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Abstract

This paper considers the extraction of linear state

space models and uncertainty models from neural

networks trained as state estimators with direct

application to robust control. A new method for

writing a neural state space model in a linear frac-

tional transformation form in a non-conservative

way is proposed, and it is demonstrated how a

standard robust control law can be designed for a

system described by means of a multi layer per-

ceptron.

Keywords: Neural Networks, Linear Fractional Trans-
formation, Robust H1 Control

1 Introduction

Many systems found in real-life situations are slightly non-
linear in a restricted region of the relevant state space, but
exhibit saturation and other forms of nonlinear behaviour
more strongly when the state of the system gets outside
this region. The classical approach to control of such sys-
tems has been to linearise the system model in some set of
operating points and design one or more linear controllers
for the system in said points. Modern control paradigms
such as robust H1 control synthesis methods typically
deal with this by requiring a linear nominal (state space)
model plus some kind of uncertainty model for the control
design [6]. One problem with these types of approaches,
however, is that it can be diÆcult to obtain a suitable
model to build the control design on.
With the right choice of neuron functions, arti�cial

neural networks such as Multi-Layer Perceptrons (MLPs)
have been shown to be able to model the kind of nonlinear
systems described above accurately. If the system states
cannot be measured directly, an MLP can also provide a
nonlinear state estimator based only on samples of in- and
output. The idea of training an MLP as a nonlinear state
space model of the plant and then extracting the informa-
tion about the linear part of the system behaviour from
the MLP then seems rather obvious. This linear system
can then be employed as the nominal model of the plant,
and a controller can be designed so that it is robust to
the nonlinearities represented by the `leftover' part of the

plant model.

Hence, what we wish to do in this paper is to establish
a link from the MLP description to a Linear Fractional

Transformation (LFT) description and give an example of
its applicability to control design. Some work along these
lines has already been presented, e.g. in [3] and [4]. The
results presented in these papers tend to be somewhat
conservative, however, since the nonlinearities are only
considered in terms of the sector bounds of the neuron
functions. That is, the full range of all possible responses
from the MLP is taken into account in the analysis, and it
is largely ignored that, in fact, not all possible responses
can be expected to occur. Strictly speaking, the MLP can
only be considered a reliable plant model in the region of
state space where it has been trained, and a controller
based on it should of course be designed with that partic-
ular region in mind.

In Section 2 we will therefore present a new method for
transforming a nonlinear state space model parametrised
via an MLP into an LFT description in a much less con-
servative manner than what has been done so far. After
that, Section 3 gives a brief outline of how to design a lin-
ear controller which is robust to perturbations from the
nonlinearities via �-synthesis. Section 4 presents a simu-
lation example of modelling and control of an induction
motor. Finally, Section 5 sums up the conclusions of the
work.

2 From Neural State Space Mod-

els to Robust H1 Framework

We consider a system of the form

_~x = f(~x; ~u); ~y = C~x (1)

where ~x 2 Rn is the state vector, ~u 2 Rm is a control
signal and ~y 2 R

p is the output vector for the system.
f(�; �) : Rn � Rm ! Rn is an unknown continuous func-
tion of the states describing the system dynamics.

From neural network theory|see e.g. [1]|it is known
that we can approximate this function to a desired ac-
curacy with a single hidden layer MLP with q neurons



(assuming q is chosen large enough):

f(~x; ~u) =Wo�
�
Wx~x+Wu~u+ ~Wb

�
+ "x

where Wo 2 R
n�q and Wx 2 R

q�n ;Wu 2 R
q�m con-

tain the output and hidden layer weights, respectively.
�(�) : Rq ! Rq is a continuous, diagonal, static nonlin-
earity. Wb 2 Rq contains a set of biases which will allow
us to model non-odd functions with odd neuron functions
�(�) such as the hyperbolic tangent. We assume it is pos-
sible to bound the modelling error: k"xk1 � "max by
choosing the MLP large enough and train it long enough
on a suÆciently rich training set.
In other words, we will assume that the neural network

can be trained to estimate the states in the system (1).
In practice this can for instance be achieved by employing
Narendra's Dynamic Back-propagation (see e.g. [3]), and
we will for simplicity only consider o�ine training here;
i.e. we will not consider time-varying systems.
Consider a system for which a neural state space model

has been trained according to the guidelines given above,
until "x is small enough to be ignored:

