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Abstract: An analysis of structural model of a ship propulsion benchmark leads to
identifying the subsystems with inherent redundant information. For a nonlinear part
of the system, a Fuzzy logic based FD algorithm with adaptive threshold is employed.
The results illustrate the applicability of structural analysis as well as fuzzy observer.
c
 IFAC 2000. All rights reserved.
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1. INTRODUCTION

In complex systems, continued operation of var-
ious subsystems has both economic and safety
implications. The primary objective of Fault-
Tolerant Control (FTC) systems is to handle
faults and discrepancies by accommodating for
them whenever they occur. Detection and Iso-
lation of abnormal situations are thus the �rst
stages for FTC. The issue of obtaining informa-
tion about various parameters and signals, which
have to be monitored for fault detection purposes,
becomes a rigorous task with the growing number
of subsystems. The structural approach (Cassar et
al., 1994); (Declerck and Staroswiecki, 1991), pre-
sented in this paper, constitutes a general frame-
work for providing information when the system
becomes complex. The main objective of applying

the structural approach is to identify the subsys-
tems with inherent redundant information. The
methodology of this approach is illustrated on the
ship propulsion benchmark. The redundant infor-
mation has to be analyzed by using an appropriate
FD algorithm. The paper illustrates the procedure
of constructing a fuzzy observer (for a part of the
system) in order to generate a residual. An Fuzzy
adaptive observer is used to handle the changes in
the plants dynamic. Two faults in this subsystem
is considered and the isolation possibilities are
discussed.

2. BUILDING THE STRUCTURAL MODEL

Consider the system S as a set of componentsSm
i=1 Ci, each imposing a relation fi between a

set of variables and parameters zj ; j = 1; ::; n i.e.
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Fig. 1. Calculability property for a nonlinear rela-
tion.

fi(z1; ::; zp) = 0; 1 < p � n (1)

where fi can represent a dynamic, static, linear,
or non-linear relation. These relations are also
called constraints as the value of an involved
variable can not change independent of the other
involved variables (Cassar et al., 1994) (also see
(Declerck and Staroswiecki, 1991) and (Blanke et
al., 2000 (to appear))). The system's structural
model is represented by the set of constraints
F = ff1; f2; � � � ; fmg and the set of variables
Z = K [ X = fz1; z2; � � � ; zng. X is the set of
unknown variables and K = U [P[Y is the set of
known variables/parameters i.e. input/reference
signals (U), known constant/parameters (P), and
measured signals (Y). Before de�ning the struc-
tural model of the system, it is important to ad-
dress the calculability property that is illustrated
by following simple example:

Example 1. The function f in Fig. 1 represents a
surjective mapping from x1 onto x2. This mapping
is not bijective, i.e. the values for the variable x2
are always calculable for given values of x1, but
the inverse is not always possible.

The calculability property is de�ned by the fol-
lowing de�nition:

De�nition 2. Calculability: Let zj ; j = 1; � � � ;
p; � � � ; n be variables that are related through
a constraint fi, e.g. fi(z1; � � � ; zp; � � � ; zn) = 0.
The variable zp is calculable if its value can be
determined through the constraint fi under the
condition that the values of the other variables
zj ; j = 1; � � � ; n; j 6= p are known.

Using the following notation, the structural model
is de�ned:

Notation: Since all elements in K are known
they can be assumed to stem from an information
source. This source is denoted by K, hence Z =
X
S
K.

De�nition 3. The structure graph of the sys-
tem is a bipartite directed graph

�
(K

S
F
S
X );

(K
S
F
S
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�
where the elements in the set of

A � (K
S
F
S
X ); (K

S
F
S
X ) are de�ned by:
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f
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Fig. 2. bipartite directed graph model of ex. 1.
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aij = (fi; xj) = 1 i� fi applies to xj ;

a�ij = (xi; fj) = 1 i� xi is calculable through fj

kfi = (K; fj) = 1 i� fj applies on a known var.

0 Otherwise:

(2)

The corresponding incidence matrix Imd is shown
below

Imd=

2
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�
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(3)

that in the compact form can be written as:

K
F
X

K F X2
4

0 KF 0

KFT 0 A

0 A� 0

3
5 = Imd (4)

where aij ; a
�
ij ; kfi 2 f0; 1g in Imd represents

the elements in A. Figure 2 shows the bipartite
directed graph model of example 1. The constraint
in the example is:

f(x1; x2) = 0

with K = fg, Z = fx1; x2g, F = ffg and

Imd =

K
f
x1
x2

K f x1 x22
664
0 0 0 0
0 0 1 1
0 0 0 0
0 1 0 0

3
775

The ultimate aim of representing the system in
terms of a structured graph is to obtain knowledge
about the parts/subsystems with inherent redun-
dant information that exists within the system.
These parts can be analyzed in detail and the
redundant information can then be used for FDI
as well as fault accommodation purposes. By ap-
plying matching on the obtained structured graph
one can decompose the system into parts with
redundant information and parts with no redun-
dant information (see (Declerck and Staroswiecki,
1991), (Blanke et al., 2000 (to appear)) for more
details).
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Fig. 3. Diagram of the ship propulsion system.

