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Robust Quasi-LPV Control Based on

Neural State Space Models
Jan Dimon Bendtsen, Klaus Trangb�k

Abstract| In this paper we derive a synthesis result for

robust LPV output feedback controllers for nonlinear sys-

tems modelled by neural state space models. This result is

achieved by writing the neural state space model on a linear

fractional transformation form in a non-conservative way,

separating the system description into a linear part and a

nonlinear part. Linear parameter-varying control synthe-

sis methods are then applied to design a nonlinear control

law for this system. Since the model is assumed to have

been identi�ed from input-output measurement data only,

it must be expected that there is some uncertainty on the

identi�ed nonlinearities. The control law is therefore made

robust to noise perturbations. After formulating the con-

troller synthesis as a set of LMIs with added constraints,

some implementation issues are addressed and a simulation

example is presented.

Index Terms|Multi-Layer Perceptrons, Neural Net-
works, Linear Fractional Transformation, Quasi-LPV Con-
trol, Linear Matrix Inequalities

I. Introduction

Many nonlinear systems found in real-life situations are
almost linear in a limited region of the relevant state
space, but exhibit saturation and other nonlinear phenom-
ena more strongly when the state of the system gets outside
this region. The classical approach to control such systems
has been to linearise the system model in some set of op-
erating points and design one or more linear controllers
for the system in said points. Modern control paradigms
such as robustH1 control synthesis methods typically deal
with this by requiring a linear nominal (state space) model
plus some kind of residual model for the control design.
Recent work on linear parameter varying (LPV) control
has taken these ideas further, compensating for known pa-
rameter variations directly in the control design [9], [16],
[17], [18], [19]. Linear parameter-varying systems are lin-
ear systems whose system matrices depend on some time-
varying parameter vector that is either fully known or at
least known to be contained in some known set. In LPV
control design this knowledge is employed to provide sys-
tematic gain scheduling in order to guarantee stability and
performance of the closed loop. One problem with these
types of approaches, however, is that it can be diÆcult to
obtain a suitable model to build the control design on.

With the right choice of neuron functions, arti�cial neu-
ral networks such as Multi-Layer Perceptrons (MLPs) have
been shown to be able to model the kind of nonlinear sys-
tems described above to an arbitrary degree of accuracy,
under mild assumptions on continuity and boundedness.
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Neural networks have therefore found many applications
in control theory, for instance for feedback linearisation
[5], [8], [11] and sliding mode control laws [14]. They have
also been proven useful as observers [10], in direct adap-
tive control [7], [20], and in other roles. Not much work
has been done on achieving gain scheduling control based
on arti�cial neural networks so far, however. In [12] a pre-
viously tuned gain scheduling controller was approximated
by a neural network which then replaced the gain schedul-
ing controller in the loop. Other approaches (e.g. [4]) uses
a neural network to schedule between a �nite set of pre-
viously designed classical controllers, and have been some-
what ad hoc.
With the emergence of Linear Matrix Inequalities (LMIs)

as a powerful tool for robust control and the subsequent
development of a theory for LPV control design, on the
other hand, a door has been opened for a more analyt-
ical approach to gain scheduling control based on neural
state space models. Such an extension of controller syn-
thesis ideas from linear theory to the nonlinear framework
of neural networks is a fundamentally sound idea, of course,
but requires a method for separating the neural state space
model into a linear and a nonlinear part in a manner suit-
able for the synthesis.
Hence, one of the things we wish to do in this paper is

to establish a link from the MLP description to a Linear
Fractional Transformation (LFT) description. Some work
along these lines has already been presented in [1], [21] and
[22], among others. Another previous approach to the con-
trol problem has been to design a �xed controller for the
identi�ed system and making it robust to the nonlineari-
ties isolated in the uncertainty block of the LFT description
[1]. However, the fact that the nonlinearities are actually
known at the design stage means that the control law can
be designed to take advantage of this information as well,
achieving a nonlinear and less conservative controller. The
key to this approach is the observation that the LFT formu-
lation described above allows for a (quasi-)LPV description
of a nonlinear system. In this case, the extracted nonlinear-
ities de�ne the parameter variation, and it is hence possible
to exploit this information in the control design. However,
since we are dealing with identi�ed models, it can be ex-
pected that there are noise, modelling errors etc. that may
cause adverse e�ects on the control. Therefore, as the main
result of this paper we show how to make the LPV control
law robust to small disturbances. This step involves the
formulation of extra constraints on the synthesis solutions.
The outline of the rest of the paper is as follows. In

the following two sections, some preliminaries necessary for
deriving the main result will be presented. A method for



transforming a nonlinear state space model parameterised
via an MLP into an LFT description in a non-conservative
manner is given in Section II, followed by a brief review in
Section III of some key concepts in LPV control: controller
synthesis matrix inequalities and multipliers. This section
also presents a method to achieve a controller for a non-
strictly proper system.

Section IV presents the main result of the paper. It
is a formulation of a set of extra constraints for the con-
troller synthesis that, if possible to ful�ll, will provide a
robust quasi-LPV control law for a nonlinear system pa-
rameterised by an MLP. Section V discusses some imple-
mentation issues, after which Section VI presents a simula-
tion example of modelling and control of a nonlinear system
with the proposed method. Finally, Section VII sums up
the conclusions of the work.

II. From Neural State Space Models to an LFT

Framework

We consider a system of the form

_~x = f(~x; ~u); ~y = C~x (1)

where ~x 2 R
n is the state vector, ~u 2 R

m is a control
signal and ~y 2 R

p is the output vector for the system.
f(�; �) : Rn�Rm ! R

n is an unknown continuous function
of the states and inputs describing the system dynamics.

From neural network theory|see e.g. [13]|it is known
that we can approximate this function to a desired accuracy
with a single hidden layer MLP with l neurons (assuming
l is chosen large enough):

f(~x; ~u) =Wo�
�
Wx~x+Wu~u+ ~Wb

�
+ "x

where Wo 2 R
n�l and Wx 2 R

l�n ;Wu 2 R
l�m contain the

output and hidden layer weights, respectively. �(�) : Rl !
R
l is a continuous, diagonal, static nonlinearity. ~Wb 2 R

l

contains a set of biases which will allow us to model non-
odd functions with odd neuron functions �(�) such as the
hyperbolic tangent. We assume it is possible to achieve
a smaller modelling error than the measurement noise by
choosing the MLP large enough and train it long enough
on a suÆciently rich training set.

In other words, we will assume that the neural network
can be trained to estimate the states in the system (1).
In practice this can for instance be achieved by employing
back-propagation of errors (see for instance [15]), and we
will for simplicity only consider o�-line training here; i.e.
we will not consider time-varying systems.

Consider a system for which a neural state space model
has been trained according to the guidelines given above,
until "x is small enough to be ignored:

_~x =Wo�
�
Wx~x+Wu~u+ ~Wb

�
; ~y = C~x: (2)

We wish to rewrite the neural model (2) as the linear frac-

tional transformation

_x = Ax +Bu+B1
(�)

� = Wxx+Wuu (3)

y = Cx

where the residual function 
(�) : R
l ! R

l is a static
diagonal nonlinearity, which is bounded with l2-gain less
than 1, and where the coordinates (x; u) only di�er from
(~x; ~u) by the possible subtraction of an equilibrium point.
The presented method was �rst discussed in [1], but for the
sake of completeness we will reiterate it in the following.
We assume that there exists an equilibrium, (~x; ~u) =

(~xÆ; ~uÆ), i.e.