_~x =Wo�
�
Wx~x+Wu~u+ ~Wb

�
; ~y = C~x (2)

We wish to rewrite the neural model (2) as the linear
fractional transformation

_x = Ax+Bu+B1�(Wxx+Wuu); y = Cx (3)

where the uncertainty model � is diagonal and bounded
with k�(�)k1 < 1, and where the coordinates (x; u) only
di�er from (~x; ~u) by the possible subtraction of an equi-
librium point.
We assume that there exists an equilibrium, (~x; ~u) =

(~xÆ; ~uÆ), i.e.

0 =Wo�(Wx~x
Æ +Wu~u

Æ + ~Wb)

We can then change the network coordinates in such a way
that instead of the arbitrary equilibrium point (~xÆ; ~uÆ) we
have 0 = Wo�

0(0) (�0 is a new neuron function mapping
which will be de�ned shortly). Let the new coordinates
be given as x = ~x � ~xÆ; u = ~u � ~uÆ. Then (2) can be
written as

_x =Wo�
�
Wx(x+ ~xÆ) +Wu(u+ ~uÆ) + ~Wb

�

Here we will de�ne a new bias vectorWb =Wx~x
Æ+Wu~u

Æ+
~Wb and the new neuron function

�0(�) = �
�
Wx(x+ ~xÆ) +Wu(u+ ~uÆ) + ~Wb

�
� � (Wb)

Adding and subtracting Wo�(Wb) in (2) then gives

_x = Wo�

�
Wx~x+Wu~u+ ~Wb

�
+Wo� (Wb)�Wo� (Wb)

= Wo

�
�

�
Wx~x+Wu~u+ ~Wb

�
� � (Wb)

�
+Wo� (Wb)

= Wo�
0(Wxx+Wuu)

Wo�(Wb) = 0, because this is in fact the equilibrium
point. Note that, apart from providing a way to shift the
operation point to the origin, the main purpose of the
steps given above is to remove the bias from � instead of
having to consider them as constant disturbance inputs,
as suggested in [3].
It should furthermore be noted that the method

given above applies equally well to sampled-data systems
~xk+1 = f(~xk; ~uk). In this case the MLP equilibrium point
is of the form ~xÆk+1 = f(~xÆk; ~u

Æ
k); 8k, but the de�nition of

�0(�) turns out to be the same.
Now we can �nd the e�ective range of the input argu-

ments to the neuron functions, denoted �. This is simply
done by calculating

�j;max = sup
0�t�T

�
jW j

xx+W j
uuj

	

for 1 � j � q where [0;T ] is the time interval in which
the training data have been acquired and W j

x ;W
j
u denote

the j'th rows in the hidden layer weight matrices. Then
we have the following bounds on the active input range1

of the j'th neuron:

�j =W j
xx+W j

uu 2 [��j;max; �j;max]

Hence the neuron function response to the active input
range must belong to the sector �0j 2 [kj;min ; kj;max]
where

kj;min = inf
�j2[��j;max;�j;max]nf0g

�
�0(�j)

�j

�
(4)

and

kj;max = sup
�j2[��j;max;�j;max]nf0g

�
�0(�j)

�j

�
(5)

