

Aalborg Universitet

Simplified LQG Control with Neural Networks

Sørensen, O.

Publication date:
1997

Document Version
Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):
Sørensen, O. (1997). Simplified LQG Control with Neural Networks.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 15, 2024

https://vbn.aau.dk/da/publications/2c986d90-9c2d-11db-8ed6-000ea68e967b

SIMPLIFIED LQG CONTROL WITH NEURAL NETWORKS

OleSørensen

Aalborg University
Inst. of Electronic Systems, Dept. of Control Engineering

Fredrik Bajersvej 7C, DK-9220 Aalborg Ø, Denmark
Phone: +45 96358748, Fax: +45 98151739, E-mail: os@control.auc.dk

Abstract: A new neural network application for non-linear state control is described. One
neural network is modelled to form a Kalmann predictor and trained to act as an optimal
state observer for a non-linear process. Another neural network is modelled to form a state
controller and trained to produce a minimum variance controller for the non-linear process.
After training, tuning possibilities for theobserver aswell as for thecontroller are introduced
to improve the closed loop robustness and noise suppression. The advantage of this method
is that tuning takesplaceafter thetimeconsuming training session. Themethod is illustrated
by asimple, multi variableexample.

Résumé: Une nouvelle application de réseaux neuraux pour un contrôle non linéaire d’état
est décrite. Un predicteur deKalmann forméàl’aided’un réseau neural est entraînépour agir
commeun observateur d’état optimal pour un processusnon linéaire. Un autre réseau neural
modelisant un contrôleur d’état est développé et entraîné comme un contrôleur à variance
minimale pour le processus non linéaire. Après l’entraînement, les possibilités d’ajustement
et pour l’observateur et pour le contrôleur sont introduites pour améliorer la robustesse et
la suppression de bruit du système en boucle fermé. L’avantage de cette méthode est que
la procédure d’ajustement n’ intervient qu’aprés que le long processus d’entraînement soit
expiré. Un exempleàmulti-variablesest utilisépour l’ illustration de laméthode.

Keywords: Non-linear control, Neural network, Extended Kalmann filters, LQG control,
Innovation model.

1. INTRODUCTION

For processes, which are diff icult or perhaps impossi-
bleto model, theapplication of neural network control
seems very attractive, since a trained neural network
is considered to represent a non-parametric model of
the process. In most publications a neural network is
trained to act as a controller itself, i.e. it is trained to
produce the ’best’ control signal. Different cost func-
tionsproducedifferent ’best’ control signals.

(Narendraet al., 1990) minimizes the error between
a desired model reference and the output from the
process. This method is known from linear control
theory asMRAS, Model ReferenceAdaptiveSystem.

(Psaltis et al., 1988) minimizes the error between the
reference and the output from the process. In this
way the neural network is trained to act as the in-

verse process, and a minimum variance controller is
obtained.

(Hunt et al., 1992) minimizes a cost function, in
which, besides the control error, also the increment
of the control signal is ’punished’ . This is a general-
ization to thenon-linear caseof theLQ-design, known
from linear control theory.

The starting point of this paper is the last mentioned
category and consequently, the principle of linear
LQG control, when applying state space description,
is illustrated in fig. 1. Accepting, that not all elements
of the state � � are measurable (

�
is the discrete sam-

pling number), an observer is introduced giving an es-
timate �� � of the state, which is fed back as an input
to the controller, delivering the control signal � � to the
process. An output reference � 	 is introduced to handle
the servo problem as well.

CON-
TROLLER

PROCESS

OB-
SERVER

u y

x

x̂

^

k

k

kk

rk

Fig. 1. The principle of optimal control

The observer error is defined as
 � �
 � � �� � , the
control error as � � � � � � � � � � and the control signal
increment as � � � � � � � � � ! ." For the controller the performance function# $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

(1)

has to beminimized, using theweight matrices @ A ,
’punishing’ B C D E , and @ F , ’punishing’ G H E , as de-
sign parameters. By solving the Riccati equation,
a state feedback matrix I is calculated, giving the
optimal controllerJ K L M I N K

(2)O For the observer the performance functionP Q R S T U V W X Y W Y Z
(3)

has to be minimized, using the covariance matrix[\
of the process noise and the covariance matrix[]
of the measurement noise as design parameters.

