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SIMPLIFIED LQG CONTROL WITH NEURAL NETWORKS

Ole Sgrensen

Aalborg University
Inst. of Electronic Systems, Dept. of Control Engineering
Fredrik Bajersvg 7C, DK-9220 Aalborg @, Denmark
Phone: +45 96358748, Fax: +45 98151739, E-mail: os@control.auc.dk

Abstract: A new neura network application for non-linear state control is described. One
neural network is modelled to form a Kalmann predictor and trained to act as an optimal
state observer for a non-linear process. Another neural network is modelled to form a state
controller and trained to produce a minimum variance controller for the non-linear process.
After training, tuning possibilities for the observer aswell asfor the controller are introduced
to improve the closed loop robustness and noise suppression. The advantage of this method
isthat tuning takes place after the time consuming training session. The method isillustrated
by asimple, multi variable example.

Résumé: Une nouvelle application de réseaux neuraux pour un contrdle non linéaire d' état
est décrite. Un predicteur de Kalmann forméal’ aide d’ un réseau neura est entrainé pour agir
comme un observateur d’ état optimal pour un processus non linéaire. Un autre réseau neural
modelisant un contrdleur d' état est développé et entrainé comme un contrdleur a variance
minimale pour le processus non linéaire. Aprés |’ entrainement, les possibilités d’ ajustement
et pour I’ observateur et pour le contréleur sont introduites pour améliorer la robustesse et
la suppression de bruit du systeme en boucle fermé. L avantage de cette méthode est que
la procédure d' gjustement n’intervient qu'aprés que le long processus d’ entrainement soit
expiré. Un exemple a multi-variables est utilisé pour I'illustration de la méthode.

Keywords: Non-linear control, Neural network, Extended Kalmann filters, LQG control,

Innovation mode!.

1. INTRODUCTION

For processes, which are difficult or perhaps impossi-
ble to model, the application of neural network control
seems very attractive, since a trained neural network
is considered to represent a non-parametric model of
the process. In most publications a neura network is
trained to act as a controller itself, i.e. it istrained to
produce the 'best’ control signal. Different cost func-
tions produce different "best’ control signals.

(Narendraet al., 1990) minimizes the error between
a desired model reference and the output from the
process. This method is known from linear control
theory as MRAS, Model Reference Adaptive System.

(Psdtiset al., 1988) minimizes the error between the
reference and the output from the process. In this
way the neural network is trained to act as the in-

verse process, and a minimum variance controller is
obtained.

(Hunteta., 1992) minimizes a cost function, in
which, besides the control error, also the increment
of the control signa is'punished’. Thisis a general-
ization to the non-linear case of the LQ-design, known
from linear control theory.

The starting point of this paper is the last mentioned
category and consequently, the principle of linear
LQG control, when applying state space description,
isillustrated infig. 1. Accepting, that not all elements
of the state x;, are measurable (k is the discrete sam-
pling number), an observer isintroduced giving an es-
timate %, of the state, which is fed back as an input
to the controller, delivering the control signal u,, to the
process. Anoutput referencery, isintroduced to handle
the servo problem as well.
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Fig. 1. The principle of optimal control

The observer error is defined as e, = yr — yi, the
control error as e, = ri — yx and the control signal
increment as Aug, = up — up_1.

e For the controller the performance function

Veon = E [el . Quec + Auf QeAu,] (1)

has to be minimized, using the weight matrices Q1

"punishing’ e, and Qz, 'punishing’ Auy, as de-

sign parameters. By solving the Riccati equation,

a state feedback matrix L is calculated, giving the
optimal controller

ug = —Lxy 2

e For the observer the performance function
Vobs = E [ef €] ©)

has to be minimized, using the covariance matrix
R of the process noise and the covariance matrix
R, of the measurement noise as design parameters.
By solving the Kalmann equation, amatrix K iscal-
culated, giving the optimal observer

DX +Tup_1 + Ker_1
Hx; + e )

X =
Ye =

e Theseparation theorem now states, that the optimal
control of a process, where not al elements of the
state vector are measurabl e, isthe combination of an
optimal observer and an optimal controller, giving

ug = 7L}A(k (5)

The detail s of the design method can be found in many
textbooks, e.g. (Astrém and Wittenmark, 1990) .

If this LQG control method has to be implemented
by two neural networks, an observer network and a
controller network, to handle non-linear processes as
well, two serious drawbacks exist

e Minimizing the performance function (1) is rather
complicated, and an off-line method, Back Prop-
agation Through Time (BPTT) has to be applied,
(Werbos, 1991) .

o Retuning of the controller demandsaquite new train-
ing session. Indeed, this is also the case for tra-
ditional linear optimal control, but the problem is
more perceptible for neural network optimal con-

trol, due to the time consuming training session.