In other words, the sector bounds are determined such
that kj;min�

2
j � �j�

0(�j) � kj;max�
2
j . The actual expres-

sions for these sector bounds must be found for each neu-
ron function individually and will in general depend on
the bias, but the bounds obviously exist and are appar-
ently the least conservative.
Once the sector bounds are found, we go back to vector

notation and de�ne the nonlinear function Æ(�) : Rn+m !
Rn as

Æ(x; u) = �0(�) �
1

2
(Kmin +Kmax) (Wxx+Wuu) (6)

whereKmin = diagfkj;min��g andKmax = diagfkj;max+
�g; 1 � j � q. � is a small positive quantity included to
make the sector bounds strict. It is observed that Æ(�)
belongs to the sector (� 1

2 (Kmax � Kmin) ; 1
2 (Kmax �

Kmin)). Now we can write the equation for _x as

_x = Wo�
0(Wxx+Wuu)

= Wo

�
Æ(x; u) +

1

2
(Kmin +Kmax) (Wxx+Wuu)

�

= Ax+Bu+B1�(Wxx+Wuu)
1The input ranges are in general not symmetric around 0, so the

bounds given here may be slightly conservative.



in which A;B;B1 and � are given by

A =
1

2
Wo (Kmin +Kmax)Wx (7)

B =
1

2
Wo (Kmin +Kmax)Wu (8)

B1 =
1

2
Wo (Kmax �Kmin) (9)

�(Wxx+Wuu) = 2 (Kmax �Kmin)
�1 Æ(x; u)(10)

Note that the scaling by 1
2 (Kmax �Kmin) is included in

order to make � belong to the sector (�1 ; 1).

0

−1

0

1

N
eu

ro
n 

re
sp

on
se

σ(ξ)
σ’(ξ)

−ξ
max

ξ
max

0

−1

0

1

N
eu

ro
n 

re
sp

on
se

k
max

ξ

k
min

ξ

σ’(ξ)

−ξ
max

ξ
max

0

−1

0

1

Neuron input ξ

N
eu

ro
n 

re
sp

on
se

δ(ξ)−ξ
max

ξ
max

Figure 1: Extraction of linear content from normal hy-
perbolic tangent neuron.

In order to illustrate the procedure above we will pro-
vide an expression for the sector bounds (4) and (5) for the
tanh(�) neuron function, which is probably the most pop-
ular neuron function employed in MLPs. Refer to Figure
1, where the top plot shows the parallel translation of the
original neuron function with bias Wb to the origin. We
will without loss of generality assume that Wb > 0. Only
the section of the neuron function, which corresponds to
the input interval [��max; �max], is considered.

On the middle plot the straight lines kmin� and kmax�
have been added. Since d2(tanh(x))=dx2 < 0 for x > 0
it is immediately concluded that kmin is given by kmin =
�0(�max)=�max. kmax, on the other hand, can either be
given by �0(��max)=� �max if the endpoint of the input
range is suÆciently close to 0, or by the slope of the tan-
gent to the neuron function which intersects 0. The rela-
tionship between the bias and the argument �b for which
said tangent coincides with the neuron function has been

found numerically2 as

�b = �0:00379W 3
b + 0:07274W 2

b � 1:5146Wb

Hence, if �b > ��max we have kmax = �0(�b)=�b, otherwise
kmax = �0(��max)=� �max.

Note that there is no loss of generality in the assump-
tionWb > 0 since the fact that the (original) neuron func-
tion is odd ensures that the expressions given above hold
for negative biases as well, with a simple sign change of
�b and �max.

3 Controller Synthesis

This section deals with the question of designing a robust
controller K for the uncertain system � ?M as shown in
Figure 2, where ? denotes the Redhe�er star product.

�

M

K

-

�

�� wz

-

�

y u

=

�

Mc

-

�

�� wz

Figure 2: The interconnection of the nominal system M ,
the uncertainty block �, and the controller K.

y is the measurement vector, u is the control vector, z is
the signal to be controlled, which may coincide with y, and
w is the disturbance vector containing noise and command
signals. We will for simplicity assume that w; z 2 Rm ,
and � 2 ��d � H��m���m

1 . See [6] for a more thorough
discussion of the topics presented here.

