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SLIDING MODE ATTITUDE CONTROL FOR MAGNETIC
ACTUATED SATELLITE

Rafal Wisniewski

Aalborg University, Department of Control Engineering, Frederik Bagjers Vej 7,
DK-9220 Aalborg @, Denmark. raf@control.auc.dk

Abstract: Magnetic torquing is attractive as a control principle on small satellites.
The actuation principle is to use the interaction between the earth’s magnetic field
and magnetic field generated by a coil set in the satellite. This control principle is
inherently nonlinear, and difficult to use because control torques can only be generated
perpendicular to the local geomagnetic field vector. This has been a serious obstacle
for using magnetorquer based control for three-axis attitude control. This paper deals
with three-axis stabilization of a low earth orbit satellite. The problem of controlling
the spacecraft attitude using only magnetic torquing is realized in the form of the
sliding mode control. A three dimensional sliding manifold is proposed, and it is
shown that the satellite motion on the sliding manifold is asymptotically stable.

Keywords: Attitude control, satellite control, sliding mode, time-varying systems,

Lyapunov stability, quaternion feedback.

1 INTRODUCTION

This study was initiated as a part of the Danish
Orsted satellite project. The Orsted satellite is a
60 kg auxiliary payload to be launched in March
1998 into 450 x 850 km orbit with 96 degrees in-
clination. The satellite is equipped with an 8 m
long gravity gradient boom. The two primary sci-
ence objectives of the mission are to measure the
main geomagnetic field and study its interaction
with the solar wind plasma. The satellite is ac-
tuated by three mutually perpendicular electro-
magnetic coils, magnetorgers. The information of
the satellite attitude and angular velocity is avail-
able through an onboard attitude determination
system, see Bak et al. (1996).

Magnetic torquing is attractive for small, cheap
satellites, since the magnetic control systems are
relatively lightweight, require low power and are
inexpensive. The challenge was that three-axis
control was not possible with an actuation prin-

ciple that leaves the system controllable in only
two degrees of freedom because the control torque
can only be generated perpendicular to the local
magnetic field of the Earth.

The controller is developed for a satellite without
appendages, since the concept was originally for-
mulated for the @Qrsted satellite during the boom
pre-release phase. A characteristic feature of this
configuration is that the principal moments of in-
ertia are of the same order of magnitude.

The available literature on magnetorquing for
three axis stabilization of satellites includes the
work of (Cavallo et al., 1993), where a configura-
tion with two magnetic coils and a reaction wheel
was addressed. A novel approach based on a rule-
based fuzzy controller was proposed by (Steyn,
1994). Still another approach for three axis mag-
netic stabilization of a low earth near polar orbit
satellite based on Lyapunov theory was presented
by (Wisniewski and Blanke, 1996), where a global



stabilizing magnetic controller was derived.

A number of internationally published papers
dealing with magnetic attitude control can be ex-
tended to these addressing a linear control prob-
lem. (Arduini and Baiocco, 1997) proposed a con-
trol law in which the desired control torque was de-
fined first and then the actual magnetic generated
control torque was derived. Another concept cited
in the literature was based on an idea of designing
magnetic controller for the system with averaged
parameters. This design strategy was used both
for bias momentum satellites (Hablani, 1995) and
three axis control(Martel et al., 1988). The lo-
cal stabilization of the satellite was achieved via
implementation of the infinite-time-horizon linear
quadratic regulator. An energy optimal solution
with use of Riccati periodic equation was pre-
sented in (Wisniewski, 1997).

This study gives an application of the sliding con-
trol to the magnetic actuation of a spacecraft. The
essence of the sliding controller design is outlined
in Section 3. The design algorithm is split into two
steps: the sliding manifold design and the slid-
ing condition design. A three dimensional sliding
manifold is proposed in Section 4. Furthermore,
motion of the satellite on the sliding manifold is
shown to be asymptotically stable. An ideal case
of the sliding condition development is when the
control torque is producible in x, y, and z direc-
tions independently. A solution to this control
problem is given in Section 5. Section 6 consid-
ers a sliding condition for the magnetic generated
control torque. The simulation study shows that
the sliding control is stable for satellites, which the
principal moments of inertia are of the same order
of magnitude.