Consequently, a heuristic and simplified version of
LQG control will be described here by making a radi-
ca modification. The performancefunction to be min-
imized for the controller issimply changed from (1) to

chon =F [egkec,k ] (6)

producing a minimum variance controller. After train-
ing, atuning possibility is introduced to re-establish a
simplified version of the performance function (1).

The method involves the following four steps.

1. Trainingtheobserver, only minimizingthevariance
of the prediction error, (3).

2. Training the controller, only minimizing the vari-
ance of the control error, (6).

3. Tuning the observer by allowing the observed state
from the neural network optimal Kalmann predic-
tor to befiltered more or less.

4. Tuning the controller by alowing the control signal
from the neural network minimum variance con-
troller to be filtered more or less.

The introduction of the tuning possibilities will be
physicaly interpreted in a way, that emphasizes that
this method is a heuristic and simplified version of the
traditional LQG control.

Section 2 briefly describes the neural network config-
urated as a Multi Layer Perceptron (MLP), and de-
fines the so-called Gain matrix. Section 3 describes
the neural observer model, the Kamann predictor, and
its training algorithm. Section 4 describes the neural
controller model and itstraining. In section 5 and 6 the
tuning possibilities for the observer and the controller,
respectively, are explained, allowing tuning after train-
ing. In section 7 the method is verified by a prac-
tical example contralling a noisy, non-linear, MIMO
process.

2. THE MULTI LAY ER PERCEPTRON

A Multi Layer Perceptron (MLP) with only one hidden
layer hasthe capability to act asauniversal approxima-
tor, (Hornik et a., 1989) . An MLP with this structure
isin ashort matrix notation showninfig. 2.

Fig. 2. A one hidden layer MLP in matrix notation



The matrix W, represents the weights between the
input and hidden layers, where the '1’ shown in fig.
2, together with the last column in W, produces the
necessary offset in the net. The matrix W, represents
the weights between the hidden and output layers. F
represents a neura vector function with all elements
chosen to the tanh-function. The input pattern is
represented by the vector z;, and the net output is
represented by the vector z,,,;. The mismatch between
the desired output z,,,; and z,,,; isthe error e.

Using this notation the output of the net is:

Zou = W F(Wl{ S }) v

A training set comprisesmatched pairsof input z;,, and
desired output z,.;.

For static neural networks the most frequently used
training method is the Back Propagation Algo-
rithm (BPA) described in many textbooks and pa-
pers (Hecht-Nielsen, 1989) , (Rumehart et al., 1988) ,
(Narendraet al., 1990) , (Hunt et a., 1992) .

The normal version of BRPA uses 'sample-updating’,
wheretheindividually weights @ at every sample k are
updated in thisway

(7]
0, =0, 1— WW(B (8)

where V. (0) isthe actual performance function
1
Vi(0) = 5ei (0)ex(6) ©)

and 7 is the gradient factor determining the updating
step size.

From a MLP it is possible, during and after training,
to extract a so-called Gain matrix G, the derivative of
the output vector with respect to the input vector of the
net,

d/z\out d}’1
G = =Wy —= W (excl. last column
dzT 2 axt at )
(20

Though training of an MLP is considered to produce
anon-parametric and non-linear modelling, the above
mentioned extraction of the small-signal gain matrix
G alows an estimation of the actua linearized model
parameters. Note, that for a non-linear process G is
not a constant matrix, but depends on the actual value
of x; and consequently on the actual value of theinput
Vector z;,,.

3. THE OBSERVER

3.1 The Kalmann predictor model

For a linear process with m inputs, n states and p
outputsthefollowing model of great generality isoften
used.

A

Xy = PXp_1+Tup1+Kep g

V. = Hx, (1

Y = Yrtex

In (11) k isthediscretetime, % isthe state vector (order
n), uistheinput vector (order m), y isthe output vector
(order p) and e isthe prediction error vector (order p).

For a linear process ®, T', K and H are constant
matrices of dimensionn x n,n x m,n x pandp x n,
respectively.

It is assumed, that % is not measurable (Incomplete
State Information), and the model is also named the
Innovation State Space model.

For the sake of simplicity and without lossof generdity
the matrix H hereischosento H = {I,,, O, ,,—»},
where I, , isap x p unity matrix and Op, ,_p isa
p x (n — p) zero matrix. This means, that the first
p elements of the state vector x isfilled with y.

