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Abstract

Background: Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical
practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may
exist.

Objective: To investigate the long-term effect of exposure to residential radon on the risk of primary brain tumour in a
prospective Danish cohort.

Methods: During 1993–1997 we recruited 57,053 persons. We followed each cohort member for cancer occurrence from
enrolment until 31 December 2009, identifying 121 primary brain tumour cases. We traced residential addresses from 1
January 1971 until 31 December 2009 and calculated radon concentrations at each address using information from central
databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence
rate-ratios (IRR) and 95% confidence intervals (CI) for the risk of primary brain tumours associated with residential radon
exposure with adjustment for age, sex, occupation, fruit and vegetable consumption and traffic-related air pollution. Effect
modification by air pollution was assessed.

Results: Median estimated radon was 40.5 Bq/m3. The adjusted IRR for primary brain tumour associated with each 100 Bq/
m3 increment in average residential radon levels was 1.96 (95% CI: 1.07; 3.58) and this was exposure-dependently higher
over the four radon exposure quartiles. This association was not modified by air pollution.

Conclusions: We found significant associations and exposure-response patterns between long-term residential radon
exposure radon in a general population and risk of primary brain tumours, adding new knowledge to this field. This finding
could be chance and needs to be challenged in future studies.
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Introduction

Brain tumours are rare; however incidence rates in Nordic

countries have increased during the past few decades in both men

and women [1,2]. The increased incidence rates may partially be

explained by improved diagnostic methods and clinical practice

[3], but remain largely unknown. Epidemiological studies have

investigated many potential risk factors for brain tumour over the

past several decades, but the only established cause is ionizing

radiation given in therapeutic [4–7] and diagnostic doses [8] and

data from atomic bomb survivors support this [9,10]. Residential

radon is responsible for the majority of exposure to ionizing

radiation in the general population, and although doses are several

orders of magnitude lower than doses from therapeutic treatments,

the same mechanisms of damage to the brain are expected.

Exposure to radon and alpha emitters polonium-218 and

polonium-214 [11] has been classified as a human carcinogen

[12]. Radon-222 gas arises from the radioactive decay of radium-

226, present throughout the earth’s crust and in many building

materials. Radon-222 has a 3.8-day half-life, and builds up indoors

where most exposure to the general population occurs. The

airways and lungs are the primary target organs, but dose

calculations predict that inhaled radon gas and radon progeny can

pass the blood-brain-barrier [13] and although estimated brain

doses are low, a relationship between residential radon and brain

tumours may exist. Yet, little attention has been given to this

possibility; three studies of miners exposed to elevated occupa-

tional levels of radon have investigated mortality, but report

conflicting results, with one showing increased brain cancer

mortality related to radon exposure [14] and the others showing
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reduced mortality [15,16], all statistically insignificant. A more

recent study of uranium miners including 14 deaths due to brain

tumours found an excess risk associated with radon exposure

although with no dose-response relationship and expressing

caution of possible diagnostic misclassification [17]. No study to

date has investigated the association between incidence of brain

tumour and exposure to residential radon in the general

population.

A recent cohort study suggested that the risk of brain tumour

could be associated with air pollution at the residential address

[18]. Traffic related particulate matter (PM) in ambient air

penetrates homes and contributes significantly to indoor PM [19].

Presence of indoor PM may modify the association between

residential radon and brain tumours. Unattached radon progeny

with an aerodynamic diameter around 1 nm have a high

extrathoracic deposition, including the nasal cavity [13]; whilst

radon progeny easily attach to PM in the air [20,21]. The

attachment of radon progeny to aerosols in the air reduces the

fraction of the so-called unattached radon decay products and

increases the airborne concentration of attached radon decay

products due to a significant reduction in the plate out on indoor

surfaces [22]. Attachment furthermore significantly influences the

deposition pattern in the lungs due to the altered size distribution

of the radon decay products [23] and experimental evidence

supports the theory that ultrafine PM can reach the brain both via

the systemic circulation through the blood-brain barrier and via

the olfactory neuronal pathway [24–26]. Also, radon uptake from

airways might be enhanced by exposure to traffic airway irritants

including nitrogen dioxide (NO2) which is also a marker of PM

from traffic. We have previously reported a non-significant pattern

of stronger associations between radon and leukaemia among

children living at streets with high traffic density [27]; indicating

that residential radon and indoor PM might operate together and

influence risk.

The ‘‘Diet, Cancer and Health’’ cohort is a large prospective

study with detailed information on potential confounders collected

at baseline with little potential for recall bias and the radon

regression model has been successfully validated [28] and applied

in three previous epidemiological studies [27,29,30]. Our purpose

was to investigate the association between predicted levels of

residential radon at the 168,624 residencies of the cohort

members, over a period of 39 years and the risk for primary

brain tumour in Denmark and to examine the potential modifying

effects of air pollution.

Methods

Design
Between December 1993 and May 1997, 57,053 persons aged

50 to 64 years were enrolled in the prospective study ‘‘Diet,

Cancer and Health’’. The participants had to be born in

Denmark, live in Copenhagen or Aarhus, and cancer free at the

time of inclusion [31]. The baseline examination included a self-

administered questionnaire on diet including fruit and vegetable

consumption, occupational history, including occupation in the

chemical industry as well as other items related to health, lifestyle

and socio-economic status.