2 SATELLITE MODEL DESCRIPTION
2.1 Coordinate Systems

e Control CS, CCS is a right orthogonal coordi-
nate system built on the principal axes of the
satellite with the origin placed in the centre
of mass. The x-axis is the axis of the maxi-
mum moment of inertia, and the z-axis is the
minimum.

e Orbit CS, OCS is a right orthogonal coor-
dinate system fixed in the centre of mass of
the satellite. The z-axis points at zenith, the
x-axis points in the orbital plane normal di-
rection and its sense coincides with the sense
of the orbital angular velocity vector.

e World CS, WCS is an inertial right orthogo-
nal coordinate system with origin in the cen-
tre of mass of the satellite. The z-axis is par-
allel to the rotation axis of the Earth and

points towards the North Pole. The x-axis
points at Vernal Equinox.

2.2 Nomenclature

‘v,%v,%v Vector v in CCS, OCS and WCS

L9 Angular velocity of CCS relative to WCS
Q.o Angular velocity of CCS relative to OCS
Wo Orbital rate.

I Principal inertia tensor, I =

diag([I; I, L,]T), where I, > I, > I,

i5,Jo ko Unit vector along x-, y-, z-axis of OCS
Netr Control torque

Nyg Gravity gradient torque

Nuyis Disturbance torque

m Magnetic moment

B Magnetic field vector.

°q Quaternion representing CCS relative to

= [qT ¢]T OCS, where q is vector part and
qy is scalar part

A(cq) Attitude matrix based on q
Neoil Number of coil windings
Acoil Coil area

teoil Current in coil

S Sliding variable

S Sliding manifold

E Identity matrix

2.3 Formulation of Equation of Motion

The mathematical model of a satellite is described
by the dynamic equations and the kinematic equa-
tions of motion, see (Wertz, 1990). In this paper
the attitude is parameterized by four components
of a quaternion describing rotation of the Control
CS in the Orbit CS.

The dynamic equations of motion of a satellite
considered as rigid body is

I°Qcu(t) = —°Qeu(t) x Iy (t) + “Negr (2)
+  “Nyg(t) + “Nais(t). (1)

Control torque is generated by an interaction of
the geomagnetic field with the magnetorquer cur-
rent i(t) which gives rise to a magnetic moment
m(t)

m(t) = Neoil beoil (t) Acoil- (2)

The control torque acting on the satellite is then
‘Negri(t) = “m(t) x “B(¢). 3)
Gravity gradient torque is given by
Ny (t) = 3w (ko x T k). (4)

The disturbance torque is mainly due to the aero-
dynamic drag, see (Wisniewski, 1995).



The kinematic equations are expressed by separate
integrations of the vector and the scalar part of the
attitude quaternion

1 1
§cﬂcoq4 + 56900 X q,

. 1
qs = _icnco'q- (5)

q

The relation between satellite angular velocity in
World CS and angular velocity w.r.t. Orbit CS is
obtained by

C(200 = Cch - wocio- (6)

3 SLIDING MODE CONTROLLER DESIGN

The satellite trajectory is expected to be in the
vicinity of the reference for the most of the op-
erational time, but there are certain transition or
contingency phases, that the satellite motion can
not be considered as rotation in the neighbour-
hood of a reference and the nonlinear terms in
Egs. 1 to 6 can become dominant. The problem
is, thus, inherent nonlinear and nonlinear control
methods are needed.

A sliding mode controller is implemented for the
attitude corrections using magnetic torquing. Full
attitude information in the form of the attitude
quaternion, {q, and the satellite angular velocity
with respect to the Orbit CS, °Q.,, are used as
feedback signals. The objective of the attitude
control is to turn the satellite such that the Con-
trol CS coincides with the Orbit CS, i.e. ., con-
verges to 0, the vector part of the attitude quater-
nion, q, converges to 0, and the scalar part, g4,
approaches 1.

