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Abstract

The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results
available in the literature on motion control in the Euclidean space to an arbitrary di�erential manifold equipped with a metric. This
modi�cation is essencial for global stabilization of a rotary motion.

Along with a model of the system formulated in the Hamilton's canonical form the algorithm uses information about a required potential
energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force. It is shown that
this control law makes the system uniformly asymptotically stable to the desired reference point. The concept is very straightforward in the
Euclidean space, however a global rotation control can not be tackled. An additional modi�cation is made to address a system which ow lies
on a Riemannian manifold. The Lyapunov stability theory is adapted and reformulated to �t to the new framework of Riemannian manifolds.
To illustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft
motion is found, then three spacecraft control problems are addressed: stabilization in the inertial frame, magnetic libration damping for the
gravity gradient stabilization and a slew maneuver with obstacle avoidance.
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I. INTRODUCTION

The work reported in this article develops a control algorithm for a hamiltonian system. The resultant design scheme
provided o�ers a good framework for solving motion control problems of mechanical systems performing both translatory
and/or rotary types of motion. The special focus is on the illustration of the theoretical �ndings in the examples of the
rotational motion control of a rigid body: a spacecraft.
The subject of control of mechanical systems has always been in very focus of control engineering. The recent advances

of computer technology, vastly increasing computational power, availability of symbolic software tool-boxes have initiated
a tremendous research e�ort within nonlinear control methods. Probably the most inuential has been the geometric
control methods as presented in [1], [2], [3]; passivity based control in [4],[5], [6]; nonlinear H

1
in [7], [8].

The paper comprises a further development of the work reported in [9] and [2], ch. 12, dealing with stabilization of
hamiltonian systems. This paper generalizes the previous results in the Euclidean space to Riemannian manifolds. This
modi�cation is crucial for global stabilization of a rotary motion. The great impact on this paper had the geometrical
description of the physical mechanics in [10]. A further inuence on this work had the articles [11] and [12] studying
canonical transformation from the ordinary three-dimensional physical space of Euler angles to the four dimensional
space of the unit quaternion. This approach is used in this paper to model the rotational motion of a rigid body in the
Hamilton's canonical equations.
The idea of this paper is very intuitive and consist of the following steps. A dynamical system is modeled and its

desired performance is speci�ed using two hamiltonians: one of the original system and the second of the desired one.
The desired system inherits the kinetic energy of the original one, but the potential energy has to comply with the
requirements on the feedback system, e.g. the minimum of the potential energy shall be reached at the reference point.
Additionally a dissipation term is incorporated which de�nes the time response of the closed loop system. A control
action is designed such that the feedback system coincides with the desired one. The stability analysis used in this
paper are based the Lyapunov second method, however it is necessary to reformulate the standard notions de�ned on
the Euclidean space to a metric space, here a Riemannian manifold. The theoretical �ndings are applied to the attitude
control of a spacecraft, a particularly interesting case study, as the dynamics is described in E3, whereas the kinematics
expresses the time propagation of the attitude matrix, an element of the special orthogonal group SO3(R). In the article
the unit quaternion parameterization of the attitude is used as the minimal representation providing singularity free
kinematics. Thorough the whole paper a number of examples are given to illustrate the concepts used. A remarkable
contribution of this article is the validation of the theoretical method for the spacecraft three-axis attitude control.
Three problems are addressed here: spacecraft stabilization in the inertial frame, libration damping with the use of
electromagnetic coils and a slew maneuver with an additional objective of avoiding some regions e.g. de�ned by certain
bright objects causing blindness of optical sensors.
The paper is organized as follows. Section II starts with preliminaries of the Riemannian manifolds, then the standard

notions of stability and their proofs are formulated using the concept of Riemannianmetric. The main result is Theorem 4



in Section III, which gives a control algorithm for a hamiltonian system. The control scheme is implemented for the
attitude control of a spacecraft in Section IV.