Given only matched pairs of input measurements u
and desired output measurement yx, k = 1---N,
learning this model is equivaent to solving the Ex-
tended Kalmann Predictor problem. Even for linear
modelsthisisanon-linear problem without any assur-
ance of convergence. In spite of thisfact an attempt is
made to apply these principles from linear models to
be extended to non-linear models.

Generalizing to a non-linear Innovation State Space
model and including, for convenience, a measurable
disturbing vector d, the model reads

Xp = F(Xp—1,Up—1,dg_1,€x_1,0)
ye = Hxy, H={L,, Opr—p} (12
Y = Yrtex
In (12) F is a non-linear vector function and 6 is
a vector containing all weights organized in some

structure. In order to train an MLP to learn this model
the configuration shown in fig. 3isapplied.
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€

Fig. 3. The observer Kalmann predictor

The output vector is y, = HXy, the desired output
vector is y, and the prediction error ise, = yi —
HX,,. During and after training, the actual Gain matrix
Gy can be extracted from the MLP using (10) and
partitioned by

dxy

T
dzin,k—l

G, =



B {8ik 0%, R 8§k}

ORj_y Oui_; odi_; Oej_,
= {&uTu Pup K} (13)

For anon-linear process the actual, linearized parame-
ters &, I'y, I'y, and K, are not constant matrices,
but depend on the actual values of the input, state and
output vectors.

3.2 Training method

Since fig. 3 comprises two feedback loops around
the MLR it is a Recurrent Network, and training
a Recurrent Network is rather more complicated
than training a norma 'static MLP by the Back
Propagation Algorithm, see (Hecht-Nielsen, 1989) ,
(Narendraet a., 1990) , (Billingset a., 1991) .

A second order Recursive Prediction Error Method
(RPEM) using a Gauss-Newton search direction has
been applied, sincethis method isdominating in linear
system identification.

The method is rather involved and it is explained
in several textbooks (Ljung,1987) and papers
(Chenetal., 1990) , (Billingseta., 1991) . Inthisal-
gorithm the model specific derivative v, = dx /d6,
where @ isalong column vector containing al weights,
plays an important role.

Defining
ax¥l oxT

Ye="gp "=

acaculation of ¢, using (12), yields
Y, = ¢+ Yy {‘i’{ - HTK{} (19)

(14)

It is strait forward to transform the organizing of the
weightsin fig. 2 from the two matrices W, and W
to the long column vector @ in order to calculate ¢,
and for simplicity thisis not shown here.

Below the Recursive Prediction Error Method using a
Gauss-Newton search direction issummarized, and for
simplicity al the arguments’#’ are neglected. ) isthe
forgetting factor.

1) Calculate X, from (12)

2) Calculate ¥, from (14) and (15)

3) ek =Yr — V& (16)
4) Ry, = ARy + by ¥

5) 0, =0r_1+ R Y, Ey

Note, that 1)-2) depend on the chosen specific pre-
diction model, whereas 3)-5) are independent of the
model. More practical versions of the agorithm is
found in (Ljung, 1987) and (Billingset al., 1991) .

For physical processes the individual €lements of the
input and output vectorsare measuredin physical units,
which often are of quite different orders of magnitude.

A training session on that basis is inconvenient for
two reasons. Firstly, noting that the applied neuron
functions are tanh-functions, the risk to operate on the
near-horizontal parts of the tanh-functionsis enlarged,
thereby increasing the time consumption for training.
Secondly, the training session gives a higher priority
to those elements of the output vector, which are ac-
cidentally measured in large physical units. For these
reasonsascaling isperformed, and consequently, train-
ing and application of the neural network takes place
in a scaled world.

In the rest of this paper al measured signals are given
a subscript 'm’, contrary to the scaled signals. It is
here chosen to scale all measured signalsin such away;,
that the scaled signals have amean value of zero and a
standard deviation of one.

4. THE CONTROLLER

The functiona behavior of the neura controller is,
compareto fig. 1.

u, = G(Trq1, Xk, d) (17)

For convenience, it is assumed, that the reference sig-
nal r is known one sample ahead, and that a measur-
able disturbing vector d isincluded as an input to the
controller.

The purpose of the training is to let the neura net-
work recognize this non-linear relation by minimizing
the performance function (6). The training of the con-
troller network (NN2) is performed as a specialized
training, (Psaltis et a., 1988) . During thistraining, the
trained observer network (NN1) isused to smulate the
non-linear processin order to propagate the control er-
ror backward through the simulator to an equivalent
error on the output of the controller.

Fig. 4 shows two consecutive samples, unfolded in
time, of the closed loop used for training the controller
NN2.

