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SYNTHESIZING MIXED H2=H1 DYNAMIC

CONTROLLER USING EVOLUTIONARY

ALGORITHMS

Gerulf K. M. Pedersen � Anders S. Langballe ��

Rafa l Wi�sniewski �

�Aalborg University, Department of Control Engineering,

Fredrik Bajers Vej 7, DK-9220 Aalborg �, Denmark
�� TDC Tele Danmark, Digtervejen 1, DK-9200 Aalborg SV,

Denmark

Abstract: This paper covers the design of an Evolutionary Algorithm (EA), which
should be able to synthesize a mixed H2=H1 controller. It will be shown how a
system can be expressed as Matrix Inequalities (MI) and these will then be used in
the design of the EA. The main objective is to examine whether a mixed H2=H1
controller is feasible, and if so, how the optimal mixed controller might be found.

Keywords: Optimal control, Robust control, Genetic algorithm

1. INTRODUCTION

Over time many complicated control problems
have successfully been translated into analytical
or otherwise numerically solvable ones. However,
the combination of robust (H1) and optimal (H2)
control have not yet been solved in a manner
that provided useful results. By combining robust
and optimal control it might be possible to ob-
tain a controller structure that contains the same
ruggedness as a robust controller and the perfor-
mance of an optimal controller. If possible this
would provide control engineers with previously
unreachable design possibilities.

Controller synthesis for the mixed H2=H1 prob-
lem has previously been attempted (Scherer and
Weiland, 2000). The problem was reformulated
into an analytical problem using Linear Matrix
Inequalities (LMI). However, by reformulating the
problem into analytical form some very restric-
tive constraints were applied. These constraints
resulted in far from optimal solutions to the mixed
controller problem.

The theory of evolution is well known in the �eld
of biology. How evolution has proved successful

in nature, have inspired computer scientists to
create intelligent algorithms and programs based
on the principles of evolution. This evolutionary
approach requires a large amount of computations
but is also both powerful and successful. This
powerful method opens up for new approaches to
previously unsolved or 
awed solutions to existing
problems. Evolutionary Algorithms (EA) have
two major advantages compared to other hill-
climbing techniques. First of all they are robust,
which means they do not necessarily get stuck at
local minima/maxima. Second of all they operate
with several solutions at the same time, known
as parallel computing, which enables them to
cover a search area faster than other numerical
methods. Using an EA in combination with a
Matrix Inequality (MI) formulation of the mixed
H2=H1 problem might result in �nding a feasible
controller to this complex problem.

The H2 and the H1 problem will be reformulated
into MIs. These MIs will then be combined and
readied for implementation as part of an EA. The
EA will then be designed to synthesize a dynamic
discrete-time mixed H2=H1 controller.



Section 2 describes how a given system can be
described using MI formulation and how this MI
formulation could be written in a way that could
easily be implemented in an EA. In section 3 an
EA is developed and a description of how the MI
constraints could be implemented is given. It is
also discussed how the internal workings of the
EA, such as the individuals, the �tness function
and the crossover and mutation operators, have
been designed. In section 4 the experiences ob-
tained by testing the developed EA are presented
and future issues are discussed.

2. MATRIX INEQUALITIES FOR H2

AND H1

The system used for this study is given by equa-
tion (1).2
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where A 2 R
n�n , D11 2 R

p1�m1 , D22 2 R
p2�m2

and G 2 R
q�l . First some requirements for

the system must be met (Gahinet and Apkar-
ian, 1994). (A;B) must be stabilizable and (C;A)
must be detectable. Setting G = 0 is no require-
ment but will be assumed to simplify calculations
without any loss of generality. Then, given any dis-
crete real-rational dynamic controller K(z) with
the realization

K(z) = DK +CK(zI�AK)
�1BK (2)

with AK 2 R
k�k , the closed-loop transfer func-

tion from wi(t) to zi(t) is found as

T ci = Dci +Cci(zI�Ac)
�1Bc i = 1; 2 (3)

where i = 1 corresponds to the closed-loop trans-
fer function, T c1 , from w1(t) to z1(t) and i = 2 is
the corresponding T c2 from w2(t) to z2(t). The
mixedH2=H1 controller will be found so that the
H2 norm is minimized for T c1 and the H1 norm
is minimized for T c2 . The closed loop expressions
are given as