0 =Wo�(Wx~x
Æ +Wu~u

Æ + ~Wb):

We can then change the network coordinates in such a way
that instead of the arbitrary equilibrium point (~xÆ; ~uÆ) we
have 0 = Wo�

0(0) (�0 is a new neuron function mapping
which will be de�ned shortly). Let the new coordinates be
given as x = ~x � ~xÆ; u = ~u � ~uÆ. Then (2) can be written
as

_x =Wo�
�
Wx(x+ ~xÆ) +Wu(u+ ~uÆ) + ~Wb

�
:

Here we will de�ne a new bias vectorWb =Wx~x
Æ+Wu~u

Æ+
~Wb and the new neuron function �0(�), where � is de�ned
as in (3):

�0(�) = �
�
� +Wx~x

Æ +Wu~u
Æ + ~Wb

�
� � (Wb)

= �
�
Wx(x + ~xÆ) +Wu(u+ ~uÆ) + ~Wb

�
� � (Wb) :

Adding and subtracting Wo�(Wb) in (2) then gives

_x = Wo�
�
Wx~x+Wu~u+ ~Wb

�
+Wo� (Wb)�Wo� (Wb)

= Wo

�
�
�
Wx~x+Wu~u+ ~Wb

�
� � (Wb)

�
+Wo� (Wb)

= Wo�
0(Wxx+Wuu) =Wo�

0(�):

Wo�(Wb) = 0, because this is in fact the equilibrium point.
Remark 1 Note that, apart from providing a way to shift

the operating point to the origin, the main purpose of the
steps given above is to remove the bias from � instead of
having to consider it as a constant disturbance input, as
suggested in [22]. �
Remark 2 It should furthermore be noted that the

method given above applies equally well to sampled-data
systems ~xk+1 = f(~xk; ~uk). In this case the MLP equilib-
rium point is of the form ~xÆk+1 = f(~xÆk; ~u

Æ
k); 8k, but the

de�nition of �0(�) turns out to be the same. �
Now we can �nd the e�ective range of the input argu-

ments to the neuron functions. This is simply done by
calculating

�j;max = sup
0�t�T

�
jW j

xx(t) +W j
uu(t)j

	



for 1 � j � l where t 2 [0;T ] is the time interval in which
the training data have been acquired and W j

x ;W
j
u denote

the j'th rows in the hidden layer weight matrices. Then
we have the following bounds on the active input range1 of
the j'th neuron:

�j =W j
xx+W j

uu 2 [��j;max; �j;max] :

Hence the neuron function response to the active input
range must belong to the sector �0j 2 [kj;min ; kj;max]
where

kj;min = inf
�j2[��j;max;�j;max]nf0g

�
�0j(�j)

�j

�
(4)

and

kj;max = sup
�j2[��j;max;�j;max]nf0g

�
�0j(�j)

�j

�
: (5)

In other words, the sector bounds are determined such
that kj;min�

2
j � �0(�j)�j � kj;max�

2
j . The actual expres-

sions for these sector bounds must be found for each neu-
ron function individually and will in general depend on the
bias, but the bounds obviously exist and are the least con-
servative easily achievable bounds. A procedure for �nding
them for tanh(�) neuron functions is given below.
Once the sector bounds are found, we go back to vector

notation and de�ne the nonlinear function !(�) : Rn+m !

R
n as

!(�) = �0(�)�
1

2
(Kmin +Kmax) � (6)

where Kmin = diagfkj;min� �g and Kmax = diagfkj;max+
�g; 1 � j � l. � is a small positive quantity included to
make the sector bounds strict. It is observed that !(�) be-
longs to the sector (� 1

2
(Kmax�Kmin) ;

1
2
(Kmax�Kmin)).

Now we can write the equation for _x as

_x = Wo�
0(Wxx+Wuu)

= Wo

�
!(�) +

1

2
(Kmin +Kmax) �

�
= Ax+ Bu+B1
(�)

in which A;B;B1 and 
 are given by

A =
1

2
Wo (Kmin +Kmax)Wx (7)

B =
1

2
Wo (Kmin +Kmax)Wu (8)

B1 =
1

2
Wo (Kmax �Kmin) (9)


(�) = 2 (Kmax �Kmin)
�1
!(�): (10)

Note that the diagonal scaling by 1
2
(Kmax �Kmin) is in-

cluded in order to make the diagonal static nonlinearity 

belong to the sector (�1 ; 1).

1The input ranges are in general not symmetric around 0, so the
bounds given here may be slightly conservative.

Remark 3 When designing LPV or quasi-LPV con-
trollers, we are interested in the tightest possible bounds
Kmax � Kmin in order to avoid conservatism. Although
the LPV synthesis method described in Section III is essen-
tially non-conservative, it is usually necessary to use sim-
pli�ed multipliers, for instance by disregarding knowledge
on the rate of change of the gains of the residual function,
to make the synthesis implementable and to avoid con-
troller switching. A quasi-LPV representation potentially
introduces further conservatism due to non-uniqueness of
the nonlinear function representation. For the sake of the
controller synthesis we are therefore interested in keeping
these gains from varying too much. �
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Fig. 1. Extraction of linear content from a hyperbolic tangent neuron.

In order to illustrate the procedure above we will pro-
vide an expression for the sector bounds (4) and (5) for
the tanh(�) neuron function, which is probably the most
popular neuron function employed in MLPs. Consider the
neuron �j(�j) = tanh(�j + wb) where wb is the scalar bias
on the input �j . Refer to Figure 1, where the top plot
shows the parallel translation of the original neuron func-
tion with bias wb to the origin. We will without loss of
generality assume that wb > 0. Only the section of the
neuron function, which corresponds to the input interval
[��j;max; �j;max], is considered.

On the middle plot the straight lines kj;min�j and
kj;max�j have been added. Since d2 tanh(s)=ds2 < 0 for
s > 0 it is immediately concluded that kj;min is given by
kj;min = �0j(�j;max)=�j;max. kj;max, on the other hand, can
either be given by �0j(��j;max)=� �j;max if the endpoint of
the input range is suÆciently close to 0, or by the slope
of the tangent to the neuron function which intersects 0.
The relationship between the bias and the argument �b for
which said tangent coincides with the neuron function has



been found numerically2 as

�b = �0:00379w3
b + 0:07274w2

b � 1:5146wb:

Hence, if �b > ��j;max we have kj;max = �0j(�b)=�b, other-
wise kj;max = �0j(��j;max)=� �j;max.
Note that there is no loss of generality in the assumption

wb > 0 since the fact that the (original) neuron function
is odd ensures that the expressions given above hold for
negative biases as well, with a simple sign change of �b and
�j;max.
Once the sector bounds for the nonlinearity have been

determined we also have an explicit, smooth expression for
the new set of neuron functions (given by eqns. (6) and
(10)). If there is any uncertainty in the knowledge of x and
u, then this will of course result in an uncertainty on the
knowledge of 
(�). However, if we assume that some bound
on this uncertainty is known, then the above expression
can be exploited to provide a bound on the gain of the
nonlinearity itself:


̂j(�j)

�j
=


j(�j)

�j
+ "
j ; j"
j j < �"
j

where 
j is the j'th diagonal element of 
. Such a bound
can for instance be found by conducting a numerical search
over the range of all permissible values of �. The bound on
the measurement noise can be used together with Wx and
Wu to estimate the uncertainty on �; then this uncertainty
can be used to calculate an upper bound on "
.