II. STABILITY ON RIEMANNIAN MANIFOLDS

The motion of a system on a Riemannian manifold is considered in this paper. Before going into details of the
controller synthesis some basic properties of Riemannian manifolds will be shortly reviewed, [13]. In the second part of
this section standard theorems of stability will be reformulated in the framework of the Riemannian manifold.
The central attribute of the Riemannian manifold is that it is a metric space, with the metric d(q1; q2) de�ned as the

in�mum of the length of the curves joining the points q1 and q2. In this contstruction a notion of a �eld of bilinear
forms will be introduced.
De�nition 1: A �eld � on a manifold M consits of a function assigning to each point q of M a smooth bilinear form

�q on TMq, �q : TMq � TMq ! R

Now the Riemanian manifold is de�ned in the following way.
De�nition 2: A manifold M is called a Riemannian manifold if there is de�ned a �eld of symmetric, positive de�nite,

bilinear forms �; � is called the Riemannian metric.
The vital feature of the Riemannian manifold is that the tangent space TMq with the scalar product de�ned by the

Riemannian metric �q(Xq ;Y q) is made into a Euclidean space. The length L of a curve t 7! q(t); a � t � b such that
q1 = q(a) and q2 = q(b) is de�ned as the value of the integral

L =

Z b

a

�
�

�
dq

dt
;
dq

dt

�� 1

2

dt: (1)

If all curves from q1 to q2 are considered, it is possible to choose one whose length reaches the in�mum denoted by
d(q1; q2). The function d : M �M ! R+ is a metric. It is symmetric and nonnegative by construction. To check the
triangle inequality it is enough to observe that a curve from q1 to q2 and a curve form q2 to q3 can be joined to give a
curve from q1 to q3, whose length is the sum of the lengths of the latter two.
Theorem 1: A connected Riemannian manifold M is a metric space with the metric d : M �M ! R+ de�ned by

d(q1; q2).
Example 1: In Section IV two Riemannian manifolds will be of particular interest for spacecraft control: the groups

of the unit quaternions, S3, and the special orthogonal group SO3(R). On the sphere S3, the Riemannian metric is the
scalar product, �( _q; _q) = h _q; _qi, and the metric d(q1; q2) is the length of the arc of the great circle connecting q1 and
q2. The Riemannian metric on SO(3) is �( _q; _q) = tr( _q _qT), and the metric is given by the Rodrigues formula

d(q1; q2) =

����arccos
�
1

2
tr(q2q

T
1 )� 1)

����� : (2)

This is the angle of the rotation about the eigen axis of the matrix q2q
T
1 corresponding to the eigenvalue 1.

The customary concept of stability in the literature on nonlinear control e.g. [14], [5] is formulated using features of
the metric in the Euclidean space. The generalization of these results to the systems de�ned on a Riemannian manifolds
involves only replacing the Euclidean metric with an abstract metric. The the standard de�nitions of positive de�niteness
sounds:
De�nition 3: A function V : R+�M ! R is said to be a locally positive de�nite function (lpdf) around an equilibrium

q0 if it is continuous, V (t; q0) = 0 8t 2 R+ , and there exist a constant r > 0 and a function � : R+ ! R+ of class K 1

such that

�(d(q; q0)) � V (t; q); 8t � 0; d(q; q0) < r: (3)

V is a locally negative de�nite function (lndf) around q0 if �V is an lpdf around q0. V is locally descrescent around q0
if there exists a constant r > 0 and a function � of class K such that

V (t; q) � �(d(q; q0)); 8t � 0; d(q; q0) < r: (4)

All the properties stated in the de�nition are global if they are valid for every q on the manifold M.
Remark 1: Notice that if the manifoldM is compact then there exist a constant r such that d(q; q0) < r 8q 2M and

if the conditions stated in De�nition 3 are valid for this r the local properties become global.
Example 2: Consider a function V (t) = 1 � q0(t), where q0(t) is the scalar part of the unit quaternion. In the

framework of Euclidean space the function V (t) is not de�nite, but on S3 it is positive de�nite around the group identity

element e =
�
1 0 0 0

�T
. According to physical interpretation in [15] q0 = cos 1

2
�, where � 2 h0; �i is the metric on

1continuous and strictly increasing; details in [5] pp. 144



S3, i.e. the angle of rotation about the instantaneous axis of rotation. It is seen that V is of class K and V (e) = 0 for
each r, and hence globally positive de�nite function; shortly positive de�nite function (pdf).
We conclude this section with the formulation of the Lyapunov direct method on Riemannian manifolds.
Theorem 2: The equilibrium q0 is locally uniformly asymptotically stable if there exists a C1 descrescent lpdf V such

that � _V is lpdf.
Proof of Theorem 2: Analyzing the standard proof for uniform asymptotic stability in Rn with metric k x�x0 k, e.g.