Ac =

�
A+BDKC BCK

BKC AK

�
;

Bc =

��
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�
+BDK

�
F1 F2

�
BK

�
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� �
; (4)

Cci =
�
Ci +EiDKC EiCK

�
; i = 1; 2
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��
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�
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��
: i = 1; 2

Gathering the control parameters into one single
variable

� =

�
AK BK

CK DK

�
2 R(n+k)�(n+k) (5)

and introducing the shorthands

A0 =

�
A 0

0 0k�k

�
; B0 =

�
B1 B2

0 0

�
;

C0i =
�
Ci 0

�
; i = 1; 2

D0i =
�
Di1 Di2

�
; i = 1; 2

B =

�
0 B

Ik�k 0

�
; C =

�
0 Ik�k
C 0

�
; (6)

E i =
�
0 Ei

�
; i = 1; 2

F =

�
0 0

F1 F2

�
:

results in writing the closed-loop matrices as

Ac = A0 +B�C;

Bc = B0 +B�F ; (7)

Cci = C0i + E i�C; i = 1; 2

Dci = D0i + E i�F : i = 1; 2

At this point an introduction of the projection
lemma (Scherer and Weiland, 2000) is useful.

Lemma 1. For arbitrary P ;Q and a symmetric
	, the MI

Q
T�P +PT�T

Q+	 < 0 (8)

in the unstructured � has a solution if and only
if

Px = 0 or Qx = 0 ) x
T	x < 0 or x = 0:

(9)

If WP and WQ denote arbitrary matrices whose
columns form a basis of the nullspaces of P and
Q respectively, denoted Ker(P) and Ker(Q), (9)
is equivalent to

WT
P	WP and WT

Q	WQ: (10)

From (Gahinet and Apkarian, 1994) the MI for
H2 optimization is given by2
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where

X2 = XT
2 > 0 (12)

and the optimal solution is given by minimizing
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Using the shorthand of (7), the inequality (11)
can be written with X2 and � grouped terms as2
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Use of the projection lemma further states that (14)
is solvable if and only if
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where
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2
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3
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2
4WQ1

0

0 I

WQ2
0

3
5 ; (17)

and with

Im
�
WP1

�
= Ker

�
C
�
;

Im

�
WQ1

WQ2

�
= Ker

�
B
T
E
T
1

�
: (18)

Using the Schur complement (Scherer and Wei-
land, 2000) on (15) and (16) the conditions for a
solution to (14) can be written as

�WT
P1

X�1
2 WP1 +WT

P1
CT
01C01WP1

+ (A0WP1)
TX�1

2 (A0WP1) < 0 (19)

and

(AT
0 WQ1

+CT
01WQ2

)TX2(A
T
0 WQ1

+CT
01WQ2

)

�WT
Q1

X2WQ1
�WT

Q2
WQ2

< 0 (20)

Thus, by �nding an X2 and a � that solves
equations (14), (19) and (20) and minimizing (13),
the H2 norm for the transfer function, T c1 , can
be minimized.

Similarly for H1 a controller that ful�lls the MI

2
664
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BT
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0 Cc2 Dc2 �
1I

3
775 < 0 (21)

where

X1 = XT
1 > 0 (22)

is called 
-suboptimal (Gahinet and Apkarian,
1994), and by minimizing 
1 the optimal con-
troller can be found.

Writing the H1 MI with X1 and � grouped
terms yields
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Again use of the projection lemma states that (23)
is solvable if and only if
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where
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2
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2
664

VQ1
0 0

0 I 0

0 0 I

VQ2
0 0

3
775 ; (26)
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BT ET2
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The use of Schur complement on (24) and (25)
yields


�11 (C02VP1 +D02VP2)
T (C02VP1 +D02VP2)

+ (A0VP1 +B0VP2)
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�VT
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and
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)
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1 VQ1

� 
1VT
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In short it will be possible to synthesize a dynamic
controller for the mixed H2=H1 problem if the
matrices X2;X1 and � that ful�lls the MIs in
equations (14), (19), (20), (23), (28) and (29) can
be found. The mixed H2=H1 controller would
then be given by �. Furthermore, by minimizing

2 in (13) and 
1 in (23), (28) and (29) the
optimal controller can be found.



