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SYSTEM IDENTIFICATION, PREDICTION,
SIMULATION AND CONTROL WITH NEURAL
NETWORKS

OLE SORENSEN
Aalborg University

Inst. of Electronic Systems, Dept. of Control Engineering
Fredrik Bajers vej 7C, DK-9220 Aalborg (), Denmark
phone +45 96 35 87 48, telefax +45 98 15 17 39, E-mail os@control.auc.dk

Abstract: The intention of this paper is to make a systematic examination of the possibilities of applying
neural networks in those technical areas, which are familiar to a control engineer. In other words, the
potential of neural networks in control applications is given higher priority than a detailed study of the
networks themselves. With this end in view the following restrictions have been made:
e Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward net-
work) is applied.

e Amongst numerous training algorithms, only the Recursive Prediction Error Method using a Gauss-
Newton search direction is applied.
e Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NAR-
MAX) model, representing input/output description, is examined.
A simulated example confirms that a neural network has the potential to perform excellent System Iden-
Further, the
difficulties to control a practical non-linear laboratory process in a satisfactory way by using a traditional

tification, Prediction, Simulation and Control of a dynamic, non-linear and noisy process.

controller are overcomed by using a trained neural network to perform non-linear System Identification in a

pole-placement control structure.

Keywords: Neural Network, NARMAX-model, Non-linear System Identification, Non-linear Control.

1 Introduction

With a background in Control Engineering, artificial
neural networks are simply a combination of a special
model structure and a learning algorithm. This com-
bination suddenly opens up new exciting possibilities
to identify and control difficult processes’ (dynamic,
non-linear and multivariable), which leads directly to
two areas of application within control engineering:

e Prediction and Simulation of industrial pro-
cesses. For processes, which are complex and
difficult to model, an artificial neural network
based predictor or simulator can give a reduc-
tion in the time spent for modelling, as well as a
quantitatively better performance.

e Controllers for industrial processes. The
use of artificial neural networks is a promising
technique to control the vast majority of indus-
trial processes, in which the stability problem is
not complicated, but where there are great eco-
nomic savings in optimizing the controlling of the
process, provided that substantial efforts are not

spent on optimizing. From an industrial point of
view there are great expectations to the applica-
tion of neural networks in control applications.

These two areas are the guidelines for the content of
this paper. The purpose is not primarily to focus on
the networks themselves, but rather to show how they
can be used for modeling and control. In other words,
to fill the gab between artificial neural networks and
control engineering, and to illustrate, that modeling,
based on artificial neural networks, is vastly related to
System Identification, a discipline applied by control
engineers for the last 2-3 decades.

Until now Classical and Modern Control Theory have
been based on linear models, but the emergence in
the late eighties of artificial neural networks suddenly
made it possible to perform non-linear System Identi-
fication, thus giving a basis for better simulation and
control of complex processes.

The model and control concept treated in this paper
are generalized’ to the non-linear case, based on the
corresponding linear case.



2 The neural network

Hornik [1] has shown that a neural network structured
as a Multi Layer Perceptron (MLP) containing

e an input layer (nodes)

e a hidden layer with a sufficient number of neuron
functions including offsets

e an output layer with only linear neuron functions
without offsets

has the capability to act as a universal approximator.
A MLP of the above mentioned structure is in a short
matrix notation shown in fig.1. The matrix W; rep-
resents the input weights, the matrix W represents
the output weights and F represents a vector func-
tion containing the non-linear neuron functions (here
tanh-functions). The last column in W, represents the
weights on the ”1” giving the necessary offset in the
network.

Figure 1: The architecture of a one hidden layer MLP with
matrix notation.

This fact vastly simplifies the MLP, and it consider-
ably reduces the time consumption for training, so this
structure will be applied overall in this paper. For that
reason relevant results for this one hidden layer MLP
are summed up here.

The output is calculated using

b7 )

If the network has mg inputs and ms outputs a mso x
mgo matrix G, which here is named the gain matrix of
the network, is defined

dZu:(1) dZ (1)
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Consequently, G is the actual incremental (small sig-
nal) gain of the network, and a calculation gives

dZ out
dzT

G

dZopw dY: dX;
dyT dxXT dzT
= WoF (X1) Wy (3)

where the following abbreviation is introduced
W = Wi (exclusive last column), 4)

Note, that G is very easily calculated by (3) from a
trained neural network. G will be extensively used in
the following.