as in [5] Theorem 25, it is concluded the proof is also true for Theorem 2, i.e. for the Riemannian manifold M with
metric d(x;x0). �

In a similar manner a global version of Theorem 2 can be formulated by replacing lpdf with pdf. In fact most of the
\Lyapunov like" theorems including those for non-autonomous systems may be formulated on the Riemannian manifolds,
e.g. Krasovskii-LaSalle theorem for periodic systems [5] pp.178-179 used in the example of the magnetic attitude control
in Subsection V-C sounds
Theorem 3: Suppose the system is periodic 2 and there exists a C1 function V : R+ �M ! R having the same period

as the system such that V (t) is lpdf, _V (t) � 0. De�ne R = fq 2 M : 9t � 0 such that _V (t) = 0g and suppose that the
largest invariant set in R is the trivial trajectory q = q0. Then the equilibrium q0 is uniformly asymptotically stable.
Proof of Theorem 3: The proof is a direct consequence of Lemma 71 in [5] by noticing that the proof of this lemma

can be analogously carried out for an arbitrary Riemannian manifold. �

III. CONTROL OF HAMILTONIAN SYSTEMS

A problem of stabilization to a reference, a certain point in the phase plane, is the topic of this section. Two systems
will be considered: one corresponding to the actual plant and a system which is counterpart to the control objectives.
The latter will be called the system of objectives. The motion of the plant and the system of objectives are described
using Hamilton's canonical form. The formulation of kinetic energy for both systems is the same, however the potential
energy of the system of objectives is expressed such that the reference is stable. If in addition dissipation is added the
reference becomes asymptotically stable. The control action is now chosen such that the ow of the plant coincides with
the ow of the system of objectives.

A. System Canonical Form

The system with no control action is assumed to be conservative. Furthermore the holonomic constrains are imposed
on the system. The ow of such a system evolves on a certain Riemannian manifold M . The potential energy of the
system is U(q), where q 2 M . The kinetic energy may be de�ned using Riemannian metric, i.e. a positive de�nite
quadratic form � on tangent space TMq as in [10],

T =
1

2
�(v;v); where v 2 TMq: (5)

Remark 2: The tangent space TMq is �nal dimensional, its dimension is the same as the dimension of the manifold
M , hence the bilinear form �(v;v) can be represented as vT	v, where the matrix 	 is positive de�nite, and �(v;v)
can be written as standard Euclidean scalar product

�(v;v) = h	Tv;vi: (6)

The system with no control action is considered �rst. Having the Lagrange function L

L(q; _q) = T (q; _q)� U(q); (7)

the hamiltonian is given by

H(q;p) = hp; _qi � L(q; _q); (8)

where hp; _qi = pT _q denotes a scalar product in the Euclidean space, the generalized momentum p is calculated using
the equality p = @L=@ _q. Now the equations of motion are represented in Hamilton's canonical equations

_p = �
@H

@q
(9)

_q =
@H

@p
:

2the vector �elds describing motion of the system are periodic f i(q; t) = f i(q; t+ T )



Remark 3: The Hamilton's function formulated in the paper does not depend explicitly on time, henceH(q;p) = const

Remark 4: The term

hp; _qi � T (q; _q), where p =
@T (q; _q)

@ _q
(10)

in the Hanilton's function is lpdf around _q = 0 since locally can be represented as

hp; _qi � T (q; _q) =
1

2
T (q; _q) = _qT

�
@v(q; _q)

@ _q

�T

	
@v(q; _q)

@ _q
_q: (11)

For majority of the mechanical systems the kinetic energy can be expressed in the form, [10]

T = _qT
T (q)
(q) _q; (12)

hence the term (10) and Hamilton's function are pdf.
The control action is regarded as the generalized external force Mp acting upon the system. Following the lines of