3. SHIP BENCHMARK

The ship benchmark is described in (Izadi-Zamanabadi
and Blanke, 1998) and (Izadi-Zamanabadi and
Blanke, 1999). An outline of the propulsion system
is shown in Fig. 3 To exemplify the described
method in previous section only the torque related
equations are mentioned below:

C1 : f1(�; �m) = 0 : � = �m
C2 : f2(n; nm) = 0 : n = nm
C3 : f3(Y; Ym) = 0 : Y = Ym
C4 : f4(ky ;Ky) = 0 : ky = Ky

C5 : f5(Y; ky; Qeng) = 0 : Qeng + �c _Qeng = kyY
C6 : f6(Qeng ; Qprop; _n) = 0 : Im _n = Qeng �QProp

C7 : f7( _n; n) = 0 : n =
R
_n+ n0

C8 : f8(n; �; U;Qprop) = 0 : Table�

C9 : f9(U;Um) = 0 : U = Um
(5)

� is propeller pitch, n and U denote shaft and ship
speed, Y is the fuel index, Ky is the engine gain,
and Qeng and Qprop are the engine and propeller
developed torque. the data in the Table� can be
approximated by the following bilinear relation
(Blanke, 1981):

Qprop = Qnn(�)jnjn+QnU (�)jnjU(1� w)

w is the wake fraction parameter. The struc-
tured system is S =

S9
i=1 Ci, F = FX =

ff1; f2; � � � ; f9g, K = f�m; nm; Ym; Um;Kyg, X =
fU; �; n; Y; ky; U;Qprop; Qengg, and Z = K

S
X .

The measurement noise is disregarded here, hence
�m = � and n = nm and � � � .
By performing the matching on the complete sys-
tem three subsystems with inherent redundant
information are obtained. These subsystems are:
the pitch propeller control loop (Fig. 4 a)), the
subsystem involving the thrust equation and the
ship speed dynamics (Fig. 4b)), and the subsys-
tem involving the torque equation (Fig. 4c)). A
detailed example of how to perform the match-
ing can be found in (Izadi-Zamanabadi, 1999)
and (Blanke et al., 2000 (to appear)). It appears
that all de�ned faults in (Izadi-Zamanabadi and
Blanke, 1999) are covered by these subsystems,
hence it should be possible to detect and isolate
these faults. If a fault is not covered by any of
the subsystems that are obtained by matching,
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Fig. 4. The parts of the system with (possible) re-
dundant information. Each part corresponds
to one over-determined subsystem obtained
by structural analysis approach.

then the fault is neither detectable nor isolable.
The following section deals with designing a FDI
algorithm in order to detect faults in the shaft
speed (�n) and the engine gain (�ky) under the
assumption that the propeller pitch measurements
are not faulty.

4. FAULT DETECTION WITH FUZZY
OBSERVER

The structural analysis, described in the previous
section, enables the designer to identify the parts
of the system that have inherent redundant in-
formation. The next step would be to manipulate
this information for FDI purposes. This is done
by employing a Fuzzy observer in this section.
In the following, the architecture of an Adaptive
Neuro-Fuzzy Inference system (ANFIS) is brie
y
described.

4.1 A Neuro-Fuzzy model

For simplicity assume a system with two inputs,
u1 and u2, and one output, y. Let U1 and U2 be
the universe of discourse (the range) for u1 and
u2. A Fuzzy set A1 in the universe of discourse U1

is de�ned as a set of ordered pairs:

A1 = f
�
u1; �A1

(u1)
�

j u1 2 U1g

where �(u1) is called the membership function
(MF) of u1 in A1. A trapezoidal MF is de�ned
by the following function in the simulations:

�(x) = f(x; a; b; c; d)

=max
�
min(

x� a

b� a
; 1;

d� x

d� c
); 0

�
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Fig. 5. The trapezoidal membership function.

The parameters a; b; c, and d are shown in Figure
5. Assume a �rst order Sugeno type of rule base
with the following two rules.

IF u1 is A1 AND u2 is B1 THEN

y1 = c11u1 + c12u2 + c10

IF u1 is A2 AND u2 is B2 THEN

y1 = c21u1 + c22u2 + c20

Let the �ring strengths of the rules be denoted by
�1 and �2 respectively, for the given values of the
input signal u1 and u2, the overall rule output is
computed as a weighted average.

y =
�1y1 + �2y2
�1 + �2

= ��1y1 + ��2y2

where �1 and �2 are the �ring level of their
corresponding rules.