3. EVOLUTIONARY ALGORITHM

The purpose of the EA is to search for the matrices
X2, X1 and � that solve the MIs. By also
minimizing 
2 and 
1, the optimal controller �

can be found. Previous attempts to synthesize a
mixedH2=H1 controller have used the constraint
of setting X2 = X1 (Scherer and Weiland, 2000),
which is the condition for changing MIs into the
analytically solvable LMIs. Another advantage
of using EA to solve the problem compared to
analytical methods is that the inverse of X2 and
X1 need no special considerations. Analytical
methods would have required a reformulation of
the problem before a solution could be found.

Both X2 and X1 are subject to the constraints
of (12) and (22) respectively, which means that
both matrices must be symmetric and positive
de�nite. To obtain symmetric positive de�nite
matrices the expression

X = MTM (30)

is used. By ensuring that M is real and nonsin-
gular, the resulting X will be real, symmetric and
positive de�nite. So, by letting the EA search for
the real nonsingular matrices M2 and M1 and
using equation (30), the implementation of the EA
can be less restrictive with regard to the search
domain when �nding the matrices X2 and X1.
However, formula (30) is ambiguous and will for
matrices M and �M produce the same X. Thus,
in order to avoid ambiguousity the constraint

det(M) > 0 (31)

should be implemented. Matrices M, that do not
meet the constraint in (31) can, however, easily
be conformed to meet the constraint by multipli-
cation with �1. Since there are no constraints on
�, no special considerations have to met for this
matrix when designing the EA.

3.1 Individuals

Before designing the �tness function it is nec-
essary to determine how the matrices M2, M1

and � should be combined. Having a separate
population of matrices for each of the matrices
M2, M1, and � and determining a �tness value
for each of the possible combinations would be
infeasible. The number of �tness evaluations in
each generation would be exponential in relation
to the number of populations and the population
sizes. In order to avoid the high number of cal-
culations it would have been necessary to limit
the population sizes, thus, also limiting the search
space of the EA.

By choosing an individual to consist of a combi-
nation of M2, M1 and �, such that one matrix

M2 is combined with only one matrix M1 and
one matrix �, the number of �tness evaluations
in each generation will not be exponential, but will
be equal to the population size. This will ensure
that the EA will have a wide search space, since
the population size can be chosen higher than for
the combination of all matrices M2, M1 and �.

The drawback of using the above mentioned com-
bination of M2, M1 and � into a single individ-
ual is that the possibility of losing matrices that,
combined with other matrices, would ful�ll the
MIs, is high. A matrix,M2, in a speci�c individual
is dependent on the other matrices,M1 and �, in
that individual in order to receive a good �tness.
This means that one ill �t matrix and two very
�t matrices in an individual will result in a poor
�tness value for that individual. However, the
drawback can be reduced, which will be described
later in section 3.3.

3.2 Fitness Function

The �tness function can be de�ned in many dif-
ferent ways. In this paper the �tness function
is chosen to be expressed as adjusted �tness
(Koza, 1994). Adjusted �tness is written in the
form

Fa =
1

1 + f
(32)

where f � 0 is sought minimized. This results
in a maximum value of 1 for the adjusted �tness
function, Fa. The reason for choosing adjusted
�tness is that, when f approaches 0, the impor-
tance of small changes is exaggerated. So, as the
population improves, greater emphasis is placed
on small di�erences, thus, making the di�erence
between a good individual and a great one.

The MIs in formulas (14), (19), (20), (23), (28),
and (29) all involve negative de�niteness. It is then
necessary to de�ne a function that maps the ful-
�llment of an MI, involving negative de�niteness,
into R. One such function can be de�ned as

f(�) =

(
� � �max(�) + � for�max(�) � 0

0 for�max(�) < 0
(33)

where �max is the largest eigenvalue of the matrix
in the MI and � and � are penalty factors. The
o�set � is included since the MIs are strict, and
thus a �max = 0 cannot be allowed to yield
f(�) = 0. The slope of f(�) ensures that large
positive values of �max results in high values for
f(�) while decreasing values for �max results in
a decreasing value for f(�). Assigning functions
f1; :::; f6, of the form f(�), to the MIs in (14),
(19), (20), (23), (28), and (29) respectively and
inserting into (32) results in the �tness function,
F(M2;M1;�).