[16] pp. 316 the Hamilton's canonical equations are

_p = �
@H

@q
+Mp (13)

_q =
@H

@p
:

B. System of Objectives

The equation of motions for the system of objectives will be formulated in the Hamilton's canonical form. It is assumed
that the system of objectives inherits the kinetic energy T , whereas an extra contribution a function V : M ! R is
added to the original potential energy U

Ud(q) = U(q) + V (q): (14)

The function V (q) is designed such that the reference q0 becomes stable, i.e. the minimum of the potential energy Ud

is reached at q0.
The equations of motion for the system of objectives are given by Eqs. (8) and (9), where the lagrangian is L = Lo

Lo(q; _q) = T (q; _q)� Ud(q); (15)

The system of objectives is not asymptotically stable yet, but it is stable in Lyapunov sense, which can be shown
applying a Lyapunov function

v(t) = Ho(t)� Ud(q0); (16)

where

Ho(q(t);p(t)) = hp; _qi � Lo(q; _q): (17)

The function v(t) is constant and positive de�nite around q0. In order to get asymptotic stability a dissipation term
is added in the system of objectives. The work of the dissipation force has to be negative semide�nite. In general the
work of the �eld Md on the path l is de�ned as follows

W =

Z
l

hMd;dqi; (18)

and the time derivative of the work is now

_W = hMd; _qi: (19)

Proposition 1: Consider a system given by the Hamilton's canonical equations

_p = �
@Ho

@q
+Md (20)

_q =
@Ho

@p
;



where Ho(q;p) = hp; _qi � T (q; _q) +Ud(q) is the hamiltonian, T is the kinetic energy of the plant, Ud is lpdf around q0
given by Eq. (14), and the work W done by the vector �eld Md is given by

W =

Z
l

hMd;dqi (21)

If the time derivative dW=dt is lndf then the system (20) is locally uniformly asymptotically stable
Remark 5: If Ud is pdf and dW=dt is ndf then asymptotic stability in Proposition 1 is global.
Example 3: As an example of a dissipation term takeMd =K _q, where the matrixK is negative de�nite. According

to Eq. (18). The work done by Md is equivalent to

W =

Z t

t0

hK _q; _qidt; (22)

hence the time derivative is _W = _qTK _q, which is ndf.
Proof of Proposition 1: Consider a Lyapunov candidate function v(t) = Ho(t), which is lpdf according to Remark 4.

The time derivative of Ho is

_Ho =

�
@Ho

@p

�T

_p+

�
@Ho

@q

�T

_q: (23)

Using the Hamilton's canonical equations

_Ho = �

�
@Ho

@p

�T
@Ho

@q
+

�
@Ho

@p

�T

Mp +

�
@Ho

@q

�T
@Ho

@p
= _qTMd = _W (24)

which is lpdf, thus according to Theorem 2 for (q;p) 2M the equilibrium (q0;0) is uniformly asymptotically stable. �
Proposition 1 can be reformulated for periodic systems if the time derivative of the work done by Md is negative
semide�nite. The proof is very similar, the only di�erence is that Theorem 3 is used instead of Theorem 2.
Corollary 1: Consider the system (20) as in Proposition 1. Let the �eldMd(t) is periodic with the period T (Md(t) =

Md(t+ T )) and the time derivative of work W done by the vector �eldMd in Eq. (21) is locally negative semide�nite.
Then the system is locally uniformly stable.

C. Control Synthesis

The objective of the control design in the framework of the Hamilton's formalism is to generate Mp such that the
equations of motion for the plant and the system of objectives are equivalent. In other words, the control action has to
compensate for two terms: one originating from the function V in Eq. (14) and the second contributing from the work
W in Eq. (21). The main results of this paper are summarized in the following theorem:
Theorem 4: Consider a plant given in Hamilton's canonical form (13). The control action

Mp = �
@V (q)

