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Abstract term and long-term predictor coefficients and may be applied in
_ _ o speech coders. Therefore, the novelty introduced is to exploit
This paper presents two new classes of linear prediction the statistical characteristics of the algorithms introduced for

schemes. The first one is based on the concept of creating a jinear prediction in order to define, in the latter stage, a more
sparse residual rather than a minimum variance one, which will - efficient quantization scheme.

allow a more efficient quantization; we will show that this works The paper is organized as follow. A prologue that defines

well in presence of voiced speech, where the excitation can be the mathematical formulations of the proposed algorithms will
represented by an impulse train, and creates a sparser residualpe given. The core will be dedicated to introducing the two al-
in the case of unvoiced speech. The second class aims at find- gorithms and showing the results obtained with these techniques
ing sparse prediction coefficients; interesting results can be seen and some related examples. Then we will discuss and illustrate

applying it to the joint estimation of long-term and short-term  advantages and drawbacks of them.
predictors. The proposed estimators are all solutions to con-

vex optimization pro_blems, whlch can be solved efficiently and 2. Fundamentals

reliably using, e.g., interior-point methods.

Index Terms: linear prediction, all-pole modeling, convex op-  The problems considered in this paper are based on the follow-

timization ing auto-regressive model, where a sample of speech is written
as a linear combination of past samples:

1. Introduction

K
Linear prediction (LP) is an integral part of many modern z(n) = apz(n—k) +e(n), 1)
speech and audio processing systems ranging from diverse ap- k=1
plications such as coding, analysis, synthesis and recognition
[1]. Typically, the prediction coefficients are found such that
the 2-norm of the residual (the difference between the observed
signal and the predicted signal) is minimized [2]. The reason
behind this work is that there are many examples where this
does not work well, for example when the excitation is not
(?laUSS'aT’ which |hs.the ]Eaze forffyqlced fspeﬁch.h In this casde tor a € R¥ from a set of observed real sampleén) for
It € usua appro;':lc |s|to_ Ind coe |((:j|_?rnts orthe s ;rt:}ﬁ_rm ?)n n = 1,..., N so that the error is minimized [7]. The vector
qng-tlerlm ﬂgna_ccﬁrre at:on |r11)two_ ! Ierelnt .Stepsl[ ]h ISOb- 5 _ x —Xais commonly referred to as the residual which is
v:tous y leads o in erently suboptimal SO.UtIOI’IS. ne e context an estimate of the excitatio# obtained from some estimade
0 predu:tlve coding, moreover, _alt_ern_atlve formulations may resulting from the following minimization problem:
be of interest. The 2-norm minimization shapes the residual
into variables that exhibit Gaussian-like characteristics; how- min ||x — Xal|? + ’VHaHIZ )
ever, so-called sparse coding techniques have been used, for ex- a F ’
ample, in early GSM standards and more recently also in audio
coding [4] to quantize the residual. In these techniques, notably
the Multi-Pulse and Regular-Pulse Excitation methods (MPE x(N1) (N1 —1) - z(N,—K)
and RPE) [5, 6], the residual is encoded using only few non-

where{ay} are the prediction coefficients ar@n) is the ex-
citation. The different predictors considered we will see that
apply to different kinds of excitation(n) and different appli-
cations. Mathematically we can state the class of problems
considered in this paper as those covered by the optimization
problem associated with finding the prediction coefficient vec-

where

zero pulses. In this case and quantization-wise in general, we x= : X = : :

can reasonably assume that the optimal predictor is not the one z(N2) z(N2—1) - x(N2— K)
that minimizes the 2-norm but the one that leaves the fewest .
non-zero pulses in the residual, i.e. the sparsest one. and|| - ||, is the p-norm defined d&x |, = (N, [z(n)[?)»