By solving the Kalmann equation, a matrix ^ is cal-
culated, giving the optimal observer_` a b c de f g h i j k l m n o p q l m nr l s t uv w x y w (4)z Theseparation theorem now states, that theoptimal
control of a process, where not all elements of the
statevector aremeasurable, isthecombinationof an
optimal observer and an optimal controller, giving{ w | } ~ uv w (5)

Thedetailsof thedesign method can befound in many
textbooks, e.g. (Åström and Wittenmark, 1990) .

If this LQG control method has to be implemented
by two neural networks, an observer network and a
controller network, to handle non-linear processes as
well, two seriousdrawbacksexistz Minimizing the performance function (1) is rather

complicated, and an off-line method, Back Prop-
agation Through Time (BPTT) has to be applied,
(Werbos, 1991) .z Retuningof thecontroller demandsaquitenew train-
ing session. Indeed, this is also the case for tra-
ditional linear optimal control, but the problem is
more perceptible for neural network optimal con-

trol, due to the timeconsuming training session.

Consequently, a heuristic and simplified version of
LQG control will be described hereby making a radi-
cal modification. Theperformancefunction tobemin-
imized for thecontroller issimply changed from (1) to� � � � | � � y � � � w y � � w � (6)

producing aminimum variance controller. After train-
ing, a tuning possibility is introduced to re-establish a
simplif ied version of theperformance function (1).

Themethod involves the following four steps.

1. Trainingtheobserver, only minimizingthevariance
of theprediction error, (3).

2. Training the controller, only minimizing the vari-
anceof thecontrol error, (6).

3. Tuning theobserver by allowing theobserved state
from the neural network optimal Kalmann predic-
tor to be filtered moreor less.

4. Tuning thecontroller by allowing thecontrol signal
from the neural network minimum variance con-
troller to be filtered moreor less.

The introduction of the tuning possibilities will be
physically interpreted in a way, that emphasizes that
thismethod isaheuristic and simplified version of the
traditional LQG control.

Section 2 brief ly describes theneural network config-
urated as a Multi Layer Perceptron (MLP), and de-
fines the so-called Gain matrix. Section 3 describes
theneural observer model, theKalmann predictor, and
its training algorithm. Section 4 describes the neural
controller model and itstraining. In section 5and6 the
tuning possibilities for theobserver and thecontroller,
respectively, areexplained, allowing tuning after train-
ing. In section 7 the method is verif ied by a prac-
tical example controlling a noisy, non-linear, MIMO
process.

2. THE MULTI LAYER PERCEPTRON

A Multi Layer Perceptron (MLP) withonly onehidden
layer hasthecapability toact asauniversal approxima-
tor, (Hornik et al., 1989) . An MLP with this structure
is in ashort matrix notation shown in fig. 2.

1 W W
F

1 2

+

-

z y x y x z

z

e

out

out
^

2110in

Fig. 2. A onehidden layer MLP in matrix notation

The matrix � � represents the weights between the
input and hidden layers, where the ’1’ shown in fig.
2, together with the last column in � � , produces the
necessary offset in thenet. The matrix � � represents
the weights between the hidden and output layers. �
represents a neural vector function with all elements
chosen to the tanh-function. The input pattern is
represented by the vector � � � and the net output is
represented by the vector � � � � � . The mismatch between
the desired output � � � � and � � � � � is the error � .

Using this notation the output of the net is:� � � � � � � � � � � � ¡ ¢ £¤ ¥ ¦ (7)

A trainingset comprisesmatchedpairsof input § ¨ © and
desired output § ª « ¬ .
For static neural networks the most frequently used
training method is the Back Propagation Algo-
rithm (BPA) described in many textbooks and pa-
pers(Hecht-Nielsen, 1989) , (Rumelhart et al., 1988) ,
(Narendraet al., 1990) , (Hunt et al., 1992) .