@q
+Md; (25)

where V is given by Eq. (14), Ud is lpdf around q0 and the time derivative of the work dW=dt = hMd; _qi is lndf
around q0 then the feedback system is locally uniformly asymptotically stable to the reference q0. If Ud is pdf and
dW=dt = hMd; _qi is ndf around q0 then the uniform asymptotic stability is global.
Proof of Theorem 4: If the control action (25) is substituted in Eq. (13) forMp the equations of motion for the plant

are identical to the system given by Eq. (20). The hypothesis of Proposition 1 are satis�ed and hence the feedback
system governed by Eq. (25) is locally uniformly asymptotically stable. Using Remark 5 instead of Proposition 1 global
stability is proved. �

The control action in Eq. (25) consists of two terms. The �rst one determines sensitivity of the closed loop system
towards disturbances, whereas the second decides the length of the settling time. For a conservative system the distur-
bance force has to perform a work W = U(q1) � U(q0) to change the potential energy from the level U(q0) to U(q1).
Thereby, the larger the gradient @V (q)=@q the larger work necessary to move the plant from the point q0 to q1. The
dissipation dW (t)=dt is related to the amount of energy dissipated by the controller in a certain �xed time T , thus it
corresponds to the response time. This control structure can be compared with a standard PD controller used for linear
systems.



IV. MOTION CONTROL OF A RIGID BODY

A method for the control synthesis presented in the last section is readily applicable in the systems where the
dynamics and kinematics are represented in E2n, however e.g. motion involving the rotation is typically not expressed
in the canonical form. The dynamics are given by the Euler equation in E3, whereas the most natural description of
the kinematics is given by the elements of the group (also the Riemannian manifold) SO3(R) or by the unit quaternion,
an elemnt of S3.

A. Rigid Body Canonical Form

The subject of �nding a transformation to Hamilton's canonical form is often addressed in the literuture of modern
celestial mechanics. [11] studied the canonical transformation y = f(x) of the state space y 2 R

2n to x 2 R
2m with

m > n. In this paper only a special case m = n + 1 is investigated, since the results can be applied to the rotational

motion of a rigid body in function of the unit quaternion q :=
�
q0 q1 q2 q3

�T
2 S3 and the conjugate momenta

p :=
�
p0 p1 p2 p3

�T
. Interested reader is refered to [12] for more detailed study on this topic.

The kinetic energy of a rigid body rotation is a function of the instantaneous angular velocity !

T =
1

2
!TJ!; (26)

where J is the inertia tensor. The angular velocity vector may be regarded as an element of the quaternion vector space


 :=
�
0 !T

�T
2 E �E3, and the Equation (26) takes the form

T =
1

2



TJ�
; (27)

where J� is a block diagonal matrix

J� =

�
J0 0

0 J

�
: (28)

The element J0 takes in general an arbitrary nonsingular value. Using the standard quaternion parameterizations of
kinematics

_q =
1

2
Q(q)
; where Q(q) =

2
664
q0 �q1 �q2 �q3
q1 q0 �q3 q2
q2 q3 q0 �q1
q3 �q2 q1 q0

3
775 (29)

the kinetic energy is

T = 2qTQ( _q)J�QT ( _q)q: (30)

The lagrangian for the rigid body motion is now L(q; _q) = T (q; _q) � U(q), where T is given by Eq. (30). Applying
the hamiltonian H(q;p) = hp; _qi � L(q; _q) and Eq. (13) the canonical equations are formulated

_q =
1

4
Q(q)J�

�1
QT (q)p (31)

_p = �
1

4
Q(p)J�

�1
QT (p)q �

@U(q)

@q
+Mp:

For the rotational motion the control action is a torque denoted here by M c. On a spacecraft the control torque is
generated by a set of actuators such as gas jets, momentum/reaction wheels, electromagnetic coils. The work is invariant
of a canonical transformation. To calculate Mp for a given torque M c the time derivative of the work of Mp de�ned
in Eq. (19) and Mc are used:

_qT (t)Mp(t) = _W (t) = !T (t)M c(t): (32)

Applying Eqs. (32) and (29) the time derivative of the work is

_W (t) = 2 _qT (t)Q (q(t))M (t); where M =
�
0 MT

c

�T
(33)

hence

Mp(t) = 2Q(q(t))M (t) (34)



or equivalently

Mp(t) = 2R(M c(t))q(t); where R(M c) =

2
664

0 �M1 �M2 �M3

M1 0 M3 �M2

M2 �M3 0 M1

M3 M2 �M1 0

3
775 (35)