3 The process model

3.1 NARMAX model

In [2] non-linear system identification using neural net-
works is discussed, but the simulation study is re-
stricted to Non-linear ARX (NARX) models. This
paper, however, adopts a NARMAX model and shows
how the non-linear system identification can be per-
formed, using a neural network trained by a method
known from linear system identification.

A linear ARMAX model is written

Aa My(k) He(k) (5)

where y(k), u(k) and e(k) are output, input and noise
respectively (especially, for a SISO process they are all
scalars), A, B and C are polynomials in the backward
time shift operator ¢g~!. The noise e(k) is normal,
white and with zero mean.

= B(g ")u(k) + Clg~

The polynomials are

Algh) = TH+ag '+ +aq”
Blg™") = big7' 4 bpg™ (6)
Clg™") = l4cqgt+-+epq?

Here p and m denote the number of delayed out- and
inputs respectively.

The output y(k) is thus calculated using a difference
equation

yk) = —awy(k—1)---—apy(k —p)
+biu(k —1) -+ bpu(k —m)

+e(k) + cre(k—1)--- + cpe(k — p) (7)

from which the optimal one step predictor is found

§(k) = —ay(k—1)---—apy(k —p)
+biu(k —1)--- + bu(k —m)
+ere(k—1) -+ + cpe(k - p)

y(k) = (k) +e(k) (8)



With inspiration from this linear ARMAX model a
Non-linear ARMAX (NARMAX) model is naturally
defined

Y(k) = F¥(k-1),---,Y(k-p),
Uk-=1),---,U(k—m),
E(k—l),---,E(k—p),@)

Y(k) = Y(k)+E(k 9)

where F is a non-linear vector function, 6 represents
the parameters and E(k) is the prediction error.

The corresponding neural network model is shown in
fig.2, which is a Recurrent Network, since it contains
feedback loops around the network.

Y(k-1)
Y(ep) | YK
U(k-1)
: Yo £ ER
‘ NN - —

U(k-m)

Figure 2: A neural network NARMAX model

During and after training the actual (on-line) gain ma-
trix G(k) can be extracted from the MLP. G(k) is cal-
culated by (3) and partitioned by

dZout k
Gk) = T ((k))
_ dy (k)
- d{YT(k-1),---,ET(k - p)}
B aY (k) oY (k
)l oYT(k—1)" ’OET(k—p)
= {_&1(k)7 a_&p(k):
Bl(k)a" 78m(k)5
él(k)a : 7ép(k)} (10)
where
) ¢ ()
a,(k) = m, i=1-- p
Gik) = #l(fii)’ i=1---p (11)

For physical processes the individual elements of the
input and output vectors are measured in physical

units, which often are of quite different orders of mag-
nitude. A training session on that basis is inconvenient
for two reasons. Firstly, noting that the applied neu-
ron functions are tanh-functions, the risk of operating
at the extremes of the tanh-function is greater, thereby
increasing the time taken for training. Secondly, the
training session gives a higher priority to those el-
ements of the output vector, which are accidentally
measured in large physical units. For these reasons a
scaling is performed. It is here chosen to scale all indi-
vidual inputs and desired outputs in such a way that,
based upon the training set, the mean value becomes
zero and the standard deviation becomes one.

In the rest of this paper all measured signals are given
a subscript 'm’, contrary to the scaled signals.

3.2 Training method

Since fig.2 comprises feedback loops around the MLP,
it is a Recurrent Network, and training a Recurrent
Network is rather more complicated than training a
normal ’static’ MLP by the well-known Back Propa-
gation algorithm [3], [4], [5]

A second order Recursive Prediction Error Method
(RPEM) using a Gauss-Newton search direction has
been applied, since this direction is more efficient than
the gradient direction. In addition, the method is dom-
inant in linear system identification.

The method is rather involved and it is explained in
several textbooks [6] and papers [2], [5], [7].

4 A non-linear test process

A linear test process is applied by Ljung in [6]. It is
a single input/single output (SISO), second order AR~
MAX process containing a colored noise contribution,
and the input/output description is
A(g Ny(k) = B(g~ )u(k) + C(g~ )e(k) (12)
where y(k), u(k) and e(k) are output, input and noise
respectively (all are scalars), A, B and C are polyno-
mials in the backward time shift operator ¢—!. The
noise e(k) is normal and white with zero mean and
with a standard deviation o, = 0.1.