The design strategy of the sliding mode controller
consists of two steps, see (Utkin, 1992), (Slotine
and Li, 1991):

1. Sliding manifold design.

2. Sliding condition design.

Consider a manifold, a 3 dimensional hyperplane,
in the state space of a 6th order system [*€2., q].
The sliding manifold is designed in such a way
that the satellite trajectory, if on the hyperplane,
converges to the reference. However, the satel-
lite motion is not confined to the 3 dimentional
hyperplane in general. Therefore a control law
forcing the satellite motion toward the manifold
is necessary for achieving stable satellite motion.
The sliding condition keeps decreasing the dis-
tance from the state to the sliding manifold, such
that every solution °Q.,,, q originating outside the

sliding manifold tends to it. Now the manifold is
an invariant set of the satellite motion and the tra-
jectory of the system converges to the reference.

The result of the sliding condition design will be
a desired control torque. When the desired con-
trol torque is implemented the satellite trajectory
converges to the sliding manifold, but due to the
satellite motion is stable on the sliding manifold,
its trajectory converges to the reference. How-
ever the magnetic actuated satellite possesses one
serious obstacle: the magnetic control torque is
confined to lie perpendicular to the geomagnetic
field vector and may not comply with the control
torque which is desired to turn the satellite toward
the sliding manifold. With the geomagnetic field
varying along an orbit this implies, e.g., that over
the earth’s poles the rotation about the z-axis of
the Orbit CS is totally uncontrollable.

4 SLIDING MANIFOLD DESIGN

It will be shown the satellite motion on a certain 3
dimensional hyperplane in the 6-dimensional state
space of the vector part of the attitude quaternion,
g, and the satellite angular velocity, °€2.,, is sta-
ble.

First, let a sliding variable, s, be defined as in
Eq. 7
s =I°Q, + Ayq, (7)

where A, is a positive definite matrix.

The sliding manifold is the subspace of the state
space, where the sliding variable equals 0

S ={q,°Q, : s = 0}. (8)

The definition of the sliding variable, s, in Eq. 7
guarantees convergence of q to zero and ¢4 to 1
with an exponential rate. To prove this statement,
consider a Lyapunov candidate function

vg=a’a+ (1 - a1’ 9)
is equivalent to
vy =2(1 - q), (10)
since qf'q+¢2 = 1.

The time derivative of the Lyapunov candidate
function is calculated applying the kinematics in
Eq. 5
bq = qT choa (11)
thus
by = —q T Ayq. (12)

The time derivative of the Lyapunov function is
negative definite, since A, is the positive definite
matrix. According to Lyapunov’s direct method,



the equilibrium ¢q = [0 0 0 1)¥, °Q., = 0 is
asymptotically stable if the satellite is on the slid-
ing manifold, s.

The 3 dimensional hyperplane, Eq. 8, in 6 dimen-
sional space [°QL qT]7 is sufficient to describe the
motion of the satellite (7th order differential equa-
tion) in the sliding mode. Notice that the equilib-
rium $q = [0 00 —1]%, ¢Q., = 0 is unstable even
though ¢q = [0 00 — 17 and ¢q = [0 0 0 1]
represent the same attitude (Control CS coincides
with Orbit CS). Furthermore if the sliding variable
is defined as

s = IQ: — Ayq, (13)

it is possible to show using the Lyapunov candi-
date function

vy =q'q+ (1+aqs)?, (14)

that the equilibrium ¢q =[000 —1]7, °Q., =0
is asymptotically stable and the equilibrium {q =
[000 1]%, °Q., = 0 is unstable.

