (ti |x, ξi) = P (ti |x) for
some particular choice of ξi. By using the variational approximation we get
a lower bound f̃ on the marginal likelihood, and rather than maximizing the
marginal likelihood directly, we instead maximize the variational lower bound.
This operation is guaranteed to never decrease the marginal likelihood.

In order to derive the updating rules we first note that

f̃(t, x, m, y) = P̃ (t |x, m)f(x | y)P (m | y)P (y)

= P (y)P (m | y)(2π)−q/2|Γy|−1/2 exp

(
− 1

2
(x− µy)

TΓ−1
y (x− µy)

)

d∏

j=1

g(ξj,m) exp((Aj,m − ξj,m)/2 + λ(ξj,m)(A2
j,m − ξ2

j,m))

By exploiting that

(x− µy)
TΓ−1

y (x− µy) = tr(Γ−1
y xxT)− 2µT

yΓ
−1
y x + µT

yΓ
−1
y µy

and taking the logarithm we get

logf̃(t, x, m, y) = log P (y) + log P (m | y)− q

2
log 2π

− 1

2
|Γy| −

1

2
tr(Γ−1

y xxT) + µT

yΓ
−1
y x− 1

2
µT

yΓ
−1
y µy

−
d∑

j=1

log(1 + exp(−ξj,m) +
d∑

j=1

Aj,m − ξj,m

2
+ λ(ξj,m)(A2

j,m − ξ2
j,m).
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The expected data-complete variational log-likelihood is now given by

Q =E log(
N∏

i=1

f̃(· |Di)) =
N∑

i=1

E log(f̃(· |Di))

=
N∑

i=1

log P (yi) +
N∑

i=1

E(log P (M | yi) |Di)−
Nq

2
log 2π −

|sp(Y )|∑

h=1

#yh

2
log |Γyh

|−

1

2

N∑

i=1

tr(Γ−1
yi

E(XXT |Di)) +
N∑

i=1

µT

yi
Γ−1

y1
E(X |Di)−

|sp(Y )|∑

h=1

#yh

2
µT

yh
Γ−1

yh
µyh
−

d∑

j=1

N∑

i=1

E(log(1 + exp(−ξi,j,M)) |Di) +
d∑

j=1

N∑

i=1

E

(
Ai,j,M − ξi,j,M

2

∣∣∣∣∣Di

)
+

d∑

j=1

N∑

i=1

E(λ(ξi,j,M)(A2
i,j,M − ξ2

i,j,M) |Di)

(C.1)

The last two terms can be rewritten by first noticing that E((Ai,j,M−ξi,j,M)/2) =
E(Ai,j,M/2 |Di)−E(ξi,j,M/2 |Di) and E(Ai,j,M/2 |Di) = E((2ti,j−1)(wT

j,MX+

bj,M) |Di). By defining ~w = [wT

j,M , bj,M ]T and ~X = [XT, 1]T we get

E

(
Ai,j,M

2

∣∣∣∣∣Di

)
=

1

2
(2ti,j − 1)E(~wT

j,M
~X |Di).

By exploiting that (2ti,j−1)2 = 1 for ti,j ∈ {0, 1} we can rewrite Equation C.1
as

Q =E log(
N∏

i=1

f̃(· |Di)) =
N∑

i=1

E log(f̃(· |Di))

=
N∑

i=1

log P (yi) +
N∑

i=1

E log P (M | yi)−
Nq

2
log 2π −

|sp(Y )|∑

h=1

#yh

2
log |Γyh

|−

1

2

N∑

i=1

tr(Γ−1
yi

E(XXT |Di) +
N∑

i=1

µT

yi
Γ−1

y1
E(X |Di)−

|sp(Y )|∑

h=1

#yh

2
µT

yh
Γ−1

yh
µyh
−

d∑

j=1

N∑

i=1

E(log(1 + exp(−ξi,j,M)) |Di) +
1

2

d∑

j=1

N∑

i=1

(2ti,j − 1)E(~wT

j,M
~X |Di)−

1

2

d∑

j=1

N∑

i=1

E(ξi,j,M |Di) +
d∑

j=1

N∑

i=1

E(λ(ξi,j,M)~wT

j,M
~X ~wT

j,M
~X |Di)−

d∑

j=1

N∑

i=1

E(λ(ξi,j,M)ξi,j,M |Di).

Based on the above expression we can now derive the updating rules (the
M-step) for the EM algorithm.
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∂Q
∂ ~wj,m

=
N∑

i=1

(ti,j −
1

2
)P (M = m |Di)E( ~X |Di, M = m)+

2
N∑

i=1

P (M = m |Di)λ(ξi,j,m)E( ~X ~X
T |Di, M = m)~wj,m

By setting the derivative equal to 0 we get the following updating rule for
~wj,m:

~̂wj,m ← −
[
2

N∑

i=1

P (M = m |Di)λ(ξi,j,m)E( ~X ~X
T |Di, M = m)

]−1

[
N∑

i=1

(ti,j −
1

2
)P (M = m |Di)E( ~X |Di, M = m)

]

For µy we have

∂Q
∂µy

=
N∑

i=1:yi=y

Γ−1
y E(X |Di)−#yΓ−1

y µy,

which results in the following updating rule

µ̂y ←
1

#y
ΓyΓ

−1
y

N∑

i=1:yi=y

E(X |Di) =
1

#y

N∑

i=1:yi=y

E(X |Di).