Comparing Eq. (34) and the kinematics (29) a very important observation is made thatMp lies on the tangent space
TS3q . Thereby, Mp computed from Eq. (25) is not necessarily producible by a physical actuator. As seen in Example 3
a damping term belonging to TS3q is reasonably easy to design as a linear combination of the vector �elds. The task
becomes more involved if we wish to satisfy @V (q)=@q 2 TS3q . It will be shown in the theorem below that to generate
a stable control action it is enough to use the orthogonal projection PT of @V (q)=@q on the tangent space, TS3q.
Theorem 5: Consider a plant given in Hamilton's canonical form (13). The control action

Mp = �PT
@V (q)

@q
+Md; (36)

where PT is the orthogonal projection on the tangent space TMq, V is given by Eq. (14), Ud is lpdf around q0 and the

time derivative of the work _W = hMd; _qi is lndf around q0. Then the feedback system is locally uniformly asymptotically
stable to the reference q0. If Ud is pdf and _W = hMd; _qi is ndf around q0 then the uniform asymptotic stability is
global.
Proof of Theorem 5: Take as the Lyapunov candidate function v(t) = H(t)+V (t), whereH is given by Eqs. (7) and (8).

The time derivative of v(t) is

_v = �

�
@H

@p

�T
@H

@q
+

�
@H

@p

�T

Mp +

�
@H

@q

�T
@H

@p
+

�
PT

@H

@q

�T

_q +

�
(id� PT)

@H

@q

�T

_q; (37)

but _q 2 TMq and PT is the orthogonal projection on TMq thus the last term in Eq (37) is zero and

_v = _qTMd = _W: (38)

which is lndf thus according to Theorem 2 the equilibrium q0 is uniformly asymptotically stable. �

Example 4: Consider a potential function in Example (2): V (q) = 1 � q4, and the zero dissipation term Md = 0.
Then

Mp � �PT
@V (q)

@q
= �

@V (q)

@q
+ (id� PT)

@V(q)

@q
; (39)

thus

Mp =
�
1 0 0 0

�T
� q0

�
q0 q1 q2 q3

�T
(40)

=
�
q21 + q22 + q23 �q0q1 �q0q2 �q0q3

�T

but M c(t) = 1=2QT (q(t))Mp(t) therefore Mc(t) = �1=2
�
q1(t) q2(t) q3(t)

�T
.

V. Spacecraft Attitude Control

The theoretical �ndings developed in the preceding chapters will be implemented to the spacecraft attitude control
issue. Three topics are addressed: spacecraft stabilization in the inertial frame, libration damping with the use of
electromagnetic coils and a slew maneuver with an objective imposed of avoiding certain undesirable orientations.

A. Stabilization in Inertial Frame

A spacecraft motion in the inertial coordinate system was provided in Eq. (31) with the potential energy U = 0 . The
control objective is to correct the attitude to the reference qref .
The proposed system of objectives is

Hd(q;p;Md) = H(q;p) + V (q) + hMd; qi; (41)

where H corresponds to the hamiltonian of the rigid body motion with U = 0. The potential energy V (q) = 2k1(1�q0),
where k1 is a positive constant and q0 is the scalar part of the quaternion

�
q0 ~qT

�T
:=

�
q0 q1 q2 q3

�T
= QT (qref )q: (42)



The function V is positive de�nite around qref , see Example 2. The dissipation force Md = K2 _q is chosen, where

the matrix K2 is negative de�nite. Now, the work W dissipates the energy, since _W = hK2 _q; _qi is ndf. According
to Theorem 5 the control (36) is uniformly asymptoticaly stable. The closed form of the control law is derived using
Example 3 and 4

M c = �k1~q +
1

2
QT (q)K2 _q: (43)

If the matrix K2 is substituted by a negative scalar 4k2 a more compact form of Eq. (43) can be calculated applying
the relation in the kinematics (29)

M c = �k1~q + k2!; (44)

where ! is the angular velocity of the spacecraft.
Remark 6: If the potential energy V (q) = 2k1(1� q0) is replace by V (q) = 2k1(1+ q0) with the minimum at q0 = �1

then the control law

M c = k1~q + k2! (45)
assures that the equilibrium q = �qref is asymptotically stable. At this point it is important to notice that both qref
and �qref de�ne the same physical orientation.