The polynomials are

A" = 1+ a1q7" +aq™?
= 1-1.50¢7!+0.70¢72

B(q_l) = blq_l + b2q_2 (13)
= 1.00g~! + 0.50¢~2

Clg™) = L4+ cgt 4+ g™

1 —1.00g7! +0.20¢2



Now, this process is changed such that static, as well
as dynamic, non-linearities are obtained by letting the
coefficient as depend on the current value of the output
of the process as indicated in (14). Since the process
contains one time delay, a, in fact depends on the one
sample delayed output of the process.

—1
as(k) = 0.70 + 0.10%

(14)
This implies static as well as dynamic non-linearities.
For —10 < y < 10 the DC-gain varies from 11.3 to 5.6,
the process zero is permanently situated in —0.5 + 50,
the noise zeros are permanently situated in 0.724 + 50
and 0.276+ 50, while the poles vary from 0.750+50.266
to 0.750 £ j0.452, as illustrated in the pole-zero map
in fig.3.

In the pole-zero map a grid is shown. Lines of constant
damping ratio ( and normalized natural frequency wy,
are drawn in. The damping ratio lines are drawn from
¢ =0 to 1 in steps of 0.1, while the natural frequency
lines are drawn from 0 to 7 in steps of 7/10.

PROCESS POLE (X) PROCESS ZERO (O) NOISE ZERO (+)

Figure 3: The displacements of process poles (x), process
zeros (o) and noise zeros (+) for the non-linear
test process

As input for the training set a Pseudo Random Binary
Sequence (PRBS) with 500 samples is applied to en-
sure that the static as well as the dynamic properties
are excited. As input for the test set a symmetrical
staircase signal with 500 samples is applied to make
the behavior of the process more transparent. The
training set is shown in fig.4 and the test set is shown
in fig.5, showing how the DC-gain and transient be-
havior depend on the size and the sign of the output.

INPUT, TRAINING SET

50 100 150 200 250 300 350 400 450 500
SAMPLES

OUTPUT, TRAINING SET

o 50 100 150 200 250 300 350 400 450 500
SAMPLES

Figure 4: Training set for non-linear test process

INPUT, TEST SET

0 50 100 150 200 250 300 350 400 450 500
SAMPLES

OUTPUT, TEST SET

) 50 100 150 200 250 300 350 400 450 500
SAMPLES

Figure 5: Test set for non-linear test process

5 Non-linear System Identifica-
tion, Prediction and Simula-
tion

The neural network NARMAX model is chosen with
10 tanh-neurons in the hidden layer and with p =
m = 2. After having trained this NARMAX model
with the Recursive Prediction Error Method using a
Gauss-Newton search direction based on the training
set shown in fig.4, the model is now tested with the
test set shown in fig.5. The test concerns the ability of
the model to perform System identification, Prediction
and Simulation.

5.1 System identification

Since the process is non-linear, the identified coef-
ficients are not constant. A pole-zero map is con-
structed from the actual identified coefficients based
on the test set, and the displacements of the poles and
zeros are shown in fig.6. This figure has to be com-
pared with the pole-zero map of the simulated process



fig.3, and considering that a non-linear system iden-
tification of a non-linear and noisy process has been
performed, the result is quite acceptable.

PROCESS POLE (X) PROCESS ZERO (O) NOISE ZERO (+)

Figure 6: The displacements of process poles (x), process
zeros (0) and noise zeros (+). System identifi-
cation with NARMAX model

5.2 Prediction

In fig.7 the NARMAX model is used as a one step
predictor.

Fig.7a shows the measured output Y,, and the pre-
dicted output Yy, preq, which, in this scale, are almost
coincident. The difference is the prediction error.

Fig.7b shows the prediction error E,,, and it ’looks’
white.

Fig.7c shows correlation functions. Left, the auto cor-
relation function of the prediction error is shown, and
it is obvious that the prediction error is almost white
within the 95% confidence interval. Right, the cross
correlation function between the prediction error and
the input is shown, and it indicates that within the
same confidence interval the prediction error does not
correlate with the input. These two graphs provide
very relevant information, when testing the success
of the training, and combined they confirm that the
training has been satisfactory.