5 SLIDING CONDITION DEVELOPMENT

The objective of the analysis is to derive the de-
sired control torque turning the satellite trajectory
toward the sliding manifold. The satellite motion
is described in the space of the sliding variable,
s. A salient feature of this approach is that the
reduced 3rd order system is considered. The rep-
resentation of the satellite motion in the space of
the sliding variable is calculated by differentiation
of the sliding variable s(t) with respect to time.

§ = Ty — woio + Agq (15)

The derivatives of the satellite angular velocity
and the attitude quaternion are calculated accord-
ing to the equations of kinematics and dynamics,
Egs. 5and 1

—Qy X I°Qy, + 3wk, x Ik,

. 1
= wol(“ip X Qo) + §ACI(CQCOQ4 + Qo X q)
+ chtrl- (16)

Assume that the satellite trajectory is on the slid-
ing manifold. The equivalent control is the control
necessary to keep the satellite on the sliding man-
ifold. In other words if the control torque is equal
to the equivalent control then the time derivative
of the sliding variable equals zero. If the satellite
is not on the sliding manifold, the desired control
torque equals the sum of the equivalent control
and a part making the sliding variable converge
to 0:

Nges = Neq - ASS, (17)

the equivalent control torque, N, is
Neg = Qe X I°Q0y — 3w2(°k, x I9%k,) (18)

. 1
FwoI(“ip X ‘o) — §AQ(CQCOq4 + Qo x q),

and A; is a positive definite matrix.

If the control torque were producible in each direc-
tion the desired control, N 4.5 could be substituted
in Eq. 16 for the control torque, Nt Thus the
time derivative of the sliding variable, s would be:

§=—A,s. (19)

The system described by differential equation in
Eq. 19 is stable, hence the sliding condition
is fulfilled. Unfortunately, the magnetic gener-
ated torque is perpendicular to the local geomag-
netic field vector and can only partly comply with
Eq. 17.

6 MODIFIED SLIDING CONDITION

The satellite appears uncontrollable if fixed at any
instant of time due to the magnetic torque vector
is constrained to always lie perpendicular to the
local geomagnetic field vector. A modified slid-
ing condition for magnetic stabilized satellites is
discussed in this subsection.

The desired control torque is projected on a vec-
tor defined by the components of a sliding vari-
able, i.e. the desired control torque is resolved
into two components: perpendicular and parallel
to the sliding variable vector. Magnetic generated
torque is due to compensate only the component
parallel to the sliding variable vector.

Consider a problem of the orthogonal projection
of the desired control torque, Nges(t) onto the
instant sliding variable vector, s(t) (see Fig. 1).
The desired control torque, Nges(t) has two com-
ponents: parallel, Ngzls(t), and perpendicular,

N#"P(t), to the vector s(t).

The control torque, N, needs only compensate
N since NP'P does not decreases the distance
from the satellite trajectory to the sliding man-
ifold. This control principle has an intuitive in-
terpretation. The component stls is responsible
for diminishing of the sphere radius in Fig. 1,
whereas N%'" is responsible for movement on the

sphere surface (sphere radius remains unchanged).

The same results are acquired as a result of theo-
retical analysis and are formalized in Theorem 1.

Theorem 1 The control torque that compensates

Ns:ls makes the distance from the state



Ss

Fig. 1. Desired control torque resolved in s-space.

[¢Q,(t) a(t)]T to the sliding manifold in Eqs. 8
and 7 converge to zero, and the sliding condition
is satisfied.