The normal version of BPA uses ’sample-updating’ ,
wheretheindividually weights ­ at every sample ® are
updated in this way­ ¯ ° ­ ¯ ± ² ³ ´ µ ¶ · ¸ ¹ º» ¼ ½ ¾ ¿ (8)

where À ½ Á ¼ º is the actual performance functionÀ ½ Á ¼ º Â ÃÄ Å Æ Ç È É Ê Å Ç È É Ê (9)

and Ë is the gradient factor determining the updating
step size.

From a MLP it is possible, during and after training,
to extract a so-called Gain matrix G, the derivative of
the output vector with respect to the input vector of the
net,Ì Í Î Ï Ð Ñ Ò ÓÎ Ð ÔÕ Ö × Ø Ù Î Ú ÛÎ Ü Ô Û Ø Û Ý Þ ß à á â ã ä å æ ç è é ê ë ì í

(10)

Though training of an MLP is considered to produce
a non-parametric and non-linear modelling, the above
mentioned extraction of the small-signal gain matrixî

allows an estimation of the actual linearized model
parameters. Note, that for a non-linear process

î
is

not a constant matrix, but depends on the actual value
of ï ð and consequently on the actual value of the input
vector ñ ò ó .

3. THE OBSERVER

3.1 The Kalmann predictor model

For a linear process with ô inputs, ì states and õ
outputs the following model of great generality is often
used. ö÷ ø ù ú ö÷ ø û ü ý þ ÿ ø û ü ý � � ø û ü

ö� ø ù � ö÷ ø (11)� ø ù ö� ø ý � ø
In (11) � is the discrete time,

ö÷ is the state vector (order
n), ÿ is the input vector (order m), � is the output vector
(order p) and � is the prediction error vector (order p).

For a linear process ú , þ , � and � are constant
matrices of dimension � � � , � � � , � � 	 and 	 � � ,
respectively.

It is assumed, that
� is not measurable (Incomplete
State Information), and the model is also named the
Innovation State Space model.

For the sake of simplicity and without loss of generality
the matrix � here is chosen to �
 � � � � � � � � � � � � ,
where � � � � is a � � � unity matrix and � � � � � � is a� � ! " � # zero matrix. This means, that the first� elements of the state vector $% is filled with $& .

Given only matched pairs of input measurements ' (
and desired output measurement & (,) * + , , , - ,
learning this model is equivalent to solving the Ex-
tended Kalmann Predictor problem. Even for linear
models this is a non-linear problem without any assur-
ance of convergence. In spite of this fact an attempt is
made to apply these principles from linear models to
be extended to non-linear models.

Generalizing to a non-linear Innovation State Space
model and including, for convenience, a measurable
disturbing vector . , the model reads/0 1 2 3 4 56 7 8 9 : ; < = > : ? < = > : @ < = > : A BCD < E F CG < : F E H I J K J L J K M = J N (12)D < E CD < O @ <
In (12) P is a non-linear vector function and A is
a vector containing all weights organized in some
structure. In order to train an MLP to learn this model
the configuration shown in fig. 3 is applied.

NN

q
-1

-

+

H

q
-1

x

u

d

e

x y

y

e

^

^ ^

k-1

k-1

k-1

k-1

k k

k

k

Fig. 3. The observer Kalmann predictor

The output vector is
CD < E F CG < , the desired output

vector is D < and the prediction error is @ < E D < QF CG < . During and after training, the actual Gain matrixR < can be extracted from the MLP using (10) and
partitioned byR < E S CG <S T UV M K < = >

W X Y Z[\Y Z[] \ ^ _ Y Z[\Y `] \ ^ _ Y Z[\Y a] \ ^ _ Y Z[\Y b] \ ^ _ cd e fg h ij k lj m n o pq r s
(13)

For anon-linear processtheactual, linearized parame-
ters tu v

, tw v
, tw x y v

and tz v
are not constant matrices,

but depend on the actual values of the input, state and
output vectors.