III. LPV Control Preliminaries

This section reviews some key concepts in the synthesis
of linear parameter-varying controllers that we will need
for the control design in the following section. Consider
the system2

664
_x

zu
zp
y

3
775 =

2
664

A Bu Bp B

Cu Duu Dup Eu

Cp Dpu Dpp Ep

C Fu Fp 0

3
775
2
664

x

wu

wp

u

3
775 (11)

with x 2 R
n ; u 2 R

m and y 2 R
p representing states,

inputs and outputs. wp; zp 2 R
np are used to specify per-

formance and wu; zu 2 R
nu are the channels connecting the

residual gains collected in � with the nominal linear system
described by (A;B;C). All the matrices are assumed to be
real and of appropriate dimensions. Assume for now that
wu = 0. If we interconnect the LTI controller described by
the system matrices (Ac; Bc; Cc; Dc) with input y, output
u and controller state xc with the nominal system we arrive
at a system of the form2

664
_x
_xc
zu
zp

3
775 =

�
A B

C D

�2664
x

xc
wu

wp

3
775

2A closed form most likely does not exist. The polynomial given
here provides values of kj;max with errors of the order of magnitude

10�5.

where

A =

�
A+BDcC BCc

BcC Ac

�
B =

�
Bu Bp

�
=

�
Bu +BDcFu Bp +BDcFp

BcFu BcFp

�

C =

�
Cu

Cp

�

=

�
Cu +EuDcC EuCc

Cp +EpDcC EpCc

�

D =

�
Duu Dup

Dpu Dpp

�

=

�
Duu +EuDcFu Dup +EuDcFp
Dpu +EpDcFu Dpp +EpDcFp

�
:

De�ne

Pp =

�
Qp Sp
STp Rp

�
; Rp � 0:

Then the controlled system is exponentially stable and ful-
�lls the performance speci�cation

9" > 0 :

Z 1

0

�
wp

zp

�T
Pp

�
wp

zp

�
dt � �"

Z 1

0

wT
p wpdt

for

�
x(0)
xc(0)

�
= 0 (12)

if and only if there exists a Lyapunov matrix X > 0 such
that the following matrix inequality is ful�lled:�
ATX + XA XBp

BT
p X 0

�
+

�
0 I

Cp Dpp

�T
Pp

�
0 I

Cp Dpp

�
� 0:

(13)

A matrix inequality such as (13) is satis�ed if the eigenval-
ues of the matrix expression on the left-hand side (LHS)
are less than or equal to 0. If the LHS is linear in the
unknown matrices, the matrix inequality is called an LMI,
and if it has a solution in the unknown(s), it is said to be
feasible. LMIs can be solved eÆciently using standard soft-
ware tools; refer to e.g. [2] for more information on LMIs in
general. When used for analysis, the only unknown in (13)
is X , and hence it is an LMI. In connection with synthe-
sis it becomes a non-convex problem due to the presence of
the matrix product XA. However, it is possible to reformu-
late (and solve) the problem in a synthesis LMI framework.
Partition the inverse of the performance matrix Pp by

P�1p =

�
~Qp

~Sp
~STp

~Rp

�
(14)

and assume that the numbers of positive and negative
eigenvalues of Pp are equal to the dimensions of Rp and
Qp, respectively. Then it is possible to ful�ll (13) if we can
compute basis matrices

� =

�
�1

�2

�
and 	 =

�
	1

	2

�



of ker
�
BT ET

p

�
and ker

�
C Fp

�
and then �nd sym-

metric X and Y that satisfy the following coupled linear
matrix inequalities in X and Y (see [19]):�

X I

I Y

�
� 0

	
T

2
664
�

�

�

�

3
775
T 2
664

0 X

X 0
0 0
0 0

0 0
0 0

Qp Sp
STp Rp

3
775
2
664

I 0
A Bp

0 I

Cp Dp

3
775	 < 0

�T

2
664
�

�

�

�

3
775
T 2
664

0 Y

Y 0
0 0
0 0

0 0
0 0

~Qp
~Sp

~STp
~Rp

3
775
2
664
�AT �CT

p

I 0

�BT
p �DT

p

0 I

3
775� > 0:

Once X and Y have been found, it is possible to con-
struct the controller matrices (Ac; Bc; Cc; Dc) and the Lya-
punov matrix X .
Turning to LPV systems, we consider the LFT setup de-

picted in Figure 2, where wp; zp 2 R
m are used to specify

performance and wu; zu 2 R
l are the channels connecting

the residual gains collected in � with the nominal linear
system M . The objective is, if possible, to �nd a gain-
scheduled control law K(�c) and a scheduling function
�c(�(t)) such that the closed loop system ful�lls a given
performance speci�cation.

�

M

K

�c(�)

-

�

wuzu

�� wpzp

-

�

y u

-

�

zc wc

=

� 0

0 �c(�)

Mc

-

�

�� wpzp

Fig. 2. The interconnection of the nominal system M , the residual
gains �, and the controller K.

We assume that the LPV system is described as an LTI
system of the form (11) and the parameter variation is
captured via the residual gain channel as

wu(t) = �(t)zu(t); � 2���: (15)

Explicit online knowledge of �(t) allows (and is, indeed,
necessary for) scheduling the controller K(�c). The con-
troller is chosen to be of the form

_xc = Acxc +Bc

�
y

wc

�
;

�
u

zc

�
= Ccxc +Dc

�
y

wc

�
(16)

with wc(t) = �c(�(t))zc(t), in itself a nonlinear function
of �. If we interconnect the controller and the nominal
system we get the linear time invariant system2

664
_�

zu
zc
zp

3
775 =

2
664
A Bu Bc Bp

Cu Duu Duc Dup

Cc Dcu Dcc Dcp

Cp Dpu Dpc Dpp

3
775
2
664

�

wu

wc

wp

3
775 (17)

and a parameter dependency de�ned by (as depicted in the
right part of Figure 2)�

wu

wc

�
=

�
�(t) 0
0 �c(�(t))

� �
zu
zc

�
: (18)

Robust quadratic performance for the controlled system
is de�ned as follows.
� The interconnection of system and controller is well-
posed, i.e. I ��

�
Duu Duc

Dcu Dcc

�
is nonsingular for all � 2���.

� Positive constants K and � exist such that k�(t)k �

k�(0)kKe��t for t > 0 and all � 2��� if wp = 0.
� The performance speci�cation (14) holds.
It can now be shown that a suÆcient condition for the
closed-loop system to achieve robust quadratic perfor-
mance can be formulated as follows.
Theorem 1 (Scherer) Robust quadratic performance is

achieved for (17) if there exist a symmetric X > 0 and
a symmetric multiplier

Pe =

2
664

Q S

ST R

Q12 S12
ST21 R12

QT
12 S21

ST12 RT
12

Q2 S2
ST2 R2

3
775 (19)

which ful�lls2
664

� 0
0 �c(�)

I 0
0 I

3
775
T

Pe

2
664

� 0
0 �c(�)

I 0
0 I

3
775 > 0 8 � 2��� (20)

such that

�T

2
66666666664

0 X

X 0
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

Q S

ST R

Q12 S12
ST21 R12

0 0
0 0

0 0
0 0

QT
12 S21

ST12 RT
12

Q2 S2
ST2 R2

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

Qp Sp
STp Rp

3
77777777775
� < 0

(21)

where

� =

2
66666666664

I 0 0 0
A Bu Bc Bp

0 I 0 0
Cu Duu Duc Dup

0 0 I 0
Cc Dcu Dcc Dcp

0 0 0 I

Cp Dpu Dpc Dpp

3
77777777775
: (22)

Proof: See [18].
The extended multiplier Pe in (19) is constructed from

multipliers P and ~P of lower dimension such that:

Pe =

�
P �

� �

�
; P�1e =

�
~P �

� �

�
: (23)



P and ~P must ful�ll the following requirements:

P =

�
Q S

ST R

�
; (24)

�
�
I

�T
P

�
�
I

�
> 0 8 � 2��� (25)

and

~P =

�
~Q ~S
~ST ~R

�
; (26)

�
I

��T

�T
~P

�
I

��T

�
< 0 8 � 2���: (27)

We furthermore calculate the basis matrices

�T =
�
�T
1 �T

2 �T
3

�
and 	T =

�
	T
1 	T

2 	T
3

�

of ker
�
BT ET

u ET
p

�
and ker

�
C Fu Fp

�
, respectively.