In this paper, we present a framework wherein two kinds for p > 1. The starting and ending poinf¢; and N5 can be
of sparse linear predictors are considered corresponding to two chosen in various ways assuming thd) = 0 for n < 1
different ways of estimating the prediction coefficients. First, andn > N. For example, considering = 2 andy = 0
we consider the case where the excitation signals are assumed to (maximum likelihood approach for the error being a sequence
be sparse, as in the case of voiced speech. Then, we consider theof i.i.d. Gaussian random variable), setting = 1 and N, =
case where, not the residual, but the prediction coefficients are N + K will lead us to the autocorrelation method equivalent to
sparse. This latter case allows us to jointly estimate the short- solving the Yule-Walker equations; settidgg = K + 1 and



N> = N leads us to the covariance method [8]. We will show
that the choice ofV; andNs is not trivial even in the case when
p # 2 where the system in (2) has not a closed-form unique
solution.

The question then is how to choogek and~ and how
to perform the associated minimization, depending on the kind
of applications we want to implement. In finding sparse signal
representation, there is the somewhat subtle problem of how to

the Yule-Walker equations [8]. To our knowledge, the only re-
lations existing between the time and frequency domain error
using the 1-norm is the trivial Hausdorff-Young inequality [12]:

> el <5 [

that explicates the non-correspondence of the frequency domain

|E(e’)|dw, (5)

measure sparseness. Sparseness is often measured as the cardininimization approach for the 1-norm. Itis difficult to say if the

nality, that would be the so-called 0-noin ||o [9], therefore,
using it in (2) means that we would like to minimize the num-
ber of non-zero samples in the error signal. Unfortunately this
is a combinatorial problem which generally cannot be solved in
polynomial time. Instead of the cardinality measure, we then
use the more tractable 1-nofm ||:.

The introduction of the regularization terprin (2) can have
two meanings. The first one, wheyas somehow related to the
prior knowledge we have of the coefficients vector there-
fore (2) is clearly themaximum a posterioffMAP) approach
for finding a under the assumptions thathas a Generalized
Gaussian Distribution [10]:

aMAP = argmax f(x|a)g(a)

©)
= arg max{exp(~|x — Xal[}) exp(—7]alx)}-

The second meaning thatholds can be understood by the
following analogy. If in (2) we letc = 0 and assume that the
number of bits associated with the quantization of the predic-
tion coefficientsa be proportional to the number of non-zero
elements im, then the regularization facterplays the role of
a Lagrange multiplier in a rate-constrained rate-distortion opti-
mization withp determining the error criterion in question: by
adjustingy, we obtain solutions fos having different rates.

3. Sparse Linear Predictors
3.1. Finding a Sparse Residual

We now proceed to consider the problem of finding a prediction
vectora such that the residual would be sparse. As we shall see
this approach is particularly applicable to analysis and coding of
voiced speech. Having defined the 1-norm as an approximation
of the cardinality function, the cost function for the problem in
question is a special case of (2). By setting= 1 andy = 0
we obtain the following optimization problem:

min ||x — Xal|1. 4

a

The use of a least absolute value error criterion has already
been proven to give interesting results in linear prediction of
speech signals [11]. Especially 1-norm has been proven to give
good results when the error is considered to have long tails, that
is due to the fact that whem= 1 and~ = 0, the minimization
process corresponds to the maximum likelihood approach when
the error sequence is considered to be a set of i.i.d. Laplacian
random variables. The excitation in the case of voiced speech is
well represented by this statistical approximation, therefore the
1-norm minimization outperforms the 2-norm in finding a more
proper linear predictive representation.

It should be noted that standard linear predictjan-Xal|2
exhibits spectral matching properties in the frequency domain
due to the Parseval’s theorem [2]: it is also interesting to note
that minimizing the squared error in both time domain and fre-
guency domain leads to the same set of equations, which are

1-norm is always advantageous compared to the 2-norm, since
it is not clear the statistical character of the frequency errors.

Nevertheless, in our experimental studies, we empirically ob-

served that the use of the 1-norm was helpful against the usual
problems that the 2-norm LP analysis has to deal with in the

case of voice speech with well-defined harmonics (those would

be, for example, over-emphasis on peaks and cancellation of er-
rors [2]).In the case of unvoiced speech, in addition, the residual

e(n) has always shown to be sparser than the one obtained with
the usual LP analysis.