For aprocesswithn statesand p outputsonly thefirst p
states are measurable, sinceH = {I,, , 0,,,,—,}. This
means, that at each sample &, only desired values for
thefirst p states can be presented, while desired values
for the remaining n — p states have to be found from
backpropagation of the next coming desired values at
sample k + 1. Consequently, the full state vector Xy, is
partitioned into two sub-vectors, the upper p measur-
able states are denoted %}, and the lower n — p non-
measurable states are denoted x%. This partitioning is
performed in fig. 4, showing two consecutive sections
at samplek and & + 1.

Ateachsamplek, k =1 ... N thefollowing procedure
is performed

1. A forward pass through NN2 and NN1 for section
kandk + 1.
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Fig. 4. Two consecutive sections at sample £ and
k+1.

2. The resulting control errors e, = ri — ¥% and
€ck+1 = Tkt1 — Yr+1 arecalculated.

3. The corresponding error e, ;1 on the output of
NN2 in section & is calculated by

oxf e
euk—1 = k. ok ,where (18)
Ouy_q €, k+1
o1 \T T aral T
o* B 8(Xk+1) Ouy, 8(Xk+1) ok
= — = 1
ekl ox3 ox2  Ouy ekt

This rather complicated expression is easily veri-
fied from fig. 4 by checking the backpropagations
frome, ; and e, j41 touy,_1. The applied parts of
the gain matrices are shown with dashed lines.

4. The weights of NN2 in section & are updated by
the Back Propagation Algorithm, using the corre-
sponding error ey, k1.

The output from the trained controller network NN2,
which represents a minimum variance controller, is
denoted uj.

5. TUNING THE OBSERVER

Tuning the observer is based on the ability of the
trained neural Kalmann predictor model aso to per-
form filtering, which now will be explained.

A multiplicative scalar a, 0 < a < 1, isplaced in the
feedback loop from the prediction error, fig. 3, and

then the actua linearized mode reads

Rp = PpXp_1 +Tpug_ g +Tgpdi 1 +aKiep
= {ék —a KkH} ﬁk—l
0y 1+ Tapdr 1+ aKiyr 1
yie = HXp+eg (19

The scalar a gives a possibility to change the observer
poles, and thereby to change thefilter properties of the
observer. The extremes are

e a=1. Thiscausesthe polesto be placedin the eigen-
vauesof (&), — K,H), theoptimal Kalmann pre-

dictor solution found by training the model. Thisis
equivaent to optimal prediction.

e a=0. Thiscausesthe polesto be placed in the eigen-
values of ®,, the open-loop characteristic matrix.
Thisis equivalent to pure simulation.

Choosing avalue of a situated between zero and one,
allows the observer model to filter more or less.

6. TUNING THE CONTROLLER

The optimal performance function (1) is now simpli-
fied to the actual performance function Vj, a sample
k

1 1
Vi = (1*p)§e’£k+1ec,k+1 +p§Au£Auk

= Q1-—pVigp+pVor (20)
It is here chosen to "punish’ the control activity by a
scalar p, and the control performance by ascalar 1 — p,
where 0 < p < 1. The extremes are thusp = 0
giving minimum variance control, and p = 1 giving
Auy, = 0, i.e. no control action at all.
To find the actual, optimal value of the control signal

uyg, thegradient of thesimplified performancefunction
(20) with respect to uy, isfound

Ve _ 1 )dVLk dVax
duk. P duk p duk
oxT
= (1- p)ﬁ(—HT)ecka + pAuy

= (1-p)(w —ug) +p(u —up_1)(21)

This gradient is zero, corresponding to a minimum of
Vi, if
u, = (1 —p)ug + pug_1 (22)

This actual weighting of u;, between uj (giving min-
imum for V4, alone) and u_1 (giving minimum for
Va,1 done), depending on the choice of p, isillustrated
infig. 5.

Equation (22) is equivalent to calculate uy, by alow
pass filtering of uj;

1—p
uy = ——uj 23
k=T 1 (23)



PERFORMANCE

Uy Uy Ugg

Fig. 5. The actual weighting of u, between u;, and
Ui—1.

The low pass filter has a DC-gain of one and a pole
placedinp, 0 < p < 1. The extremes are

¢ p=0. Thisgivesu, = uy, i.e. aminimum variance
controller.

e p=1. Thisgivesu; = ug_1, i.e. no control action
at all.

The implementation of the total control structure is
showninfig. 6. Theobserver NN1istrained only once
to produce minimum variance of the prediction error,
and the controller NN2 istrained only once to produce
minimum variance of the control error. After training,
tuning of the observer is performed by choosing a
convenient scalar a, 0 < a < 1, and tuning of the
controller isperformed by choosing aconvenient value
of the polep, 0 < p < 1 inthelow passfilter.