LPV control synthesis can then be formulated as in the
following theorem.
Theorem 2 (Scherer) There exists a controller (16) such

that the system (17) admits an X > 0 and a symmetric
multiplier Pe that satisfy the LMI (21) if and only if there
exist symmetricX and Y and multipliersP; ~P ful�lling (25)
and (27) respectively, that satisfy the following inequalities:�

X I

I Y

�
� 0 (28)

 T

2
6666664

0 X

X 0
0 0
0 0

0 0
0 0

0 0
0 0

Q S

ST R

0 0
0 0

0 0
0 0

0 0
0 0

Qp Sp
STp Rp

3
7777775
 < 0 (29)

�T

2
6666664

0 Y

Y 0
0 0
0 0

0 0
0 0

0 0
0 0

~Q ~S
~ST ~R

0 0
0 0

0 0
0 0

0 0
0 0

~Qp
~Sp

~STp
~Rp

3
7777775
� > 0 (30)

where

 =

2
6666664

I 0 0
A Bu Bp

0 I 0
Cu Duu Dup

0 0 I

Cp Dpu Dpp

3
7777775
	

and

� =

2
6666664

�AT �CT
u �CT

p

I 0 0

�BT
u �DT

uu �DT
pu

0 I 0

�BT
p �DT

up �DT
pp

0 0 I

3
7777775
�:

Proof: See [18].
An LPV controller designed to ful�ll these requirements

will stabilise the system and achieve the required robust
performance de�ned by (12). Furthermore, one choice of
scheduling function that ful�lls the `if' part of Theorem 2
is of the form given by the following Lemma.
Lemma 1 (Scherer) Let X;Y; P and ~P be calculated as

speci�ed in Theorem 2 and suppose that ~P is nonsingu-
lar. Choose the matrix U such that its columns form an
orthogonal basis of the image of P � ~P�1, and such that

UT (P � ~P�1)U = N =

�
N� 0
0 N+

�
(31)

with N� < 0 and N+ > 0. De�ne�
V�(�) V+(�)

�
=
�
�T I

�
U (32)

with V� and V+ having dimfN�g and dimfN+g columns,
respectively. Construct the extended multiplier

Pe =

�
P U

UT N�1

�
:

Then Pe ful�lls (23), and a controller scheduling function
that guarantees (20) is given by

�c(�) = N�V�(�)
T
��

[�I ]
T
P [�I ]� V�(�)N�V�(�)

T
��1

V+(�): (33)

Proof: See [18] for a constructive proof.
In practice it may happen that the system we design

a controller for, is not strictly proper, i.e. F3 6= 0 in the
system2

664
_x

zu
zp
y

3
775 =

2
664

A Bu Bp B

Cu Duu Dup Eu

Cp Dpu Dpp Ep

C Fu Fp F3

3
775
2
664

x

wu

wp

u

3
775 (34)

Theorem 2 does indeed require that F3 = 0. This prob-
lem can be overcome by �nding a controller ~K(s;�c) for
the corresponding system with F3 = 0 and then transform-
ing the controller into another controllerK(s;�c) yielding
the same closed loop system for the actual system. Denote
the system matrix in (34) by Ms. De�ne

� =

�
0 I

I �F3

�
; ��? =

�
0 I

I F3

�

and observe that �?��? = ��? ?� = [ 0 I
I 0 ] is the Redhe�er

star product identity, and that

Mp =Ms ? � =

2
664

A Bu Bp B

Cu Duu Dup Eu

Cp Dpu Dpp Ep

C Fu Fp 0

3
775 :

Now assume that a controller, ~K, has been obtained for
the system de�ned by Mp, and write this controller as2
4 u_xc
zc

3
5 = ~Kc

2
4 yxc
wc

3
5 ; ~Kc =

2
4Dc1 Cc1 Dc12

Bc1 Ac Bc2

Dc21 Cc2 Dc2

3
5 :



Then, assuming that I + F3 ~Kc is non-singular, the closed
loop is given by 2

66664
_x
zu
zp
_xc
zc

3
77775 =Mc

2
66664
x

wu

wp

xc
wc

3
77775

in which

Mc = Mp ? ~Kc =Mp ? (�
�? ? �) ? ~Kc

= (Mp ? �
�?) ? (� ? ~Kc) =Ms ? (� ? ~Kc):

A controller for the system de�ned by Ms is thus given by2
4 u_xc
zc

3
5 = Kc

2
4 yxc
wc

3
5 ; Kc = (� ? ~Kc): (35)

To sum up, the synthesis progresses as follows. Assuming
a solution X;Y; P , and ~P to (28){(30) has been found,
it is possible to construct the extended multiplier Pe and
the scheduling function �c as given above. The Lyapunov
matrix X is for instance calculated as

X =

�
X I

I (X � Y �1)�1

�
:

Now � in (22) is a linear function of the controller ma-
trices (Ac; Bc; Cc; Dc), which means that (21) becomes a
Quadratic Matrix Inequality (QMI) in (Ac; Bc; Cc; Dc). A
solution method for the QMI problem can for instance be
found in [18].

IV. Main Result

In Section II a method for rewriting a neural state space
model as a linear fractional transformation was presented.
Then, in Section III a series of results on how to design an
LPV controller achieving a given performance for a linear
parameter varying system was outlined. Comparing the
LFT formulation of the neural state space model with the
LPV system that forms the basis of the controller design,
we realize that the controller design methodology is appli-
cable to this type of model if we formulate it as a quasi-LPV
system. The term quasi-LPV system refers to a system for
which the parameter variation is dependent on the current
states and inputs, i.e. the nonlinear part of the system is
of the form �(�) = �(�)�. The state-dependent matrix
function �(�) is then simply considered as a time-varying
matrix, as in (15). In other words|using the terminology
de�ned in Section II| we consider the gains of 
(�(t)) to
be the time-varying residual gains in the controller synthe-
sis, i.e.

�(t)�(t) = 
(�(t))

and disregard the explicit state dependency in the con-
troller design. It is noted that the nonlinear mapping 
(�)
is diagonal.

Theorem 2 shows that if we can �nd a set of controller
matrices and multipliers that ful�ll (28){(30) for the LFT
model, then Theorem 1 ensures that the closed loop is sta-
ble and achieves a speci�ed performance. Logically, the
next step will therefore be to construct a quasi-LPV con-
troller based on a suÆciently trained MLP model of a given
nonlinear plant.

However, Theorem 2 assumes (near-)perfect knowledge
of the states and the nonlinear mapping, a knowledge that
is rarely available in realistic situations. In the face of
noisy in- and output measurements and a possibly imper-
fect model, it becomes necessary to consider the robustness
of the control loop.

If �(t) depends only on measured quantities, as in the
case of the MLP considered in Section II, the sensitivity
to measurement noise translates into an uncertainty on the
knowledge of �(t), but does not a�ect the system descrip-
tion (11). Hence, instead of ensuring (20), we need to ful�ll

2
664

� 0

0 �c(�̂)

I 0
0 I

3
775
T

Pe

2
664

� 0

0 �c(�̂)

I 0
0 I

3
775 > 0 (36)

where �̂ is an estimate of � based on measurements. If this
can be ful�lled for all (�; �̂), then the quasi-LPV controller
will stabilise the system and achieve the required robust
quadratic performance.