For a matrixMs 2 C ��� and an uncertainty set ��g the
structured singular value of Ms is de�ned as

� ��g
(Ms) =

�
minf��(�) : � 2 ��g ; det(I �Ms�) = 0g

��1

Assuming that k�k1 < 1 for all � 2 ��d, and that
Mc(s) 2 RH

���
1 , the interconnection in Figure 2 is stable

and has robust performance level , i.e. kzk2 � kwk2, if

� ��dp

�
Mc(j!)

�
I��m 0
0 �1Im

��
� 1;8! 2 R

where

��dp =

�
�dp : �dp =

�
� 0
0 �p

�
;� 2 ��d;�p 2 C

m�m

�

The structured singular value usually cannot be computed
by an eÆcient algorithm, but if � is a nonlinear diagonal

2A closed form most likely does not exist. The polynomial given

here provides values of kmax with errors of the order of magnitude

10�5.



uncertainty like the one presented in Section 2 an upper
bound is given by

� ��dp
(Ms; ) = inf

D
��

��
D 0
0 Im

�
Ms

�
D�1 0
0 �1Im

��

� � ��dp
(Ms)

where D is a diagonal matrix.
The aim is to �nd the controller K yielding the best

robust performance, i.e. solving

min
K;D

 s:t: � ��dp
(M(j!); ) � 1;8! 2 R:

This is a non-convex problem. One approach that usually
yields good results is to perform a bisectional search over
. The so-calledDK-iteration is performed for each value
of , where a minimisation of � is iteratively solved for K
and D.

4 Simulation Example

This section will demonstrate the usage of the methods
outlined in the previous two sections on a fairly realistic
simulation example. A nonlinear induction motor model
simulated in continuous time provides training data for
an MLP model, which is then transformed into the LFT
form (3).
With widely used simplifying assumptions a simple

model of the current controlled induction motor is given
by (see e.g. [2])

d
dt
imd(t) = T�1

r (isd(t)� imd(t)) + (!(t)� !r(t))imq(t)
d
dt
imq(t) = T�1

r (isq(t)� imq(t))� (!(t)� !r(t))imd(t)
d
dt
!r(t) = ��1!r(t)� �2mL(t)+

�3 (imd(t)isq(t)� imq(t)isd(t))

where the stator currents isd and isq are the control sig-
nals, !r is the angular velocity of the shaft which we wish
to control, and mL is a load torque on the shaft. imd

and imq are the magnetising currents in the rotor, while
! is the angular velocity of the reference frame in which
the currents are expressed. For each of the currents, the
subscripts `d' and `q' refer to parallel and perpendicular
axes of decomposition relative to the rotating reference
frame. Apart from isd and isq only !r is assumed to be
measurable in the simulation.
! is typically chosen so that the reference frame follows

the magnetising currents, i.e. imq = 0. Since only !r
is measured, an observer is needed. The simplest such
observer, and the one which will be used here, is given by

d

dt
îmd(t) = T̂�1

r (isd(t)� îmd(t))

!(t) = !r(t) + T̂�1
r

isq(t)

îmd(t)

The observer uses an estimate of the rotor time constant
T̂r. This parameter estimate is the only one used in the

modelling and controller design. To simulate a realistic
situation the estimate used will have a 3% error com-
pared to the value used in the simulations. The mod-
elling and controller design will be based only on T̂r,
input/disturbance (~u = [isd isq ]

T ; ~d = îmd) and output
(~y = !r) data.
The parameter values used are Tr = 0:0949 s, T̂r =

0:0921 s, �1 = 23:0 s�1, �2 = 2000 kg�1m�2, and �3 =
3794 A�2s�2.
This model is simulated in continuous time with �ltered

pseudo-random noise as input. The input and output sig-
nals were sampled at every Ts = 0:005 s and collected
in two consecutive sequences spanning 2000 training sam-
ples and 1000 test samples, respectively. In order to get
good training results for the MLP and to provide a lin-
ear system identi�cation model for the control synthesis
comparison it was chosen to de�ne the model states based
on delayed input and output samples. It should be noted
that it might be a more general|and better|idea to al-
low the MLP model to be trained as an innovation model,
but this approach will for simplicity not be considered
here. After some trial-and-error it was found that the fol-
lowing choice of input-output and state con�guration gave
the best modelling results: ~xk = [~yk; ~yk�1; ~yk�2; ~yk�3]