Fig.7d shows the current variation of the six identified
scaled model coefficients ay, a2, b1,b2,¢1 and é;. Only
one of them (a2) varies, while the other five are almost
constant, which corresponds very well to the way in
which the non-linearity was introduced in section 4.

The variance of the simulated process noise was (sec-
tion 4) 02 = 0.1%, and according to [6] the theoretically

obtainable value of the variance of the prediction er-
ror from a test set, a%’t, depends on the number of
network parameters, d, and the number of samples,

N.

d 80
opy = 0o, (1 + N) =0.1% (1 + %) =0.0116
oy = 0.1077 (15)

This result has to be compared with the obtained og =
0.1113 (see fig.7c), again an indication of successful
training.

PREDICTION OF OUTPUT
10

I s
3
g
s 0 3
I
£ sl
10
0 50 100 150 200 250 300 350 400 450 500
SAMPLES
PRED.ERROR
0.4
0.2
§ o b)
02
-04
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Figure 7: Prediction with NARMAX model

5.3 Simulation

The capability of the trained neural network NAR-
MAX model to act as a simulator will now be demon-
strated. For a simulator the process output is not
available during the simulation, so instead of fig.2 the
simulation is based on fig.8.

This means that the simulator model is



Yk = F(Pk-1),, Yk -p)
U(k_ 1)7"'7U(k_m)7
07 Ty 07 6)
E(k) = Y(k) -Y(k) (16)
Y (k)
: N \?(k)JL" E(K)

Figure 8: Simulation with NARMAX model

The delayed net outputs are used as inputs, and the
correction with the previous prediction errors is dis-
missed, since E is kept at zero. In fact, this is a true
open-loop noise-free simulation. The result is shown
in fig.9.

SIMULATION OF QUTPUT

10

o
T

,,,,,,,,,,,,,,,,,,,,,,,,

YOm.., Ymsim
o

YOm.., Ymsim* , Ym

2
60 62 64 66 68 70 72 74 76 78 80
SAMPLES

Figure 9: Simulation with NARMAX model

The upper part of fig.9 shows that the simulated noise-
free network output Yy, sim with E = 0 almost coinci-
dent with the simulated noise-free process output Yo,
with E,, =0.

In the lower part of fig.9 (a zoom) the solid line repre-
sents the measured noisy process output Y,,, the dot-
ted line is the simulated noise-free process output Yy,
and the stars are the simulated network output Yo, sim.

It is noticed, that the trained NARMAX model is ca-

pable of acting as an almost perfect simulator, com-
pletely removing the colored noise from the process.

6 Non-linear Control

The trained neural network, representing a model of
the non-linear process, will now be used for an on-
line extraction of the actual estimated process param-
eters, thus allowing an one-line tuning of the controller
parameters, depending on the actual process condi-
tions. In fact this method has similarities with a Gain
Scheduling method.

The control concept is a pole placement control imple-
mented with a RST-controller of second order. This
control concept is well known from linear control the-
ory and is fully described in [8] and [7].

Extraction of the small signal parameters in an actual
linearized model neglects the DC-level of the signals,
thus demanding an integral action from the controller.

The implementation of the resulting controller, includ-
ing a neural network model for parameter estimation,
is shown in fig.10. All signals in the figure are indi-
cated by capital letters to emphasize that it concerns
large-signals. Signals, which are measured in physical
units, are supplied with an index 'm’, contrary to sig-
nals, which are scaled to dimension-less quantities. In
section 3.1 it was explained why and how to scale the
signals.

Y®) | | YK TG 1 [AUK | 1 U Jinv. | Yn(k) PROCESS Yin(K)
Y TreD @) Scde
scale

o

Calculation

Figure 10: Implementation of RST-controller using a
trained neural network for parameter estima-
tion

The process is the non-linear test process from sec-
tion 4, and the neural network model is the NARMAX
model from section 3.1

The scaled actual gain matrix G(k) is calculated by
(3) and the actual values of the estimated a- and b-
coeflicients are extracted from G(k) by (10) in order
to calculate the actual controller parameters.

For the desired closed-loop poles, the controller poles
are chosen as two coincident real poles in (.85, while
the observer poles are chosen as two coincident real



poles in 0.50.

Fig.11 shows the input and output with this pole place-
ment designed RST-controller, using a non-linear neu-
ral network NARMAX model for on-line parameter
estimation of the non-linear and noisy process. It is
observed from the figure, that the output response,
as desired, is critical damped for positive as well as
for negative steps, and that the input, as expected, is
asymmetric and smoothed.