B. Slew Maneuver with Region Avoidance

The control objective of the three-axis attitude control addressed in the preceding subsection is extended here to an
additional design objective: During the slew maneuver a certain orientation is prohibited. This scenario is encountered
when the attitude is acquired from the star camera; looking towards the sun causes blindness of the CCD chip.
A spacecraft motion is once more given by Eq. (31) with the potential energy U = 0. The orientation of the obstacle

in the inertial frame is given by the quaternion o
i q, whereas the reference is speci�ed by r

i q. The spacecraft's attitude in
the inertial coordinate system is provided by the star camera, q � s

iq.
The potential function in this case study is shaped such that its minimum is at the reference and the maximum at

the obstacle attitude. The potential energy proposed is

V (t) = 2� s
rq0 �

s
oq

2
0; (46)

where s
rq0 is the scalar part of the quaternion

s
rq = r

i q
�q 3, and s

rq0 is the scalar part of
s
oq =

o
i q
�q, hence

s
rq0 = nT

r q
s
oq0 = nT

o q; (47)

where

nr =
�
s
rq0

s
rq1

s
rq2

s
rq3

�T
no =

�
s
oq0

s
oq1

s
oq2

s
oq3

�T
: (48)

Applying the potential energy in Eq. (46) and the dissipation forceMd =K _q to the generic control law (25) gives

Mp = nr + 2nT
o q nr � n

T
r q q � 2

�
nT
o q

�2
q + 1=2KQ(q)
; (49)

and the control torque isMc(t) = 1=2QT (q(t))Mp(t).

C. Libration Damping

A very cost and energy e�ective control principle for a gravity gradient stabilized satellite is to use the electromagnetic
coils for spacecraft actuation. The concept is that the interaction between the Earth's magnetic �eld and a magnetic
�eld generated by the coil results in a mechanical torque. This is expressed by the formula

M c(t) =m(t)�B(t); (50)

i.e. the control torqueMc is the vector product of the magnetic momentm generated in the coils and the geomagnetic
�eld vector B. The motion of a spacecraft on a low Earth orbit can be very concisely described by the following
hamiltonian, for more details see [17]

H =
1

2
!TJ! +

3

2
!2ok

TJk �
1

2
!2oj

TJj; (51)

3q� denotes q conjugated



where ! is the angular velocity of the spacecraft principal frame relative to the LVLH coordinate system 4, !o is the
mean motion, j;k are the unit vectors along the y and z axes of LVLH. It is assumed in Eq. (51) that the principal axes
of the spacecraft are such that the maximum moment of inertia is about the y axis, and the minimum about the z axis.
A closer look at the potential energy, the last two terms in Eq. (51), reviles that the system has four stable equilibria

f!; j;kg = f0;�1j ;�1kg; (52)

where 1j =
�
0 1 0

�T
and 1k =

�
0 0 1

�T
. In other words the equilibria are such that the spacecraft principal and

LVLH y axes coincide or point in the opposite directions and the z axes of the spacecraft and LVLH frames coincide or
are opposite. If one of those equalibria is the system's desired reference then it is suÆcient to use a control providing
pure damping.
In [18] the following control law was proposed

m(t) =H! �B; (53)

where H is a positive de�nite matrix. Magnetic torquing following Eq. (53) obviously introduces time dependency in
the equations of satellite motion. This time variation is periodic by nature, which arises from two superimposed periodic
uctuations of the geomagnetic �eld. One is due to revolution of the satellite around the Earth and the second due to
rotation of the Earth.
To show asymptotic stability of the suggested control law it is enough to calculate the time derivative of the work

done by the �eld Mc(t) =m(t)�B(t)

_W (t) = !T (t)M c(t) = �!TST (B(t))S(B(t))H!; (54)

where S(B) is a 3 by 3 skew symmetric matrix representing the vector product operator: B�. From Eq. (54) it is seen
that _W (t) is only negative semide�nite. However, two observations can be here employed. The �rst is that the Earth's
magnetic �eld is periodic, and the second that the largest invariant set contained in the set f! : _W = 0g is ! � 0. Thus
applying Corollary 1 the system is proved to be asymptotically stable to one of the attractors f!; j;kg = f0;�1j ;�1kg.