The problem that will be addressed in this section, and
the main contribution of this paper, is thus to �nd addi-
tional constraints on the multipliers P and ~P such that
we can satisfy (36) even in the presence of uncertainty on
�(t). As mentioned earlier, 
 is diagonal, which enables
us to choose �(t) as a diagonal, nonlinear matrix function.
To simplify the derivations, we will only consider constant,
diagonal multipliers.

The main result of this work can be summarised as in
Theorem 3. In Section V we will discuss how to solve the
synthesis problem in practice.

Theorem 3: Consider the system (11) with

wu = �(t)zu; � 2���;

where ��� = f� : � = diag1�i�lfÆig; jÆij < 1g. As-

sume that the estimate �̂(t) of � is accurate except for

some bounded uncertainty, i.e. �̂(t) = �(t) + E(t); E =
diag1�i�lfeig; jeij < �ei. Consider P and ~P partitioned as

in (24){(26). If there exist X;Y; P and ~P ful�lling (28){
(30) with

Q = diag
1�i�l

fqig < 0; R = diag
1�i�l

frig > 0; S = 0; (37)

~Q = diag
1�i�l

f~qig < 0; ~R = diag
1�i�l

f~rig > 0; ~S = 0 (38)

qi(1 + �ei)
2 + ri > 0; ~q�1i + ~r�1i (1 + �ei)

2 > 0 (39)

and if for any 1 � i � l for which (qi � ~q�1i )(ri � ~r�1i ) < 0



it additionally holds that

((1 + �ei)
2qi + ~r�1i )2(~q�1i + ~r�1i )(qi + ri) >

((1 + �ei)qi � ~r�1i )2�e2i (~r
�1
i � ri)(qi � ~q�1i ) (40)

if qi > ~q�1i and ri < ~r�1i or

((1 + �ei)
2~q�1i + ri)

2(qi + ri)(~q
�1
i + ~r�1i ) >

((1 + �ei)~q
�1
i � ri)

2�e2i (ri � ~r�1i )(~q�1i � qi) (41)

if qi < ~q�1i and ri > ~r�1i , then there exists a controller

K(�̂) on the form (16) with wc = �c(�̂(t))zc(t) that yields
the robust performance speci�ed in (12).

Proof: It is �rst of all noted that (25) and (27) are im-
plied by (37){(39), and that the estimated residual gains

�̂ only appear in the inequalities involving the extended
multiplier Pe. In order to prove the result, we hence need
to show that with the extra requirements given above, (36)
can be ful�lled. If that can be shown, then Theorem 2
ensures the existence of the desired controller K(�̂). We
construct N;Pe and �c(�) as in Lemma 1. However, U
must be constructed in a particular way, which will be ad-
dressed below. Then (20) is satis�ed, which is equivalent
to �

[�I ]
T
P [�I ] V��c + V+

�T
c V

T
� + V T

+ �T
c N

�1
� �c +N�1

+

�
> 0:

By a Schur argument, this is equivalent to

2
4 [�I ]

T
P [�I ] V��c + V+ 0

�T
c V

T
� + V T

+ N�1
+ �T

c

0 �c �N�

3
5 > 0:

Via a congruence transformation, this expression can be
rewritten as2

4[�I ]T P [�I ]� V�N�V
T
� V+ V�N�

V T
+ N�1

+ �T
c

N�V
T
� �c �N�

3
5 > 0: (42)

Furthermore, since P ful�lls (25) or equivalently

[�I ]
T
P [�I ] = [�I ]

T
P [�I ]� V�N�V

T
� + V�N�V

T
� > 0

we have by Schur complement that

�
[�I ]

T
P [�I ]� V�N�V

T
� V�N�

N�V
T
� �N�

�
> 0:

This implies that we can apply the Schur complement to
(42) and obtain the equivalent inequality

�
N�1
+ �T

c

�c �N�

�
��

�
[�I ]

T
P [�I ]� V�N�V

T
�

��1
�T > 0

(43)

where � =
�
V+ V�N�

�T
. With the diagonal structure of

the multiplier, we can de�ne the matrix

D = �Q�+R� V�N�V
T
�

and write (43) as

�
N�1
+ �T

c

�c �N�

�
��D�1�T > 0

and (33) as �c(�) = N�V
T
�D

�1V+, respectively. We will
now choose U in the following way. Let U =

�
T1 T2

�
such

that V� = [� I ]T1 and V+ = [� I ]T2. If necessary we can
perturb ~P such that it is nonsingular. Since the columns of
U form an orthogonal basis of the image of P � ~P�1 (if this
matrix happens to be singular, we can again perturb ~P such
that it is nonsingular as well), it is possible to partition it
such that

U =
�
T1 T2

�
=

�
T1u 0 T2u 0

0 T1l 0 T2l

�

in which the number of rows of U is 2l and the upper and
lower parts each have l rows, and where each column con-
tains exactly one 1 and 2l � 1 zeros. If L1 is some 2l � 2l
diagonal matrix then the product T T

1 L1T1 is a diagonal
matrix with the elements of L corresponding to the nega-
tive entries in P � ~P�1 in its main diagonal. Similarly, if
L2 is some diagonal matrix of appropriate dimensions then
the product T1L2T

T
1 is a diagonal 2l� 2l matrix with zero

entries everywhere except for the entries corresponding to
the negative entries in P � ~P�1. T2 has the corresponding
e�ect for the positive entries in P � ~P�1.

Tedious calculations based on equations (31) and (32)
show that D is of the form

D = diag
1�i�l

�
Æ2i maxfqi; ~q

�1
i g+maxfri; ~r

�1
i g

	
(44)

since U rearranges the negative and positive diagonal ele-
ments of P � ~P�1 into N� and N+, respectively, which
means that N� contains exactly those elements where
qi�~q�1i < 0; ri�~r�1i < 0. With perfect knowledge about �
it is then easy to choose �c(�) such that (43) is ful�lled,
for instance as in (33) where the o�-diagonal blocks are
made to vanish, leaving a positive de�nite block diagonal
matrix on the LHS.

However, as stated above we are not scheduling the con-
troller based on the exact �, but rather on the estimate �̂.
This prompts us to de�ne the diagonal matrices D̂; V̂� and

V̂+ analogously with (44) and (32) (replacing Æi with Æ̂i)

and rewrite (43) with �c(�̂) = N�V̂�(�̂)
T D̂(�̂)�1V̂+(�̂)

instead of N�V�(�)
TD(�)�1V+(�):

�
N�1
+ V̂ T

+ D̂
�1V̂�N�

N�V̂
T
� D̂

�1V̂+ �N�

�
�

�
V T
+D

�1V+ V T
+ D

�1V�N�
N�V

T
�D

�1V+ N�V
T
�D

�1V�N�

�
> 0: (45)



Let ~D denote the matrix

~D =

�
�̂
I

�
D̂�1

�
�̂
I

�T
�

�
�
I

�
D�1

�
�
I

�T
:

This allows us to rewrite (45) as"
T T
2 (N

�1 � [�I ]D
�1 [�I ]

T
)T2 T T

2
~DT1T

T
1 NT1

T T
1 NT1T

T
1
~DT2 �N�(N

�1
� + V T

�D
�1V�)N�

#
> 0:

Some straightforward computations reveal that ~D consists
of diagonal submatrices

~D =

�
~D11

~D12

~D12
~D22

�

given by

~D11 = diag
1�i�l

(
(Æ̂2i � Æ2i )rmi

(Æ̂2i qmi + rmi)(Æ2i qmi + rmi)

)

~D12 = diag
1�i�l

(
(Æ̂iÆ

2
i � Æ̂2i Æi)qmi + (Æ̂i � Æi)rmi

(Æ̂2i qmi + rmi)(Æ2i qmi + rmi)