Fig.12 illustrates, in comparison, what happens, when
the parameter estimation is performed from a tradi-
tional system identification of a linear model of the
non-linear and noisy process. The output behaves quit
differently for positive and negative steps. (In fact this
result is obtained by using a trained neural network
NARMAX model, containing only linear neurons, for
on-line parameter estimation).

RST-CONTROL, INPUT

0 100 200 300 400 700 800 900 1000

500
SAMPLES
RST-CONTROL, OUTPUT

100 200 300 400 500 600 700
SAMPLES

: RST-controller using a non-linear NARMAX
model

800 900 1000

RST-CONTROL, INPUT

0 100 200 300 400 500 600 700
SAMPLES

800 900 1000

RST-CONTROL, OUTPUT

100 200 300 400 500 600 700
SAMPLES

Figure 12: RST-controller using a linear NARMAX model

800 900 1000

7 A practical laboratory process

Now a simple single input/single output laboratory
process is considered. The process considered is a lab-

oratory setup, in which cold water is led into a cylin-
drical tank containing an outlet in the bottom. The
control purpose is to maintain the water level in spite
of several disturbances, mainly the water outlet. The
process is equipped with industrial actuators and sen-
sors, but unfortunately they are contaminated with
considerably electrical noise. However, the process is
accepted as it is. No efforts have been made to es-
tablish inner loops around the valves, no filtering of
the measured signals are performed, and no knowledge
of the process model is assumed. The difficulties are
considered to be extra challenges to a neural network
based controller.

A serious non-linearity is introduced by placing a fixed
ball in the tank. The ball has a diameter approxi-
mately equal to three quarters of the diameter of the
tanks cross section.

A sketch of the process is shown in fig.13, and the
process model structure is shown in fig.14.

Qim

COLD WATER INLET

COLD WATER OUTLET

Figure 13: The single input/single output process

DISTURBANCE
D =q,,

J

U=q PROCESS
INPUT OUTPUT

= H3m
<[]

STATE

m —— Y = Hy,

Figure 14: The process model structure

e The controlling input is the voltage @1, to the
valve, supplying the cold water.

e The disturbing input is the outlet flow Q3,, of
the cold water.

e The measurable output is the water level Hs,,.

e The state is chosen to second order, the first
state being the measurable output Hs,,.



e The reference for Hs,, is varying between 0.15 m
and 0.425 m.

e The sampling interval is 2 sec.
Without any knowledge to the process model, a tra-

ditional Pl-controller is tuned ’by hand’ to give the
’best’ performance and the result is shown in fig.15.

INPUT, QIm [V]
35%MM}MWWLWNWMWNW/WW\WMM
0 100 200 300 200 500 600

DISTURBANCE, Q3m [0.01//sec]

e e sty

2
G0 100 200 300 400 500 600

OUTPUT, H3m [cm]

FEX

10
0 100 200 300 400 500 600

Figure 15: Linear control with a tuned PI-controller. The
data are used for training a neural network con-
troller

INPUT, Q1m [V]

3_5WWWMM—/\—~MMW

0 100 200 300 400 500 600

DISTURBANCE, Q3m [0.01//sec]

i e e Y|

100 200 300 400 500 600

OUTPUT, H3m [cm]

100 200 300 400 500 600

Figure 16: Non-linear control with a neural network per-
forming actual System Identification

It is observed, that the PI-controller is tuned to pro-
duce a nice performance for water levels below and
above the ball, whereas instability occurs when the
water level is passing the ball.

Now the data shown in fig.15 are used to train a neural
network model in order to make a better control of the
process.

e The Process model is the NARMAX model, shown
in fig.2.

e The training algorithm is the Recursive Predic-
tion Error Method (RPEM).

o The number of hidden neurons is 5.

e The control concept is pole-placement control
with non-linear neural network System Identi-
fication, shown in fig.10.

e For the desired closed-loop poles, the controller
poles are chosen as two coincident real poles in
0.85, while the observer poles are chosen as two
coincident real poles in 0.50.

An almost perfect control is obtained, as shown in
fig.16.

8 Conclusion

The simulated and the practical test examples con-
firm that a neural network, trained to model a dy-
namic, non-linear and noisy process, has the potential
to perform excellent System Identification, Prediction,
Simulation and Control of the process.
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