Finally, for Γy the partial derivative is

∂Q
∂Γy

=− #y

2
Γ−1T

g +
1

2

N∑

i=1:yi=y

Γ−1T

y E(XXT |Di)Γ
−1T

y −

N∑

i=1:yi=y

Γ−1T

y µyE(X |Di)
TΓ−1T

y +
#y

2
Γ−1T

y µyµ
T

yΓ
−1T

y

=Γ−1
y

(
− #y

2
+

N∑

i=1:yi=y

(
− 1

2
E(XXT |Di)− µyE(X |Di)

T +
1

2
µyµ

T

y

)
Γ−1

y

)
,

which gives

Γ̂y ←
1

#y

N∑

i=1:yi=y

(E(XXT |Di)− 2µyE(X |Di)
T + µyµ

T

y ) =

=
1

#y

N∑

i=1:yi=y

∑

m

P (M = m |Di)[E((X − µy)(X − µy)
T |Di, M = m)]
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To estimate the probability P (y) we perform simple frequency counting in the
database, and for P (M = m | Y = y) we use

P̂ (M = m | Y = y)←
∑N

i=1:yi=y P (M = m, Y = y |Di)

#y

=
P (M = m | Y = y)

∑N
i=1:yi=y

P (ti |M=m,Y =y)

P (ti | y)

#y

In additions to the expectations (derived below), the updating rules above also
require P (M = m |Di). This probability can be found by straight-forward
application of Bayes’ rule:

P (M = m |Di) =
P (Di |M = m)P (M = m)

∑
m P (Di |M = m)P (M = m)

;

P (Di |M = m) can be found from Equation 8 and P (M = m) =
∑

y P (M =
m | Y = y)P (Y = y)

The E-step amounts to calculating E(X|Dj, M = m) and E(XXT|Dj , M =
m), since E(X|Dj) =

∑
m P (M = m |Di)E(X|Dj, M = m) and E(XXT|Dj) =∑

m P (M = m |Di) E(XXT|Dj , M = m). The expectation E(X|Dj, M =
m) is given by Equation 7 (conditioned on M = m) and E(XXT|Dj , M = m)
is found by exploiting that

Σp = E(XXT|Dj , M = m)− E(X|Dj , M = m)E(X|Dj, M = m),

where Σp is given by Equation 6. In addition, E( ~X|Dj) = [E(X|Dj)
T, 1]T and

E( ~X ~X
T|Dj) =




E(XXT|Dj) E(X|Dj)

E(X|Dj)
T 1


 .

D Straw-men

In this last section we briefly describe the learning algorithms used as straw-
men in Table 2. The straw-men are all implemented in the Weka system version
3.5 [33], and all models were learned using default parameter settings.

Majority vote: This classifier chooses the class label that is most frequent
in the training data. It is known as the ZeroR classifier in Weka.
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Winnow: We used the unbalanced Winnow classifier [34] with default pa-
rameters α = 2, β = .5, and start weight w = 2.

ANN: ANN implements a multilayer perceptron with back-propagation learn-
ing, see, e.g., [8]. The default model structure was used in our experiments,
i.e., one hidden layer, containing a number of nodes equal to the average
of the number of classes and the number of attributes. The learning rate
was .3 and the momentum .2. The back-propagation was performed for 500
epochs. The classifier is called MultilayerPerceptron in Weka.

ADTree: The Alternating Decision Tree [35] used in our experiments was
based on exhaustive search, and the classifier was improved using 10 boost-
ing iterations. The ADTree implementation currently only supports two-
class problems, so for the “{0} – {9}” dataset we used the MultiClassClas-
sifier wrapper to generate 10 classification problems (each classifier learned
to separate one digit from the rest), and chose the class that was most prob-
able.

1-NN: This classifier, called IB1 in Weka, implements the nearest-neighbour
classifier [36].

SVM: SVM denotes the support sector machines using the sequential mini-
mal optimisation algorithm for training the classifier [37]. The “City-block
distance” was used as distance-measure. The classifier is called SMO in Weka.

Näıve Bayes: The Näıve Bayes model [1] without virtual counts for param-
eter learning.

TAN: The TAN model [3] is learned in Weka by choosing the BayesianNet-

work classifier and TAN as search method. The reported results were gener-
ated using virtual count N ′ = .5.

ID3: The ID3 decision tree [38].
Logistic Regression: The logistic regression classifier was enhanced with

Ridge regression (parameter value 10−8) to avoid local maxima [39].
Radial Basis Functions: The RBF network was generated using k = 2 clus-

ters (found by the k-means algorithm); thereafter logistic regression models
were fit to each cluster (as above) [40]. The classifier is called RBFNetwork

in Weka.
AODE: The Aggregating One-Dependence Estimators-classifier [41] was learn-

ed with frequency limit f = 1.
HNB: The Hidden Naive Bayes classifier [42].
BayesNet: A Bayesian network structure is learned from data using the

K2 search algorithm [43]. Parameters are estimated using N ′ = .5 virtual
counts.
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