)

~D22 = diag
1�i�l

(
(Æ2i � Æ̂2i )qmi

(Æ̂2i qmi + rmi)(Æ
2
i qmi + rmi)

)

where qmi = maxfqi; ~q
�1
i g and rmi = maxfri; ~r

�1
i g; 1 �

i � l.
Applying the Schur complement to the inequality above

and simplifying gives the following equivalent matrix in-
equality:

T T
2

�
N�1

� [�I ]D
�1 [�I ]

T
�
T2

+ T T
2
~DT1

�
N�1
� + V T

�D
�1V�

��1
T T
1
~DT2 > 0: (46)

Let G� = N�1 � [�I ]D
�1 [�I ]

T
and G+ = N�1 +

[�I ]D
�1 [�I ]

T
, such that (46) can be written as

T T
2 G�T2 + T T

2
~DT1(T

T
1 G+T1)

�1T T
1
~DT2 > 0 (47)

in which, using (44), it is seen that G� and G+ must be of
the form

G� =

�
G�11 G�12
G�12 G�22

�
and G+ =

�
G+11 G+12

G+12 G+22

�

where

G�11 = diag
1�i�l

�
1

qi � ~q�1i

�
Æ2i

Æ2i qmi + rmi

�
(48)

G�12 = diag
1�i�l

�
�

Æi

Æ2i qmi + rmi

�
(49)

G�22 = diag
1�i�l

�
1

ri � ~r�1i

�
1

Æ2i qmi + rmi

�
: (50)

Now Lemma 2 (in the Appendix) implies that

T T
2
~DT1(T

T
1 G+T1)

�1T T
1
~DT2 = T T

2 �T2

where

� =

�
�1 0
0 �2

�

which means that (47) is equivalent to

T T
2 (G� +�)T2 > 0: (51)

� is diagonal and �1;i = �2;i = 0 for the i's for which
qi > ~q�1i and ri > ~r�1i . We also know from Lemma 2

that �1;i = ~d212;i=g+22;i for the i's for which qi > ~q�1i and

ri < ~r�1i and �i+l;i+l = ~d212;i=g+11;i for the i's for which

qi > ~q�1i and ri < ~r�1i (lower-case letters with subscript
i refer to the i'th diagonal element of the matrix denoted
by the corresponding upper-case letter). Furthermore, the
pre- and postmultiplication by T T

2 and T2, respectively,
eliminates the elements for which qi < ~q�1i and ri < ~r�1i .
By a permutation (51) can then be seen to be equivalent

to the ful�lment of a number of 1 � 1 or 2 � 2 matrix
inequalities of the form

qi > ~q�1i ; ri > ~r�1i :

�
g�11;i g�12;i
g�12;i g�22;i

�
+�

�1;i 0
0 �2;i

�
> 0 (52)

qi > ~q�1i ; ri < ~r�1i : g�11;i + �1;i > 0 (53)

qi < ~q�1i ; ri > ~r�1i : g�22;i + �2;i > 0: (54)

As mentioned above we have �1;i = �2;i = 0 for the i's
for which qi > ~q�1i ; ri > ~r�1i . Furthermore, the submatrix
of G� can be seen to be positive de�nite by combining
equations (48){(50) with the basic assumptions (39), which
imply that Æ2qi + ri > 0; Æ2~q�1i + ~r�1i < 0. Hence, (52) is
automatically satis�ed.
This leaves us with (53) and (54), which represent a set

of simple scalar inequalities. By combining (48) and (50)
with the de�nition of ~D12 we can rewrite these inequalities
as

1

qi�~q�1
i

�
Æ2i

Æ2
i
qi+~r�1

i

+ �1

�
1

ri�~r�1
i

+ 1

Æ2
i
qi+~r�1

i

��1
> 0

for qi > ~q�1i ; ri < ~r�1i , and

1

ri�~r�1
i

�
Æ2i

Æ2
i
~q�1
i

+ri
+ �2

�
1

qi�~q�1
i

+ 1

Æ2
i
~q�1
i

+ri

��1
> 0

for qi < ~q�1i ; ri > ~r�1i , in which

�1 =
ÆiÆ̂i(Æi � Æ̂i)qi + (Æ̂i � Æi)~r

�1
i

(Æ̂2i qi + ~r�1i )(Æ2i qi + ~r�1i )

�2 =
ÆiÆ̂i(Æi � Æ̂i)~q

�1
i + (Æ̂i � Æi)ri

(Æ̂2i ~q
�1
i + ri)(Æ2i ~q

�1
i + ri)

:

Finally, applying Lemma 3 to each of these inequalities
shows that each of them are satis�ed if

((1 + �ei)
2qi + ~r�1i )2(~q�1i + ~r�1i )(qi + ri)�

((1 + �ei)qi � ~r�1i )2�e2i (~r
�1
i � ri)(qi � ~q�1i ) > 0



if qi > ~q�1i and ri < ~r�1i or

((1 + �ei)
2~q�1i + ri)

2(qi + ri)(~q
�1
i + ~r�1i ) >

((1 + �ei)~q
�1
i � ri)

2�e2i (ri � ~r�1i )(~q�1i � qi)

if qi < ~q�1i and ri > ~r�1i . Hence, (51) will be ful�lled if (40)
respectively (41) are satis�ed, which was what we wanted
to show.
Remark 4 Normally, if P � ~P�1 loses rank, it would

be more eÆcient to construct an extended multiplier of
lower dimension. However, to keep the proof simple, it was
chosen to ignore this possibility, since there is no loss of
generality in assuming that P � ~P�1 is indeed invertible.
If necessary, it is always possible (due to the strictness of
the matrix inequalities) to perturb P � ~P�1 in the right
direction, such that there is no need to schedule according
to the particular diagonal elements which are the cause of
loss of rank, i.e. �c will be independent of these elements.�

V. Implementing the Controller

After having formulated the test for existence of a ro-
bust quasi-LPV controller in the previous section, we will
now give an outline of an implementation method. One
important point is that in order to implement the contin-
uous time controller designed by the methods in Sections
III and IV in a computerised control loop, a discrete time
version of the controller is needed.
1. Modelling: Obtain samples of in- and output signals
from the plant and train an MLP model of the plant. This
will typically take place in discrete time.
2. Model transformation: Transform the MLP model into
a (discrete-time) LFT model and calculate the bounds on
the uncertainties on � as suggested in Section II. Then use
some appropriate method to transform the discrete-time
LFT model into its continuous-time equivalent, yielding
the system (11).
3. Performance speci�cation: De�ne an appropriate per-
formance speci�cation, for instance

Pp =

�
�I 0
0 1


I

�
(55)

providing a bound  on the induced 2-norm

sup
w 6=0

kzk2

kwk2
� :

4. Synthesis: Test if the LMIs (28){(30) can be ful�lled
with the additional constraints (40) and (41). If they are
not immediately ful�lled, it can be attempted to impose
positive de�nite diagonal margins � and ~� on the multiplier
matrices

�(I + �)Q > R

�(I + ~�) ~R > ~Q

and increase the individual elements of � and ~� until the
corresponding constraints are ful�lled or the LMI becomes
infeasible. There is no guarantee that either of these events

will happen, but the method appears to work well in prac-
tice. Alternatively, it can be shown that by restricting the
product ri~r

�1
i to some interval rl < ri~r

�1
i < ru, it can be

guaranteed that one of them will happen as the elements of
� are increased. However, this will typically yield slightly
more conservative results.
5. Controller implementation: Once the controller matri-
ces have been found from the solutions of the synthesis
LMIs and the controller scheduling function has been de-
termined, it is then possible to transform the controller
back to discrete time and implement it. Discretising the
controller by for instance Tustin's method (see e.g. [6]) will
yield a discrete time controller on the form2