VI. CONCLUSION

An ellegant scheme for control design of mechanical systems was proposed in this work. The desired feedback dynamics
was speci�ed in a Hamilton's canonical form. The designer has to de�ne a desired potential energy with minimum at
the reference point and a dissipative term. The resultant controller is uniformly asymptoticaly stable. The algorithm
can be implemented for systems which trajectories lies on an arbitrary Riemannian manifold. Special care was taken to
rede�ne the standard notions of stability to �t to the geometric framework used in this paper. The results were applied
to the rotational motion of a rigid body in function of the unit quaternion and the its conjugate momenta. Three
problems were addressed in the paper: spacecraft stabilization in the inertial frame, libration damping with the use
of electromagnetic coils and a slew maneuver with an additional objective of avoiding undesirable regions e.g. causing
blindness of optical sensors.

References

[1] Isidori, Nonlinear Control Systems, Springer-Verlag, 1996.
[2] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag, 1990.
[3] V. Jurdjevic, Geometric Control Theory, Cambridge University Press, 1997.
[4] J.C. Willems, \Dissipative dynamical systems, part i: General theory," Arch. Rat. Mech. Anal., vol. 45, pp. 321{351, 1972.
[5] M. Vidyasagar, Nonlinear Systems Analysis, Prentice Hall, 1993.
[6] R. Ortega, A.J. van der Schaft, and B. Maschke, \Passivity-based control of lagrangian and hamiltonian systems: Application to

mechanical, electrical, and electromechanical systems," 14th IFAC World Congress, tutorial workshop, July 1999.
[7] A.J. van der Schaft, \l2-gain analysis of nonlinear systems and nonlinear state feedback h1 control," IEEE Transactions on Automatic

Control, vol. 37, no. 6, pp. 770{784, June 1992.
[8] A. Isidori and W. Kang, \h1 control via measurement feedback for general nonlinear systems," IEEE Transactions on Automatic

Control, vol. 40, no. 3, pp. 466{472, Mar. 1995.
[9] A.J. van der Schaft, \Stabilzation of hamiltonian systems," Nonlinear Analysis, Theory, Methods and Applications, vol. 10, no. 10, pp.

770{784, Oct. 1986.
[10] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1989.
[11] R. Cid and M.E. San Saturio, \Motion of rigid bodies in a set of redundant variables," Celestial Mechanics, vol. 42, pp. 263{277, 1988.
[12] H. Morton, \Hamiltonian and lagrangian formulations of rigid-body rotational dynamics based on the euler parameters," Journal of

the Astronautical Sciences, vol. 41, no. 4, pp. 569{592, Oct. 1994.
[13] W. M. Boothby, An Introduction to Di�erentiable Manifolds and Riemannian Geometry, Academic Press, Inc., 1975.
[14] H.K. Khalil, Nonlinear Systems, Prentice Hall, 1999.

4Local-Vertical-Local-Horizontal Coordinate System (LVLH) is a right orthogonal coordinate system with the origin at the spacecraft's
center of mass. The z axis (local vertical) is parallel to the radius vector and points from the spacecraft center of mass to the center of the
Earth. The positive y axis is pointed in the direction of the negative angular momentum vector. The x axis (local horizontal) completes the
right orthogonal coordinate system.



[15] H. Goldstein, Classical Mechanics, Addison-Wesley, 1980.
[16] W. M. Boothby, Lagrangian Dynamics, Schaum Publishing Company, 1967.
[17] P. Hughes, Spacecraft Attitude Dynamics, John Wiley and Sons, 1986.
[18] A.Wisniewski and M. Blanke, \Fully magnetic attitude control for spacecraft subject to gravity gradient," Automatica, vol. 35, no. 7,

pp. 1201{1214, July 1999.