3.2 Training method

Since fig. 3 comprises two feedback loops around
the MLP, it is a Recurrent Network, and training
a Recurrent Network is rather more complicated
than training a normal ’static’ MLP by the Back
Propagation Algorithm, see (Hecht-Nielsen, 1989) ,
(Narendraet al., 1990) , (Billingset al., 1991) .

A second order Recursive Prediction Error Method
(RPEM) using a Gauss-Newton search direction has
been applied, sincethismethod isdominating in linear
system identification.

The method is rather involved and it is explained
in several textbooks (Ljung, 1987) and papers
(Chen et al., 1990) , (Billingset al., 1991) . In this al-
gorithm themodel specific derivative { | } ~ �� � � � � � ,
where � is a long column vector containing all weights,
plays an important role.

Defining � � � � �� � �
� � � � � � � � � �� � �� � (14)

a calculation of � � , using (12), yields� � � � � � � ¡ ¢ £ ¤¥ ¦ § ¨ © ª «¬ ª ­ ®
(15)

It is strait forward to transform the organizing of the
weights in fig. 2 from the two matrices ¯ ° and ¯ ±
to the long column vector ² in order to calculate ³ ´ ,
and for simplicity this isnot shown here.

Below the Recursive Prediction Error Method using a
Gauss-Newtonsearchdirection issummarized, and for
simplicity all thearguments ’ µ ’ areneglected. ¶ is the
forgetting factor.· ¸ ¹ º » ¼ ½ ¾ ¿ À Á ÂÃ Ä Å Æ Ç È É Ê Ë ÌË Ì Í Î Ï Ð Ñ Ï Î Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à á â ã äå æ ç è é ê ë ì íê ëî ï ð ñ ò ó ð ñ ô õ ö ÷ ñ ÷ ø ñù ú û ñ ò û ñ ô õ ö ð ô õñ ÷ ñ ü ý (16)

Note, that 1)-2) depend on the chosen specific pre-
diction model, whereas 3)-5) are independent of the
model. More practical versions of the algorithm is
found in (Ljung, 1987) and (Billingset al., 1991) .

For physical processes the individual elements of the
input andoutput vectorsaremeasuredinphysical units,
which often areof quitedifferent ordersof magnitude.

A training session on that basis is inconvenient for
two reasons. Firstly, noting that the applied neuron
functionsare tanh-functions, therisk to operateon the
near-horizontal partsof the tanh-functions isenlarged,
thereby increasing the time consumption for training.
Secondly, the training session gives a higher priority
to those elements of the output vector, which are ac-
cidentally measured in large physical units. For these
reasonsascaling isperformed, andconsequently, train-
ing and application of the neural network takes place
in ascaled world.

In the rest of this paper all measured signals are given
a subscript ’m’, contrary to the scaled signals. It is
herechosen toscaleall measuredsignalsinsuchaway,
that thescaled signalshaveamean valueof zero and a
standard deviation of one.

4. THE CONTROLLER

The functional behavior of the neural controller is,
compare to fig. 1.þ ÿ � � � � � � � � �	
 � � �
 (17)

For convenience, it is assumed, that the reference sig-
nal � is known one sample ahead, and that a measur-
able disturbing vector � is included as an input to the
controller.

The purpose of the training is to let the neural net-
work recognize this non-linear relation by minimizing
the performance function (6). The training of the con-
troller network (NN2) is performed as a specialized
training, (Psaltis et al., 1988) . During this training, the
trained observer network (NN1) is used to simulate the
non-linear process in order to propagate the control er-
ror backward through the simulator to an equivalent
error on the output of the controller.

Fig. 4 shows two consecutive samples, unfolded in
time, of the closed loop used for training the controller
NN2.

For a process with � states and � outputs only the first �
states are measurable, since � � � � � � � � � � � � � � . This
means, that at each sample � , only desired values for
the first � states can be presented, while desired values
for the remaining ! � states have to be found from
backpropagation of the next coming desired values at
sample � " # . Consequently, the full state vector $% & is
partitioned into two sub-vectors, the upper � measur-
able states are denoted $% '& , and the lower ! � non-
measurable states are denoted $% (& . This partitioning is
performed in fig. 4, showing two consecutive sections
at sample � and � " # .