T ,
~�k = [~xTk ; ~u

T
k ; ~u

T
k�1;

~dTk ]
T and

~xk+1 =Wo�
�
Wi

~�k + ~Wb

�
; ~yk =

�
I 0

�
~xk

Based on the same samples a standard linear system iden-
ti�cation gave estimates [ �A �Bu

�Bd] of the parameters in
the linear model

xk+1 = �Axk + �Bu

�
uk
uk�1

�
+ �Bddk

These initial linear estimates can also be used to get a
good set of starting weights for the MLP, since, if the
system were linear, the gain of the hidden layer would
be very close to identity and the product WoWi would
be very close to [ �A �Bu

�Bd]. Hence, we let [ �A �Bu
�Bd]

be decomposed via SVD as U�V T , choose any matrices
Q;R 2 Rn�q such that QRT = I; kQk � kRT k, and set
Wo = UQ and Wi = RT�V T , thereby distributing the
linear estimates to the initial weight matrices.
In the example, 8 tanh(�) neurons in the hidden layer

were suÆcient to model the system adequately. A com-
parison between an open loop simulation of the test set
performed by the linear model and the MLP model is
shown in Figure 3. As expected the two models are
equally good at simulation close to the operating point,
but as the state moves away from the operating point the
neural simulation is better than the linear. This can be
seen on the simulation error on the lower plot.
Based on the LFT form of this MLP model, we design

a stabilising discrete-time controller for the system; refer
to Figure 4, where the con�guration is presented. We
also calculate a controller �K with the exact same design,
but based directly on �A; �Bu and �Bu (i.e. not robust to
�). The only actual `design' takes place in the �lter F ,
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Figure 4: The controlled system, with controllerK, nom-
inal systemM , nonlinearity block � and a �lter F on the
performance channel. The output error e is de�ned as
e = y � w.

which de�nes a frequency weighting of the performance
channel w ! z. F is identical for both controllers and
chosen as two �rst order low pass �lters on the outputs
with cut-o� frequencies of 10 rad=s for !r and 1 rad=s
for îm, and static gains of 0:05 and 0:004 on isd and isq ,
respectively. The latter gain has been detuned suÆciently
to avoid instability in the simulations with the controller
�K. Figure 5 shows a simulation of the controlled system.

As can be seen, both controllers perform well near the
operating point, but after a change in the magnetising
current the non-robust controller �K almost destabilises
the system. The robust controller K, on the other hand,
performs well over a wide range of states.

5 Discussion

In Section 2 a method has been developed for turning
an MLP model into an LFT of a dynamic system and a
nonlinear function. In Section 4 a controller was designed
for a simulation example based on robust H1 theory and
an LFT model obtained with the method described in
Section 2. The controller designed in this manner was
shown to be superior to a controller designed based on a
linearisation in an operating point.

When used for linear controller design the obtained
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Figure 5: Simulation of the controlled system. The plot
shows the reference signal (��), the non-robustly con-
trolled system (� � � ) and the robustly controlled system
(|).

model provides a far less conservative result compared
to earlier methods. The advantage is obtained by consid-
ering only the region of the state space which is relevant
and by taking advantage of a known equilibrium. This
approach will in practically all cases be a clear improve-
ment over a design based on the unmodi�ed sector bounds
of the neuron function and considering biases as constant
disturbance inputs.
The objective of the example was to demonstrate that

reasonable results could be obtained by a fairly automatic
approach with the new method, even though it might be
possible to obtain similar results with a standard nonlin-
ear �eld oriented controller.
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