, :
e e e !
:

1
Aok dy CONTR| 1-pq
—_—

NN1

Fig. 6. The implementation of the simplified LQG
controller

7. A PRACTICAL EXAMPLE

This closing section deals with a simple practical ex-
periment to illustrate the neural network control con-
cept previously described.

The process considered is alaboratory setup, in which
cold and hot water are mixed in acylindrical tank con-
taining an outlet in the bottom. The control purposeis

to maintain the water level and the temperature of the
mixed water in spite of severa disturbances, mainly
the water outlet. The process is equipped with indus-
trial actuators and sensors, but unfortunately they are
contaminated with considerably electrical noise. How-
ever, the process is accepted as it is. No efforts have
been made to establish inner loops around the valves,
no filtering of the measured signals are performed, and
no knowledge of the process moddl is assumed. The
difficulties are considered to be extra challenges to a
neural network controller.

A sketch of the multi variable processis shown infig.
7, and the process modd structureis showninfig. 8.

Qim Q2m

= =
COLD WATER INLET ‘ ‘ HOT WATER INLET

v
@ MIXED WATER OUTLET

Fig. 7. Themulti variable process

DISTURBANCE
d= Qg

INPUT l OUTPUT

Fig. 8. The process model structure

e ThecontrallinginputsarethevoltagesQ1,,, and Q2.
to the valves, supplying the cold and hot water, re-
spectively.

e The disturbing input is the outlet flow @3, of the
mixed water. In fact, also the temperatures of the
water inletsare disturbances, but they arerather con-
stant and therefore dismissed.

e Themeasurableoutputsarethewater level Hs,,, and
the temperature T3,,,. The sensor for T3, is rather
dow, it contains a time constant of approximately
ten seconds.

o Thestateischosentofourth order, thefirst two states
being the measurable outputs Hs,,, and T3,,,, and the
last two states leaving 'space’ for unknown actuator



and sensor dynamics.

o The references are chosen to 0.25 m for Hs,,, and
25 C for T3,,.

e Thesampling interva is2 sec.

Without any knowledge of the process model, two tra-
ditional Pl-controllers are tuned 'by hand' to give the
"best’” performance, letting one Pl-controller control
Hs,, by Q1,,,, and the other Pl-controller control T3,
by @s,,.. Theresultisshown infig. 9.

INPUT, Q1m_,Q2m__[V]

0 50 100 150 200 250 300 350 400 450 500

DISTURBANCE, Q3m_[0.011/sec]

o
o ]
30°

0 50 100 150 200 250 300 350 400 450 500

OUTPUT 1, H3m [cm]

50 100 150 200 250 300 350 400 450 500

OUTPUT 2, T3m[C]

Fig. 9. Two individualy tuned Pl-controllers. The
data are used for training the neural networks.

The unknown hidden coupling between the two indi-
vidua control loops causes arather poor performance.
Both control loops try to fulfill its own purpose, re-
gardless of the other loop.

The data from fig. 9 are used as training data for the
neural networks. The number of hidden neuronsis 8
for the observer and 6 for the controller. Fig. 10 shows
the closed loop result after training and tuning with
p=0.1anda=0.3.

Considering the considerable disturbance and noise, a
nice performance is obtained. An eventual retuning of
the controller may be performed easily without any re-
training.

8. CONCLUSION

A new neura network application for non-linear state
control was described. One neura network was mod-
elled to form aKamann predictor and trained to act as
an optimal state observer for anon-linear process. An-
other neural network was modelled to form astate con-
troller and trained to produce aminimum variance con-
troller for the non-linear process. After training, tun-
ing possibilitiesfor the observer aswell asfor the con-
troller were introduced to improve the closed loop ro-
bustness and noise suppression. The advantage of this
method was that tuning took place after the time con-
suming training session. The method was illustrated

INPUT, Q1m_,Q2m__[V]

o e A A AP e P e P |
35k ~~\orao et AP S rosmmss N s PR |

0 50 100 150 200 250 300 350 400 450

DISTURBANCE, Q3m_[0.01/sec]

0 50 100 150 200 250 300 350 400 450

B8RS S

OUTPUT 1, H3m [cm]
30

25 e S M i 8 D st ol et S D e S b ]
20
0

50 100 150 200 250 300 350 400 450

OUTPUT 2, T3m [C]
30

25
20!
0

50 100 150 200 250 300 350 400 450

Fig. 10. Simplified optimal control with p = 0.1 and
a=0.3.

by a simple multi variable example.

Theresult from the experiment confirmed the practical
application of the control and training concepts.
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