F(M2;M1;�) =
1

1 +
P6

i=1 fi
(34)

By looking at the MIs in formulae (23), (28), and
(29) it is seen that 
1, which have not yet been
de�ned, is included. 
1 could be set as a constant
value, however, this would be very restrictive and
would limit the possibility of �nding a feasible
mixed H2=H1 controller using the EA. 
1 could
also be found iterative, though this might result
in having to include 
1 as a variable in the indi-
viduals in the EA. However, another possibility is
to de�ne an expression for 
1 based on the exist-
ing variables, M2, M1; and �, thus, indirectly
implementing the iteration as part of the EA. By
introducing a weighting

� =

2

1

(35)

an expression for 
1 will be given asq
tr
�
BT
0 (M

T
2 M2)�1B0

�
�

< 
1: (36)

When attempting to �nd the optimal controller,
which will be described later, the weighting, �,
can be viewed as the factor that determines how
much the controller should be optimized for 
2
compared to 
1. It is easily seen that even though
(36) is strict, it will be possible to insert the
expression for 
1 in formula (37) into the MIs
containing 
1, when �� = � + � and � > 0 and �
arbitrarily small.


1 =

q
tr
�
BT
0 (M

T
2 M2)�1B0

�
��

(37)

With 
1 de�ned, F(M2;M1;�) is now fully
de�ned with respect to M2, M1, and � and can
be calculated. The �tness value ofF(M2;M1;�)
indicates how close the individual (M2;M1;�) is
to a feasible mixed H2=H1 controller, �. Thus,
if F(M2;M1;�) = 1 then � is a feasible mixed
H2=H1 controller for the system. However, even
though � is a feasible mixed controller it will most
likely not be the optimal mixed controller.

As mentioned in section 2, the optimal controller
can be found by minimizing 
2 and 
1. From
formulae (13) and (37) it is seen that both 
2
and 
1 is expressed by tr

�
BT
0 (M

T
2 M2)

�1B0

�
,

and the degree of optimization of 
2 compared
to 
1 is given by �. So for F(M2;M1;�) =
1 and by minimizing tr

�
BT
0 (M

T
2 M2)

�1B0

�
, the

desired optimal mixed controller can be found.
The conditions can be combined into a joint
�tness function

Fopt =
1

1 + tr
�
BT
0 (M

T
2 M2)�1B0

�
+
P6

i=1 fi
(38)

This joint �tness function is, however, not without

aws, and these 
aws will be described in detail
in section 4.

3.3 Crossover

For simpli�cation the crossover operation will be
performed so that two parent individuals creates
two o�spring. Furthermore, when crossover is per-
formed only one matrix type from the parent
individuals will be used in the operation, whereas
the two remainingmatrix types will be transferred
directly to the o�spring. An example would be
that two parents

p1 : (
1M2;

1M1; 1�);

p2 : (
2M2;

2M1; 2�)

would result in two o�spring

o1 : (
1M2;

2M1; 1�);

o2 : (
2M2;

1M1; 2�):

The probability for which of the three matrix
types that is transferred should be equal in order
to gain maximum e�ect of the operation. In this
case the probability should thus, be 1=3.

The interchanging of matrices in the above exam-
ple reduces the drawbacks mentioned in section
3.1, since recombination of the matrices in the
di�erent individuals now will be performed in a
limited way. However, in order to add diversity to
the population, convex combination of the inter-
changed matrices will also be performed. Thus,
the o�spring of the above example would, using
convex combination, be

o1 : (
1M2; � �

1M1 + (1� �) � 2M1; 1�)

o2 : (
2M2; (1� �) � 1M1 + � � 2M1; 2�)

where 0<�<1. It should be noted that o�spring
of the matrices pM2 and pM1, will result in
o�spring matrices, oX2 and oX1, which, after
application of this convex crossover operation,
will not be convex combinations of the parent
matrices, pX2 and pX1, found from using pM2

and pM1 in (30). Since � is used directly in the
individuals it can easily be seen that for � the
o�spring will actually be a convex combination
of the parents. The probability for whether direct
transfer or convex combination will be performed
on the transferred matrix type could be set to
any value, however, a probability of 1=2 would be
reasonable.