4xc;k+1uk
zc;k

3
5 =

2
4Acd Bc1d Bc2d

Cc1d Dc1d Dc12d

Cc2d Dc21d Dc2d

3
5
2
4xc;kyk
wc;k

3
5

with

wc;k = �c;kzc;k:

Implementation-wise this poses two algebraic loop prob-
lems. Firstly, wc;k depends on zc;k and vice versa, and

secondly, �c;k depends on �̂k which|in general|depends
on uk, which, if Dc12d is non-zero, in turn depends on �c;k.
The �rst problem can be easily resolved by a method sim-
ilar to the one discussed at the end of Section III. The
same behaviour will be obtained by using the transformed
scheduling function ��c;k = (I � �c;kDc2d)

�1�c;k and a
controller with the same parameters except for a zero ma-
trix in the place of Dc2d.
The second problem is harder to overcome. If the sampling
rate is suÆciently high, and the controller has a reasonably
low high-frequency gain, then the control signal can be ex-
pected to change only slightly from sample to sample, and
uk�1 can be used as an estimate of uk in computing �̂k.
Alternatively, an iterative scheme could be used to alter-
nately compute uk and �̂k in an algebraic loop until the
results (hopefully) converge. This will rarely be a good
alternative to just increasing the sample rate, however.

Remark 5 The transformation back and forth between
continuous and discrete time introduces a potential source
of errors. Should a discrete-time version of Theorem 2 be
developed, it would most likely be a good idea to employ
this. However, Theorem 3 would probably still be applica-
ble in its present form, since � is a memoryless mapping
and the multipliers would be of the same form. Another
interesting|although not entirely realistic|option within
the permissible scope of the method would be to train the
MLP in continuous time, since the transformation of the
state space model from MLP to LFT form does not distin-
guish between continuous-time and discrete-timemodels.�

VI. Simulation Examples

In the following we will illustrate the LPV control design
procedure on a nonlinear and noisy simulation process. In-
spired by [3] we chose the third order continuous-time pro-



cess

_x1 = x2 � x1 (56)

_x2 = x3 � x2 (57)

_x3 =
x21 + x22 + x23 + tanh(u)

x21 + x22 + x23 + 1
� x3 (58)

y = x1 (59)

as our example plant and simulated it with a higher-order
di�erential equation solver. The input was chosen as a
discrete-time sequence of samples with a sample time of
1=2 second. The input samples were generated by a simple
controller that was implemented to drive the system around
in the operating range. As the output was sampled, uni-
form noise in the interval [��n;�n]; �n = 0:05; was added
to the output. The plant was sampled at a sampling fre-
quency of 2Hz, and an MLP with l = 5 tanh(�) neurons
in the hidden layer and three linear neurons in the output
layer was trained to recognise the model

x̂k+1 = Wo�(�k +Wb)

ŷk = x̂1;k

�k = Wi�k

with �k = [yk; yk�1; yk�2; uk; uk�1; uk�2]
T and x̂k =

[ŷk; ŷk�1; ŷk�2]
T (̂� denotes estimates). The MLP was

trained using the Levenberg-Marquardt algorithm. For
comparison, a linear model was identi�ed using system
identi�cation based on the same in- and output samples.
Figure 3 shows a simulation of a separately generated test
set. As can be seen from the �gure, the MLP learned the
plant behaviour satisfyingly well, and as expected, simu-
lated the nonlinear plant far better than the linear model.
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Fig. 3. Test set simulation. The plant output is shown with a dotted
line (� � �), the MLP output with a full line (|) and the linear
model output with a dash-dotted line (� � �). Linear system
identi�cation is insuÆcient to identify the behaviour, as the plant
is highly nonlinear.

Next, the transformation from MLP form to LFT form
described in Section II was performed. This gave the model

x̂k+1 = Ax̂k +Buk +B1
(�k); ŷk = Cx̂k

where �k denotes the input to the nonlinearity at sample
k. The sector bounds on the nonlinearities were found to
Kmax�Kmin = diagf0:003; 0:005; 0:06; 0:23; 0:45g and the
bounds on the uncertainty on the gains of 
 were found to
�ei = f0:24; 0:13; 0:30; 0:17; 0:12g; 1� i � l.

We let the outputs from the nonlinearity be denoted by
�, the performance channel by z and the noise and refer-
ence channel by w, and constructed the LTI system

2
664
x̂k+1
�k
zk
ŷk

3
775 =

2
664

A B1 0 B

Wx 0 0 Wu

C 0 D22 0
C 0 D32 0

3
775
2
664
x̂k
�k
wk

uk

3
775 :

D22 = [0 �I ] and D32 = [�nI �I ] de�ned the noise and
reference contributions. The performance output was then
augmented by a �rst-order �lter that allowed frequency
tuning of the controller; in this example we placed more
emphasis on the low-frequency behaviour by placing the
pole in z = 0:99. This system was then transformed into its
continuous-time equivalent using Tustin's method in order
to carry out the controller computation.

The next step was to solve the LMIs (28){(30) in order
to compute a nominal controller. The performance spec-
i�cation (55) was chosen and a bisectional search for the
smallest  for which (28){(30) were feasible could then be
performed. Once a non-robust controller was found (re-
ferred to as K1) the controller calculations were repeated,
but this time with the added constraints (40) and (41). The
method proposed in Section V, where the diagonal elements
of � and ~� are increased until the constraints are ful�lled,
was employed. This robust controller is referred to as K2.
In this case it was necessary to increase  slightly. Finally,
a non-robust controller with the same  as achieved by K2

was calculated for comparison purposes. This detuned non-
robust controller will be referred to as K3. In the example
the following performance values were achieved: 1 = 0:062
and 2 = 3 = 0:088. Each of the controllers were then dis-
cretised with a sample time of 1=2 second.

Figure 4 shows a series of closed loop simulations for each
of the control loop con�gurations with identical reference
signals and random noise added to the output y. For the
sake of clarity, however, the output is shown without the
noise. The top and middle plots in the �gure show simula-
tions with the non-robust (K1) and the robust (K2) LPV
controllers. The simulations are identical, except for the
randommeasurement noise; the robust controller shows the
same behaviour in both simulations, while the non-robust
controller shows much greater sensitivity to the noise. This
is particularly evident from the control signal, but it can
also be seen in the output, which shows a tendency toward
becoming unstable in the top plot. In the middle plot, on
the other hand, the closed loop does not exhibit this ten-
dency. The bottom plots show the robust LPV controller
(K2) versus the non-robust detuned controller (K3). It is
seen that the steady-state performance, at least, is better
for K2.
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Fig. 4. Closed loop simulation. The reference is shown with a dotted line (� � �), the signals generated by the robust controller with a full line
(|) and the signals generated by the non-robust controllers with a dash-dotted line (���). The top and middle �gures show simulations
with the nominal and the robust LPV controllers. The simulations are identical, except for the random measurement noise; K2 shows
the same behaviour in both simulations, while K1 shows much greater sensitivity to the noise. The bottom row shows the robust LPV
controller versus the non-robust detuned controller. It is seen that the steady-state performance is better for K2.

VII. Concluding Remarks

In this paper a novel method that combines the use of
feedforward neural networks with quasi-LPV control syn-
thesis for control of nonlinear, noisy systems has been pro-
posed. This method involves a separation of the nonlin-
ear model into a linear and diagonal nonlinear part for
which a pointwise bound is known. Hereafter, a controller
is constructed such that one of its inputs is generated by
a scheduling function derived from the nonlinear part of
the model. The synthesis of the controller and schedul-
ing function is achieved by solving a set of linear matrix
inequalities constructed from the model parameters. The
main contribution of this paper was to derive additional
constraints on the scheduling function synthesis matrix in-
equalities, such that the control loop is robust to bounded
measurement noise.