At each sample �) � * # + + + , the following procedure
is performed

1. A forward pass through NN2 and NN1 for section-
and

- . /
.

+

NN1

x

x

d

x

x

u

d

y

e

^

^

^

^

^

k-1

k-1

k-1

k-1

k-1

k-1

k-1

k

c,k

1

1

2

2

e k-1 = 0

-

r

r

k

k

NN2

CONTR

OBS

+

NN1

x

x

d

u

d

y

e

^

^

^

k

k

k

k

k

k+1

c,k+1

-

1

2

e k = 0

r

r

k+1

k+1

NN2

CONTR

OBS

SECTION k

SECTION k+1

x̂ k
1

x̂ k
2

x̂ k+1
1

x̂ k
1

x̂ k
2

x̂ k+1
2

Fig. 4. Two consecutive sections at sample 0 and0 1 2 .

2. The resulting control errors 3 4 5 6 7 8 6 9 :; 6 and< 4 5 6 = > 7 8 6 = > 9 :; 6 = > are calculated.

3. The corresponding error < ? @ A B C on the output of
NN2 in section D is calculated byE ? @ A B C F G HI J AG K A B C L M N O P QN RS T U V W X Y Z [\] \ (18)^ _` a b c d e f g h ij kl m k n og ij p l q g r o lg ij p l g h ij kl m k n og r l s t u v l m k
This rather complicated expression is easily veri-
fied from fig. 4 by checking the backpropagations
from t u v l and t u v l m k to r l w k . The applied parts of
the gain matrices are shown with dashed lines.

4. The weights of NN2 in section x are updated by
the Back Propagation Algorithm, using the corre-
sponding error t y v l w k .

The output from the trained controller network NN2,
which represents a minimum variance controller, is
denoted r zl .

5. TUNING THE OBSERVER

Tuning the observer is based on the ability of the
trained neural Kalmann predictor model also to per-
form filtering, which now will be explained.

A multiplicative scalar { , | } ~ } � , is placed in the
feedback loop from the prediction error, fig. 3, and

then the actual linearized model reads�� � � �� � �� � � � � �� � � � � � � �� � � � � � � � � ~ �� � � � � �� � �� � � ~ �� � � � �� � � �� �� � � � � � � �� � � � � � � � � ~ �� � � � � �� � � � �� � � � �
(19)

The scalar ~ gives a possibility to change the observer
poles, and thereby to change the filter properties of the
observer. The extremes are� a=1. This causes the poles to be placed in the eigen-

values of � �� � � �� � � �
, the optimal Kalmann pre-

dictor solution found by training the model. This is
equivalent to optimal prediction. a=0. This causes the poles to be placed in the eigen-
values of ¡¢ £

, the open-loop characteristic matrix.
This is equivalent to pure simulation.

Choosing a value of ¤ situated between zero and one,
allows the observer model to filter more or less.

6. TUNING THE CONTROLLER

The optimal performance function (1) is now simpli-
fied to the actual performance function ¥ ¦ , at sample§ ¨ © ª « ¬ ­ ® ¯ °± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¸ ¾ ¿ ÀÁ Â Ã Ä Å Æ Ã ÅÇ È É Ê Ë Ì Í Î Ï Å Ð Ë Í Ñ Ò Ó (20)

It is here chosen to ’punish’ the control activity by a
scalar Ô , and thecontrol performanceby ascalar Õ Ö Ô ,
where × Ø Ù Ø Ú . The extremes are thus Ù Û Ü
giving minimum variance control, and Ù Û Ú givingÝ Þ ß Û Ü , i.e. no control action at all.