3.4 Mutation

Two ways of performing mutation on the individ-
uals will be presented in this paper. The �rst way
is to perform the mutation on a single element of



one of the matrices, M2, M1 and �. A Gaussian
distributed random number with zero mean and
deviation �i, N(0; �i), is added to the element
that is selected to be mutated. Since the random
number is Gaussian distributed, the probability
that the mutation will result in minor changes is
high, though it also depends on the size of the
deviation �i. The deviation �i will be based on
the very successful Rechenberg's `1=5 success rule'
(Eiben et al., 1999), which states that 1=5 of all
mutations performed should be successful. If the
success rate is lower than 1=5, the deviation is
decreased according to

�i+1 = c � �i 0:817 � c � 1 (39)

and for success rates higher than 1=5 the deviation
is increased according to

�i+1 = �i=c 0:817 � c � 1 (40)

By noticing that a success rate higher than 1=5
would result from the parents being distributed
unevenly around the optimum, the deviation is
then increased to compensate for that. Similarly,
a success rate lower than 1=5 results from the
parents being evenly distributed around the opti-
mum, and the deviation is then decreased in order
to heighten precision and increase convergence
around the optimum.

In order to obtain further diversity in the popula-
tion there exist a possibility that an entire matrix
in an individual will be multiplied with a scalar
value. The scalar value is a Gaussian distributed
random number with mean 1 and deviation �i,
N(0; �i). In the EA, the probability for an entire
matrix to be mutated can be set equal to the
probability for mutation of a single element. Thus,
the impact on the population when mutating an
entire matrix will be limited and will not cause
the population to diverge.

4. VALIDATION

After having developed the theory for using EAs
to synthesize a mixed H2=H1 controller, an EA
was developed to examine the feasibility of this
approach. The EA was developed in Java and
tested on several simple plants. These tests re-
sulted in a variety of experiences.

First, it should be mentioned that it was possible
to �nd a feasible mixed H2=H1 controller for
small simple plants. It was also possible optimize
the mixed controller, even though the resulting
controller might not have been the optimal mixed
controller.

The EA requires a vast amount of computations.
Since the search area for the EA is very large,
the population size had to be above 20 in order
to obtain a usable controller for a system with

two plant states and one controller state. Larger
population sizes resulted in increasingly better
results. Expanding the system with either one
plant or controller state, resulted in the matrices
M going from 3 � 3 to 4 � 4. This resulted in a
higher population size needed for �nding feasible
controllers, due to an increased search area. Thus,
using the EA to synthesize a controller for in-
creasingly larger plants, resulted in an exponential
reduction in the performance of the EA.

Using only the �tness function given in (38)
caused the EA to fail. This was caused by
a contradiction between optimizing the term
tr
�
BT
0 (M

T
2 M2)

�1B0

�
and ful�lling the MIs. The

problem was solved by using the �tness func-
tion of (34) to search for a feasible controller.
When a feasible controller had been found, the
�tness function was changed to the one given
in (38). By reevaluating the entire population,
the new �tness function could then be used to
search for the optimal mixed controller. How-
ever, the term � used in (33) had to be set to
the value of tr

�
BT
0 (M

T
2 M2)

�1B0

�
for the �rst

feasible controller found. If this was not done,
the MIs would become unful�lled when the term
tr
�
BT
0 (M

T
2 M2)

�1B0

�
was being minimized, and

the controllers found would be unfeasible.

It is unknown whether feasible controllers can be
gathered in several separate areas of the search
space. If it is possible, then the developed EA
would surely be stuck in the �rst area of feasible
controllers encountered, regardless of whether the
optimal controller is contained in that area or not.
Thus, the controller found by the developed EA
might not be the optimal controller.
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