4.2 Choice of the model (input and output)

The focus in this subsection is on the (torque) sub-
system, which dynamics is shown in Fig. 4c).The
�gure shows clearly the inputs and the outputs
for the fuzzy model. The next step for building
the fuzzy model is to determine those signals
that in
uence the actual output directly, i.e. the
fuzzy model structure. By choosing an appro-
priate number of signals one avoid an oversized
model with its corresponding heavy computation
time. An oversized model would also have in-
e�ectual rules, that are not excited during the
identi�cation stage. The model structure may be
known a priori, for instance through the knowl-
edge of a human expert, or it can be obtained
by using di�erent methods. In one method, the
model can be chosen based on the estimation error
achieved by di�erent models and di�erent time
delays. In other methods the statistical property
(covariance, correlation) of the signals are used
to determine the number of needed signals. The
method in this section, is based on the linearized
version of the sub-system, and also knowledge
about the intended use of the model. The method
is described in the following.

Linearizing the shaft speed dynamics around an
operational point, when the quadratic approxima-
tion of the propeller torque is used (see (Izadi-
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Zamanabadi and Blanke, 1998)), results in the
following transfer function:

n(s) =
kn

1 + �ns

�
kyY (s) + buU(s) + b��(s)

�

where kn; �n; bu and b� are the parameters whose
values depend on the systems operating point. By
discretizing the transfer function and performing
simple manipulations, following model was ob-
tained:

n(k + 1)= f
�
Y (k); Y (k � 1); �(k); �(k � 1);

U(k); U(k � 1)
�

Further analysis showed that since the dynamics
of the ship speed was much slower that the shaft
speed, it was suÆcient to only use U(k) and omit
U(k � 1) from the model. Removing this signal
also resulted in signi�cant reduction in learning
time. The �nal model was chosen to be:

n(k + 1) = f
�
Y (k); Y (k � 1); �(k); �(k � 1); U(k)

�

4.3 Training result

In order to use the fuzzy model one needs to
specify its inference system for training. Available
knowledge can be used to de�ne the membership
functions parameters and shape. An alternative
method is to de�ne number and type of the mem-
bership functions and use a program, such as pro-
grams in the Fuzzy logic Tool-box inMatlab

TM ,
to automatically generate the optimal fuzzy in-
ference system based on the training data. The
second option was used here, as training data
were available. In this context, one should notice
that it is also important to choose the correct
number of membership functions for each input.
Choosing too few membership functions results in
insensitivity of the model to the systems dynam-
ics, while choosing too many results in an over-
sized model that becomes actually over-sensitive
to the signals. By testing the system with various
number and type of membership functions, the
\best" structure was found. This structure of the
Fuzzy observer is shown in table 4.3. Training data
is obtained from a simulation model of a Dan-
ish ferry's propulsion system, wherein the tables
of real data from the sea trial are incorporated



(Izadi-Zamanabadi and Blanke, 1998). The out-
put signal for the training data is shown in Fig. 6.

Table 1. The structure of the fuzzy
model. Membership functions are de-

noted by MF.

Signal Nr. of MF Type of MF

�m(k) 2 Trapezoidal
�m(k � 1) 2 Trapezoidal
Um(k) 2 Trapezoidal
Ym(k) 3 Trapezoidal
Ym(k � 1) 3 Trapezoidal

4.4 An adaptive threshold

A Fuzzy based approach, which is used for ro-
bust threshold selection for fault detection, has
been described in (Frank, 1996). The adaptive
threshold consists of a prede�ned (but constant)
value, TF0, and an adaptive term, �TF , which is
determined by heuristic knowledge. The threshold
is determined by:

TF (y; u) = TF0 +�TF (y; u)

The term TF0 represents an optimal threshold
for the nominal process. The adaptive term,
�TF (y; u) incorporates the e�ect of modeling er-
rors and uncertainties. For the benchmark, the
change in the dynamics is mainly responsible for
the modeling error. This can adequately be ad-
dressed by representing the adaptive part as a
function of rate change in the reference signals
for the propeller pitch and the shaft speed, hence
�TF (�nref=�T;��ref=�T ). In the \Economy"
operational mode of the plant, since the change in
the reference signals are obtained simultaneously,
it is suÆcient to use one of the reference sig-
nals. Taking this into account and using the fact
that the reference signal for the propeller pitch
is additionally a�ected by the overload module,
it is appropriate to choose the adaptive part as
a function of rate of change in pitch reference
signal.The threshold is hence determine by:

TF (��ref=�T ) = TF0 +�TF (��ref=�T ) (6)

The �rst term TF0, is determined by considering
the obtained residual in the non-faulty situation
and where the rate change in pitch reference is
equal zero:

TF0 >max
�
abs(�n(k))

�
; k 2 [0 � � �N ]

and
��ref
�T

= 0;

The time period is [T0 � � �TN ]. For this residual
the following two simple rules are used:

Estimation error signal with fuzzy observer and related adaptive threshold
6

4

2

0

-2

-4

-6

5

0

-5

-10

-15

-20

-25

0 500 1000 1500 2000 2500 3000 3500

0 500 1000 1500 2000 2500 3000 3500

Estimation error signal with fuzzy observer ( occurs in steady state condition)� n
high

� n
� n

Time [sec.]