3.2. Finding Sparse Coefficients

Another intriguing incarnation of the general optimization prob-
lem (2) is to minimize the 2-norm of the residual while keeping
the coefficient vectoa sparse:
min [x — Xal +~/ja. (6)

This formulation is relevant because a direct minimization
of (2) in the standard LP formp(= 2,~ = 0) with a high pre-
diction orderk, will lead to have a coefficient vectarcontain-
ing many non-zero elements even if the true order is less than
K. The meaning of looking for a sparse coefficient veatoan
be understood as follows. An AR filter having a sparse structure
is an indication that the polynomial can be factored into several
terms where one of these exhibits comb-like characteristics: the
long term predictor often used in speech processing is an exam-
ple. A commonly used long-term predictor is:

P(z) =1—gpz" 7, )

with T}, being the pitch period (the reciprocal of the fundamen-
tal frequency usually found in the ran{f@H z, 500H z]) and
gp > 0 being the gain. Therefore, the optimization problem in
(6) can be interpreted as a joint estimation of the short-term and
long-term prediction coefficients, something which is usually
achieved in cascade and thus suboptimal way [16, 17]. Also,
the proposed approach does not require the pitch period to be
known or estimated, unlike some practical long-term predictors.
The minimization of the 2-norm in (6) is based on the assump-
tion that aside from the pulse-train, the excitatign) also con-
sist of Gaussian noise (as usually represented in the mathemat-
ical models of speech production). Regarding the implementa-
tion of this algorithm, the optimization problem can be posed
as a quadratic programming problem and can also be solved in
time equivalent to solving a small number of 2-norm linear pre-
diction problems using an interior-point algorithm [14], as the
problem in (4).

4. Numerical Experiments

The results of the approach shown in (4) for a voiced signal
exhibit a residual that is surprisingly similar to the impulse re-

sponse of the long term predictor, an example is presented in
Figure 1. It is also easy to see that the 2-norm minimization
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Figure 1:Residuals for 1-norm and 2-norm minimization.
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Figure 2: Frequency response of the filters obtained with 1-
norm and 2-norm minimization.

introduces high emphasis on peaks in its effort to reduce great
errors: in this case the outliers due to the pitch excitation, as we
can see clearly in Figure 2. Our examples were obtained analyz-
ing the vowel /a/ uttered by a female speaker usig= 400,

s = 8K Hz and orderK = 20. Since the fundamental fre-
guency for the analyzed signal is arour®b H z, the common
LP analysis will try to put a pole very closed to the unit circle
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Figure 3: Comparison of the prediction coefficients (excluding
the0*"-order) obtained with our algorithm (top), with usual LP
(order 50) and with the convolution of the short-term and long-
term coefficients vectors.

5. Discussion

Dencel and Solvay [11] have pointed out the drawbacks of the
absolute error approach that we used in section 3.1. One of
them is that the solution (just like the median value of a even
number of observations) may not be unique; in this case due
to the convexity of the cost function, we can easily state that
the all the possible multiple solution would still be the optimal
ones [13]; also, seeing the non-uniqueness of the solution as a
weakness is arguable: in the set of possible optimal solutions we
can probably find a set of coeffients that offer better properties
for our purposes.

The stability of this method is not guaranteed, being not
intrinsically stable like LP analysis with the autocorrelation
method. This drawback was mitigated by choosi¥ig = 1
andN; = N + K in (2): it also corresponds to the autocorre-
lation method if the 2-norm was used. This helped us bring the
percentage of non-stable filters from 11% (usiig= K + 1
andN; = N) to less than 2% in over 10,000 frames analyzed.

around those radians to cancel the harmonic, there explained the Ajthough the use of windows to mitigate the spectral peaks or

peak. The 1-norm approach acknowledges the existence of the
pitch harmonic, although it does not try to cancel it because its
purpose is not to fit the error into a Gaussian-like probability
density function. The result, as clearly shown in Figure 2, is
that with the 1-norm minimization we obtain a smoother filter.