To find the actual, optimal value of the control signalÞ ß
, the gradient of the simplified performance function

(20) with respect to
Þ ß

is foundà á âà ã â ä å æ ç è é à á ê ë âà ã â ì è à á í ë âà ã âä å æ ç è é î ïð ñ ò ó ôõ ö ò ÷ ø ù ñ ú û ü ý ò ó ô þ ÿ � ö ò
� ÷ � ø ÿ ú ÷ ö ò ø ö �� � � � � 	 �
 	 � � �

(21)

This gradient is zero, corresponding to a minimum of� �
, if � � � � � � �
 � �� � � � � � �

(22)

This actual weighting of
� �

between
� �� (giving min-

imum for
� � � �

alone) and
� � � �

(giving minimum for� � � �
alone), depending on the choice of

�
, is illustrated

in fig. 5.

Equation (22) is equivalent to calculate
� �

by a low
pass filtering of

� ��
� � � � � �

� � � � � � � �� (23)

0 1

PERFORMANCE

p
p

V V1,k 2,k

u u uk
*

k k-1

u
k

Fig. 5. The actual weighting of ! between "! and ! # $ %
The low pass filter has a DC-gain of one and a pole
placed in & , ' (& () . The extremes are

* p=0. This gives + , - + ., , i.e. a minimum variance
controller.

* p=1. This gives + , - + , / 0 , i.e. no control action
at all.

The implementation of the total control structure is
shown in fig. 6. The observer NN1 is trained only once
to produce minimum variance of the prediction error,
and the controller NN2 is trained only once to produce
minimum variance of the control error. After training,
tuning of the observer is performed by choosing a
convenient scalar 1 , ' (1 () , and tuning of the
controller is performed by choosing a convenient value
of the pole & , ' (& () in the low pass filter.

NN2SCALE

SCALE

SCALE

+

-
Hq

-1

NN1

SCALE

PROCESS
INVERSE

SCALE

1 - p

1 - pq
-1

a

CONTR

OBS

d d

u u u

d

y

y

y

e

x

u

d

a e

x

x̂

^

^ ^

k

m,k k

*
k k m,k

k

k

k

k

d m,k

m,k

m,k

k

k

k

k

r rm,k+1 k+1

Fig. 6. The implementation of the simplified LQG
controller

7. A PRACTICAL EXAMPLE

This closing section deals with a simple practical ex-
periment to illustrate the neural network control con-
cept previously described.

The process considered is a laboratory setup, in which
cold and hot water are mixed in a cylindrical tank con-
taining an outlet in the bottom. The control purpose is

to maintain the water level and the temperature of the
mixed water in spite of several disturbances, mainly
the water outlet. The process is equipped with indus-
trial actuators and sensors, but unfortunately they are
contaminated with considerably electrical noise. How-
ever, the process is accepted as it is. No efforts have
been made to establish inner loops around the valves,
no filtering of the measured signals are performed, and
no knowledge of the process model is assumed. The
difficulties are considered to be extra challenges to a
neural network controller.

A sketch of the multi variable process is shown in fig.
7, and the process model structure is shown in fig. 8.

2m1m QQ

Q

H

3m MIXED WATER OUTLET

COLD WATER INLET

3m

HOT WATER INLET

T
3m

Fig. 7. The multi variable process

1m
Q

Q
2m

T
3m

H
3m

X 3

X 4

H
3m

3mT

Q3m

PROCESS

OUTPUTINPUT

STATE

DISTURBANCE

u =

d =

y=

x=

Fig. 8. The process model structure

* The controlling inputs are the voltages 2 3 4 and 5 6 4
to the valves, supplying the cold and hot water, re-
spectively.

7 The disturbing input is the outlet flow 5 8 9 of the
mixed water. In fact, also the temperatures of the
water inlets are disturbances, but they are rather con-
stant and therefore dismissed.

: The measurable outputs are the water level ; < = and
the temperature > ? @ . The sensor for > ? @ is rather
slow, it contains a time constant of approximately
ten seconds.

A Thestateischosentofourthorder, thefirst twostates
being themeasurableoutputs B ? @ and > ? @ , and the
last two states leaving ’space’ for unknown actuator

and sensor dynamics.
C The references are chosen to D E F G H for I J K andL M N

for O P Q .
R The sampling interval is S T U V W
Without any knowledgeof theprocessmodel, two tra-
ditional PI-controllers are tuned ’by hand’ to give the
’best’ performance, letting one PI-controller controlX Y Z

by [\ Z
, and theother PI-controller control] Y Z

by [^ Z
. Theresult isshown in fig. 9.