Proof of Theorem 1 Barbalat’s Lemma, see
(Slotine and Li, 1991) is used to prove that the
manifold S is an invariant set in the s-space. Con-
struct a Lyapunov function:

L
s = —s's. 20
Us = 5SS (20)
The motion in the s-space is described by the equa-
tion:
§= _Neq + thrl; (21)

!
but the control torque compensates N%” | thus
§=—A,s+ NP, (22)

where NP™ s a rest vector perpendicular to the
vector s(t). Finally time derivative of the Lya-
punov function is given by

vy = sT (—Ags + NP'P) = —sA,s (23)

The time derivative of Lyapunov function is
uniformly continuous and negative semidefinite,
hence the conditions of Barbalat’s lemma are ful-
filled. [ |

The control law, which has the objective to com-
pensate Ngzls applying the magnetic actuation is
only feasible when the geomagnetic field is not ide-
ally parallel to the sliding variable, s. Further-
more, if °‘B and s are near to parallel the ampli-
tude of the control signal may be very large, since
the large control torque N is desired to com-
pensate even small NSZia see Fig. 2. In practice,
the magnetic moment is confined, thus the ideal
compensation of Nggls is not possible. An approx-

imate compensation is introduced
‘B x N2t

d
™= B (24)

c

N ctrl

Fig. 2. Large N, is necessary to compensate

prl
small NJ__.

X107 Angular velocity [rad/s]
T T

3
Orbits
Attitude quaternion

1 N T
_ a
—q2
Sl
1 i i o4

0 1 2 3 4 5 6

Orbits

Fig. 3. The angular velocity, °€2., and the atti-
tude quaternion,iq. The attitude quater-
nion converges to the reference [0 0 0 1]7.

where
prl _ Nges - s
des |||

(25)

Notice that the control law in Eq. 24 well com-
pensates Ngzls, when ¢B is perpendicular or nearly
perpendicular to s, and produces small control

torque when °B and s are close to parallel.

The control law based on the approximate com-
pensation of the desired control torque in Eq. 24
is observed to be locally stable for small values of
the gain A,. Additional global stability property
is gained when the principal moments of inertia
are of the same order of magnitude (the satellite
is in the boom stowed configuration). In this case
the feedback generated according to Eq. 24 con-
sists of the cross product of the angular velocity
°Q., with the local geomagnetic field vector, B,
plus small perturbation of the satellite attitude.

7 SIMULATION VALIDATION OF SLIDING
MODE ARRITUDE CONTROL

The initial values corresponding to Euler an-
gles are pitch 60 deg, roll 100 deg, and yaw
—100 deg. Initial angular velocity is €., is
[—0.002 0.002 0.002]T rad/sec. The sliding mode
attitude controller was evaluated by simulation for
the Orsted satellite with boom stowed configura-
tion. A circular orbit with inclination of 96 de-
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Fig. 4. Angular velocity and attitude quaternion of

the Orsted satellite on elliptical orbit. Mo-

tion is influenced by the aerodynamic drag.

grees has been simulated. The geomagnetic field
has been computed using 8th order spherical har-
monic model. Inertia tensor of the @rsted satellite
was equal I = diag([3.4278 2.9038 1.2750]). Var-
ious initial values of the angular velocity and the
attitude were tested. The controller was evaluated
for the initial values of the attitude both in the
neighbourhood of the reference and for z-principal
axis pointing up-side down relative to z-axis of the
Orbit CS.

The control parameters were found empiri-
cally: A, = diag([0.003 0.003 0.003]),A, =
diag([0.002 0.002 0.002]). Figure 3 shows sim-
ulation of the angular velocity and the attitude
quaternion.

The satellite motion is influenced by the aerody-
namic drag and eccentricity of the orbit. Simu-
lation of the @rsted satellite motion with distur-
bance torques acting on the satellite structure is
depicted in Figure 4. Already after 2 orbits pitch,
roll and yaw are within 10 deg. The sliding mode
attitude controller keeps the steady state attitude
error within £3 deg.

8 CONCLUSIONS

The sliding control law for three axis stabilization
of a tumbling satellite was described and analysed
in this paper. Both sliding manifold and continu-
ous sliding condition were designed. The proper-
ties of the moments of inertia of a satellite body,
when a gravity gradient boom is stowed, were used
to provide the final control law. The controller
was evaluated by simulations for the Qrsted satel-
lite in realistic space environment. The controller
shows to be applicable for satellites with pointing
accuracy larger than 3 deg.
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