� ky
� n

low
� n

high

Adaption
time

Adaption
time

a)

b)
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in the steady state conditions.

IF
��ref
�T

is Positive Big THEN �TF is

Positive Big

IF
��ref
�T

is Negative Big THEN �TF is

Negative Big

The fuzzy sets, labeled by the linguistic vari-
ables \Positive Big" and \Negative Big", are rep-
resented by trapezoidal membership functions.

4.4.0.1. remarks The number of fuzzy rules can
vary and it is up to the designer to decide how
many rules is needed. In the benchmark case, two
rules were found to be suÆcient to generate the
adaptive threshold. It was, however, necessary to
�lter the output of the fuzzy rules in order to
obtain a smooth behavior. The �lter is a low-pass
�lter with the transfer function: H(s) = 0:1

s+0:1
.

4.5 Simulation results

The shaft speed error signal is shown in Figure
7 a), for the non-faulty case. Simulation results
show that the error signal changes slightly during
the transitional situations when the dynamics of
the system is activated. The observations were
used during the design and implementation of
the fuzzy adaptive threshold. The constant term
TF0 in Equation 6 is set to TF0 = 0:55 for
the positive threshold and TF0 = �0:35 for the
negative threshold.

Figure 7 b) shows the error signal for the faulty
case when �nhigh occurs in the steady state condi-
tions. It should be noticed that during the initial
start of the fuzzy observer, the calculated error
exceeds the threshold as it is shown by the dark
gray areas in Figures 7 a) and b). This \adaption
time" period should be incorporated in the related
FDI module in order to avoid false detection sit-
uations.



4.6 Fault isolation

Analyzing various simulation results, reveals that
it is possible to isolate gain and shaft speed faults
from this single residual under certain assump-
tions and knowledge about the possible/probable
occurrence of di�erent faults. This is discussed in
the following.

The simulation showed that when the gain fault
�ky occurs, the mean value of the residual/error
signal becomes negative. Hence, when the residual
exceeds the positive threshold one can immedi-
ately conclude that the shaft speed measurements
instrument has failed to function. Additional anal-
ysis showed that this case occurs when the shaft
speed measurement fails high, i.e. �nhigh occurs.

It is quite diÆcult to isolate �nlow from �ky
as the occurrence of each results in a drop of
the residual value bellow the negative threshold
value. In order to distinguish these two cases from
each other, one should consider the magnitude of
the residual as well as the probability of a gain
fault that is bigger than %20 of the nominal gain.
The probability of a situation when two or more
cylinders drop out simultaneously due to failure
is very small and can be neglected. Under the
assumption that �ky < %20kyc, i.e. at most one
cylinder is out of function, the simulations show
that the magnitude of the residual in the case
when �nlow occurs is much bigger than the case
when �ky occurs. This feature can appropriately
be used to distinguish and isolate these two faults.

The discussion above is solely based on the as-
sumption that only one residual is available. Gen-
erating an additional residual would enhance the
isolation ability greatly. Consequently, another
isolation strategy needs to be adopted.

5. CONCLUSION

The structural approach is presented and applied
to the ship propulsion benchmark. Well-de�ned
di-graph theory is employed in this approach
which allows developing a software tool that can
fully support design engineers. One of the main
advantages of this approach is that even course
information available on the system (qualitative,
quantitative, rules) can be used during all the
design phases. Detailed informations are, hence,
not necessary to �nd the monitorable part (over-
determined part) of the system. However, detailed
information is needed to compute the residuals.

The (Neuro)Fuzzy observer, which follows the
principle of black-box modeling were applied. The
prerequisite is having suÆcient amount of data
for learning the observer. The structure of the ob-
server was then speci�ed. Due to the sensitivity of

the fuzzy model/observer to a change in dynamics
of the plant, it was necessary to design an adaptive
threshold. A Fuzzy adaptive threshold was de-
signed to accommodate for this. It was shown that
fault detection and isolation was possible when
knowledge about the system behavior in faulty
situation, impact of faults on the residuals, and
the magnitude of faults are available.
The results underline the importance of gaining
detailed knowledge about the system dynamics
and its behavior both in the normal as well as the
faulty situations. It was shown that it is possible
to detect and isolate the speci�ed faults when
detailed knowledge is available.
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