0 50 100 150 200 250 300 350 400 450 500
3

3.5

4
INPUT, Q1m_ ,Q2m_ _ [V]

0 50 100 150 200 250 300 350 400 450 500
30
35
40
45

DISTURBANCE, Q3m_ [0.01l/sec]

0 50 100 150 200 250 300 350 400 450 500
20

25

30
OUTPUT 1, H3m [cm]

0 50 100 150 200 250 300 350 400 450 500
20

25

30
OUTPUT 2, T3m [C]

Fig. 9. Two individually tuned PI-controllers. The
dataareused for training theneural networks.

The unknown hidden coupling between the two indi-
vidual control loopscausesarather poor performance.
Both control loops try to fulfill its own purpose, re-
gardlessof theother loop.

The data from fig. 9 are used as training data for the
neural networks. The number of hidden neurons is 8
for theobserver and 6 for thecontroller. Fig. 10 shows
the closed loop result after training and tuning with_ ` a W b and c ` a W d .

Considering the considerable disturbance and noise, a
niceperformance isobtained. An eventual retuning of
thecontroller may beperformed easily without any re-
training.

8. CONCLUSION

A new neural network application for non-linear state
control was described. One neural network was mod-
elled to form aKalmann predictor and trained to act as
an optimal stateobserver for anon-linear process. An-
other neural network wasmodelled to formastatecon-
troller and trainedtoproduceaminimumvariancecon-
troller for the non-linear process. After training, tun-
ing possibilitiesfor theobserver aswell asfor thecon-
troller were introduced to improve the closed loop ro-
bustnessand noisesuppression. Theadvantageof this
method was that tuning took place after the time con-
suming training session. The method was illustrated

0 50 100 150 200 250 300 350 400 450
3

3.5

4
INPUT, Q1m_ ,Q2m_ _ [V]

0 50 100 150 200 250 300 350 400 450
30
35
40
45

DISTURBANCE, Q3m_ [0.01l/sec]

0 50 100 150 200 250 300 350 400 450
20

25

30
OUTPUT 1, H3m [cm]

0 50 100 150 200 250 300 350 400 450
20

25

30
OUTPUT 2, T3m [C]

Fig. 10. Simplified optimal control with e f g h i andj f g h d .

by asimplemulti variableexample.

Theresult fromtheexperiment confirmed thepractical
application of thecontrol and training concepts.

REFERENCES

Billings, S. A. et al. (1991). A comparison of the
backpropagation and recursive prediction error al-
gorithmsfor training neural networks. Mechanical
Systems and Signal Processing, 3:233–255.

Chen, S. et al. (1990). Non-linear systemidentification
using neural networks. Int. J. Control, 6:1191–
1214.

Hecht-Nielsen, R. (1989). Neurocomputing. Addison
Wesley.

Hornik, K. et al. (1989). Multilayer feedforward
networks are universal approximators. Neural
Networks, 2:359–366.

Hunt, K. J. et al. (1992). Neural networks for control
systems- asurvey. Automatica, 6:1083–1120.

Ljung, L. (1987). System identification, theory for the
user. Prentice-Hall, f irst edition.

Narendra, K. S. et al. (1990). Identif icationandcontrol
of dynamical systemsusingneural networks. IEEE
Transaction on Neural Networks, 1(1):4–27.

Psaltis, D. et al. (1988). A multilayererd neural net-
work controller. IEEE Control System Magazine,
8(3):17–21.

Rumelhart, D. E. et al. (1988). Parallel Distributed
Processing, volume 1,2. MIT Press, Cambridge,
London.

Åström, K. J. and Wittenmark, B. (1990). Computer
Controlled Systems: Theory and Design. Prentice-
Hall, second edition.

Werbos, P. J. (1991). Backpropagation through time:
What it doesand how to do it. In Neural Networks,
Theoretical Foundations and Analysis, pages211–
221. Clifford Lau, IEEE Press.