In Figure 3 we show an example of the results for our sec-
ond approach, outlined in section 3.2, on the coefficient vector

bandwidth expansion method, almost always used in 2-norm
minimization problem could have brought the non-stability per-
centage down to unimportant levels, we decided not to use them
as the sparseness properties of the residual were contaminated.
In [11] an interesting method was introduced for both hav-
ing an intrinsically stable solution as well as keeping the compu-
tational cost down using (4): the Burg Method for AR parame-

of the same speech segment analyzed above. The comparisoners estimation based on the least absolute forward-backward er-

of the prediction coefficients was made between our algorithm
for v = 0.1 and~ = 1, with usual LP (order 50) and with the
multiplication of the transfer functions of the)'"-order short
term predictor (obtained as the mean in the Line Spectral Fre-
qguencies domain of four set of LP parameters calculated in the
analyzed signal) and the long term predictor obtained by closed
loop pitch analysisP(z) = 1 — 0.2227°. In general, we were
able to see that usinyl < ~ < 1in (6), the predictive vectax

is similar to the multiplication of the short-term prediction filter
Astip(z) and long-term prediction filter (7) obtained in cascade,
in other words in our one step approach we obtained:

! 1
Aspa'rse (Z) 1 gpziTp ASth(Z) .

(8)

ror. In this approach to find a solution, however, the sparseness
is not preserved (as shown in Figure 4). This is mostly due to
the decoupling of the maik -dimensional minimization prob-
lem in K one-dimensional minimization sub-problems, this is
in contrast with our algorithm that tries to find a minimum

in the K —dimensional cost function: therefore this method is
suboptimal. The 1-norm Burg algorithm has shown to behave
somewhere in between the 1-norm and the 2-norm minimiza-
tion. Regarding the computational costs, finding the solution
of a overdetermined system of equations in the 1-norm using
a modern interior point algorithm [14] showed to be compara-
ble to solving around 10-15 least square problem; however the
further processes, for example open and closed loop analysis
for pitch estimation and algebraic excitation search (in the case
of code-excited schemes [15]) and quantization in general, will
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Figure 4:Comparison of the residuals obtained with the method
used in the paper (continuous), the Burg method based on the
1-norm (dash-dotted) and the usual LP (dashed).

be highly simplified by the characteristics of the output. Fur-
thermore, it's important to notice that the residual signal will be
already available at the end of the computation and doesn’t have
to be calculated.

It is also useful to combine the optimization problems (4)
and (6); in this case the following optimization problem arises:

min [[x — Xal[1 + 7lla]:. 9)

Here, the coefficients of a high-order predictor combining
the short and long term predictors are found such that both the
coefficient vector and the residual are sparse to better quantize
the residual. In our experimental work we were able to effi-
ciently encode a speech signal (with both voiced and unvoiced
parts) using a significantly low bit rate by using only 20% of the
coefficients of each predictive vector and setting approximately
85% of the residual samples equals to zero with a quantizer that
ignores samples below a certain adaptive treshold and a quasi-
linear quantization elsewhere. Although more intensive studies

are needed to determine the psycho-acoustic level performances [11]

of this simple scheme, the time domain distorsion and quality
seemed comparable to the common encoding-decoding tech-
nigues used in GSM and UMTS based on 2-norm minimization.

6. Conclusions

In this paper, two kinds of sparse linear predictor have been
introduced. Specifically, linear predictors that offer a sparse
residual or a sparse coefficients vector or the combination of
both, as a particular case of the latter one, have been formu-
lated, discussed and evaluated. Although this kind of methods
seemed particularly attractive for the analysis and coding of sta-
tionary voiced signal, we have seen that the extension of the ob-
tained results to unvoiced signal seemed to be straightforward
and it will be subject to further analysis. Furthermore, consid-
ering other convex estimators will easily bring to new studies
based on different concepts of sparseness. It should be noted
that the algorithms introduced are not restricted to speech pro-
cessing and can be used for several linear prediction problems
where either the residual or the coefficient vector is expected
to show sparseness properties or where we want these to fit a
sparse model.
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