It was also discussed how to implement the control design
on a digital computer, and the proposed quasi-LPV con-
troller's robustness to noise-induced uncertainty was con-
�rmed on a nonlinear, noisy simulation example.

Since the class of nonlinear systems that can be modelled
well by state space models of the above-mentioned type is
large, the proposed method is considered to be widely ap-

plicable. However, it does not incorporate any information
on how fast the gains of the nonlinearity change over time,
which means that less conservative controllers could po-
tentially be constructed for a given plant. Future research
in this area should therefore focus on how to solve this
problem, as well as trying out the method on real-life ap-
plications.

Appendix

Lemma 2: Consider the index sets I�; I+;J� and J+

with cardinalities nI ; l � nI ; nJ and l � nJ , respectively,
de�ned such that I� [ I+ = J� [ J+ = f1; : : : ; lg � N.
Let ei; 1 � i � l, denote the i'th unit coordinate vector of
R
l . Let T1 =

�
T1u 0
0 T1l

�
2 R

2l�nI+nJ and T2 =
�
T2u 0
0 T2l

�
2

R
2l�2l�(nI+nJ ), where the columns of T1 and T2 are unit

coordinate vectors of R2l , be de�ned by

T T
1uei = 0, i 2 I+; T T

1lei = 0, i 2 J+;

T T
2uei = 0, i 2 I�; T T

2lei = 0, i 2 J�:

Furthermore, let D and G be any two matrices such that
D =

�
D11 D12

D12 D22

�
2 R2l�2l and G =

�
G11 G12

G12 G22

�
2 R2l�2l where

each of the submatrices D11; D12; : : : ; G22 2 R
l�l are diag-

onal.



Then, assuming that T T
1 GT1 is invertible, we have

T T
2 DT1(T

T
1 GT1)

�1T T
1 DT2 = T T

2 �T2

where

� =

�
diag1�i�lf�1ig 0

0 diag1�i�lf�2ig

�
:

Furthermore, the elements of � that do not vanish by the
pre- and postmultiplication by T2 are given by

i 2 I+ \ J+ ) �1i = �2i = 0

i 2 I+ \ J� ) �1i = d2i =g2i (60)

i 2 I� \ J+ ) �2i = d2i =g1i

in which di; g1i and g2i are the i'th diagonal elements of
D12; G11 and G22, respectively.

Proof: First of all it is noticed that T T
2 DT1 =

T T
2

�
0 D12

D12 0

�
T1 since�

T T
2u 0
0 T T

2l

��
D11 D12

D12 D22

� �
T1u 0
0 T1l

�

=

�
T T
2uD11T1u T T

2uD12T1l
T T
2lD12T1u T T

2lD22T1l

�

=

�
0 T T

2uD12T1l
T T
2lD12T1u 0

�
(61)

because T1 and T2 do not have non-zero entries on the same
rows and hence these particular products must vanish.
Let us de�ne

� = T1(T
T
1 GT1)

�1T T
1 =

�
�11 �12
�12 �22

�

where �11;�12;�22 2 R
l�l . It is deduced that each of the

submatrices �11;�12 and �22 are diagonal with

�11;i = g�111;i for i 2 I� \ J+

�11;i = 0 for i 2 I+

�22;i = g�122;i for i 2 I+ \ J� (62)

�22;i = 0 for i 2 J+

�12;i = 0 for i 2 I+ [ J+:

This is seen by noticing that T T
1 GT1 is equivalent, via a

permutation, to a block diagonal matrix where each sub-
block is either of dimension 2 � 2 arising from elements
corresponding to i 2 I� \ J�, or 1 � 1 arising from ele-
ments corresponding to i 2 (I+ \J�)[ (I� \J+). Matrix
inversion preserves this equivalence, and pre- and postmul-
tiplying by T1 and T T

1 then produces a matrix where the
newly formed elements are rearranged back to the corre-
sponding positions in G.
In light of (61) it can then be seen that

T T
2 DT1(T

T
1 GT1)

�1T T
1 DT2 =�

T T
2uD12�22D12T2u T T

2uD12�12D12T2l
T T
2lD12�12D12T2u T T

2lD12�11D12T2l

�
:

The o�-diagonal blocks in this matrix can furthermore be
seen to be zero, since �12;i = 0 for i 2 I+ [ J+ and pre-
and postmultiplying by T T

2l and T2u eliminates the elements
corresponding to i 2 I� [ J�. That leaves us with

T T
2 DT1(T

T
1 GT1)

�1T T
1 DT2

=

�
T T
2uD12�22D12T2u 0

0 T T
2lD12�11D12T2l

�

= T T
2

�
D12�22D12 0

0 D12�11D12

�
T2

= T T
2 �T2:

Looking at the diagonal elements, we see that pre- and
postmultiplying by T T

2u and T2u eliminates the elements
corresponding to i 2 I�, while pre- and postmultiplying
by T T

2l and T2l eliminates the elements corresponding to
J�. This implies that only those diagonal elements in
D12�11D12 and D12�22D12 corresponding to i 2 J+ and
i 2 I+, respectively, will not vanish by this operation.
Since �11 and �22 have the structures given in (62) we
deduce that the non-vanishing elements in T T

2 �T2 must be
of the form (60), which completes the proof.

Lemma 3: Consider the inequality

1

q � ~q�1
�

Æ2

Æ2q + ~r�1
+ �

�
1

r � ~r�1
+

1

Æ2q + ~r�1

��1
> 0

(63)

where � = ÆÆ̂(Æ�Æ̂)q+(Æ̂�Æ)~r�1

(Æ̂2q+~r�1)(Æ2q+~r�1)
. Assuming that jÆj < 1; jÆ �

Æ̂j < e; 0 > q > ~q�1; (1 + e2)q + r > 0 and ~r�1 > r > 0,
(63) is satis�ed if

((1 + e)2q + ~r�1)2(~q�1 + ~r�1)(q + r)

> ((1 + e)q � r)2e2(~r�1 � r)(q � ~q�1):

Proof: Rewriting (63) as a single fraction gives

t1 + t2 + t3

(q � ~q�1)(Æ̂2q + ~r�1)2(Æ2q + ~r�1)(Æ2q + r)
> 0

where

t1 = (Æ̂2q + ~r�1)2(Æ2q + ~r�1)(Æ2q + r)

t2 = �(q � ~q�1)(Æ̂2q + ~r�1)2(Æ2q + r)Æ2

t3 = (ÆÆ̂(Æ � Æ̂)q + (Æ̂ � Æ)r)2(r � ~r�1)(q � ~q�1):

It is seen that the denominator is positive since q > ~q�1

and q + ~r�1 > q + r > 0 by assumption. Furthermore
it is obvious that the inequality is hardest to satisfy for
Æ ! 1, so we will let Æ = 1. Similarly, the worst case for Æ̂
is for Æ̂ ! Æ + e, so we will let Æ̂ = 1 + e and examine the
numerator inequality t1 + t2 > �t3 or:

((1 + e)2q + ~r�1)2((q + ~r�1)(q + r)� (q � ~q�1)(q + r))

> ((1 + e)q � r)2e2(~r�1 � r)(q � ~q�1): (64)



In other words, if (64) is satis�ed, then (63) will be satis�ed
as well. It is now easy to see that (64) can be simpli�ed to

((1 + e)2q + ~r�1)2(~q�1 + ~r�1)(q + r)

> ((1 + e)q � r)2e2(~r�1 � r)(q � ~q�1)

which was what we wanted to show.
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