Since establishment of the Danish Civil Registration System

(CRS) [32] in 1968, all citizens of Denmark have been given a

unique personal identification number, which allows accurate

linkage between registers. The CRS is continuously updated

regarding many person variables including vital status, place of

residence and information on emigration. We traced the date of

death, emigration or disappearance of cohort members in the

CRS by use of the personal identification number. We retrieved

the unique past and present addresses of each participant from 1

January 1971 until 30 December 2009 from the CRS, thus

including 39 years of address history dating back to when these

cohort members were in their 20 to 409s. Addresses were identified

according to municipality, town, postal code, street, building

number, and floor.

We followed each cohort member for occurrence of any cancer

from enrolment until 30 December 2009 in the Danish Cancer

Registry, which provides accurate and virtually complete nation-

wide ascertainment of cancers since 1943, including benign

tumours [33], by use of the unique personal identification number.

Cancers were classified according to ICD-10 (international

classification of diseases, 10th revision).

The Scientific Ethics Committee for Copenhagen and Freder-

iksberg and The Danish Data Protection Agency approved the

study, and written informed consent was obtained from all

participants prior to enrolment.

Exposure assessment
Residential radon concentrations at each address of all

participants were predicted with a validated regression model

[28]. The model uses nine explanatory variables, including

geographic location, geology (soil types) and dwelling character-

istics including type of house, floor level, total number of floors,

fraction of inhabitable space in top floor, basement and building

materials. All explanatory variables are available from central

Danish databases.

Geographical coordinates were identified by the Danish

Geodata Agency by linking the identified unique addresses for

all cohort members to the cadastral register, which is a database of

all official addresses and their geoordinates in Denmark. The

overall goal of the Danish Geodata Agency is to supply and insure

reliable and accurate maps and geographical coordinates on all

parts of the Realm. Geographical coordinates were obtained for

94% of all the addresses the cohort members had lived in.

The Geological Survey of Denmark and Greenland identified

the local soil from digital soil maps using geographical coordinates

for each address. House construction data were obtained from the

Building and Housing Register [34]. Model predictions were

corrected for seasonal variation. The model predicts low level

residential radon with great certainty and detects differences in

groups well and a comparison with independent radon test data

shows that the model makes sound predictions (R2 = 0.5) and that

errors of radon predictions are only weakly correlated with the

estimates themselves [28].

Two radon exposures were calculated for each cohort member

from 1 January 1971 onwards. The first was a time-weighted

average exposure and the second was a cumulated radon

exposure. Both were calculated with and without a 10-year

latency period that is relevant for brain tumours. These

concentrations were entered into their respective statistical cancer

risk models as time-dependent variables; thus recalculating

exposure for non-censored persons at the time of each censor.

Information on traffic has previously been collected for the

entire study population and traffic-related air pollution has been

significantly linked to brain tumours [18]. We estimated the

concentration of nitrogen oxides (NOx) which correlates strongly

with concentrations of ultrafine particles in Danish streets through

a wide range of particle sizes (R2.0.83) [35] and also includes the

airway irritant NO2. The average concentrations of NOx at the

front door of each dwelling during the period that the participants

occupied the address were estimated by use of the Danish air

pollution dispersion modeling system, with high temporal and

Residential Radon and Brain Tumours
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spatial resolution (R2.0.75) [36] and including the state-of-the-art

Operational Street Pollution Model, currently used in over 17

countries worldwide [37]. We calculated the time-weighted

average NOx concentrations at each cohort member’s residential

addresses from 1 January 1971 onwards.

Statistical methods
The end-point for the risk analyses was primary brain tumours,

including benign tumours (ICD-10 C71, D330–D332 and D430–

D432). Incidence rate-ratios (IRRs) were estimated by a Cox

proportional hazards model with age as the underlying time scale

ensuring risk estimates were based on individuals at exactly the

same age [38]. We calculated two-sided 95% confidence intervals

(CIs) on the basis of the Wald test statistic for regression

parameters in Cox regression models with the PHREG procedure

in SAS (version 9.2; SAS Institute, Cary, NC). Analyses were

corrected for delayed entry at the time of enrolment, so that

persons were considered under risk from time of enrolment into

the cohort. People diagnosed with cancer before enrolment into

cohort (except non-melanoma skin cancer) were excluded from the

analyses. Censoring occurred at the time of death, emigration or

disappearance, cancer diagnosis, or 30 December 2009 (end of

follow-up), whichever came first.

Data were analyzed with and without adjustment for a-priori

determined variables. The crude model was adjusted for age

(underlying time scale) and sex. The second model was further

adjusted for individual variables with confounding potential, based

on previous literature including: consumption of fruit and

vegetables (linear, g/day) [39–43], a dichotomous variable

indicating employment for at least one year in the chemical

industry [12,44,45] and NOx at residencies since 1971 (linear,

mg/m3) [18]. Consumption of fruit and vegetables [39–43] and

occupation in the chemical industry [12,44,45] have been linked

to brain tumour; whilst smoking, alcohol and body mass index

have consistently been reported to have no effect, despite their

association with many other cancer types [4,7]. The third

explorative model was further adjusted for socio-economic

variables known to be risk factors for many other cancers,

including length of school attendance (,8, 8–10 and .10 years),

marital status (single, married/de facto relationship, divorced and

widowed) and occupational status (employed versus unemployed).

Cohort members that had a missing value for any covariate were

excluded, thus ensuring the same number of persons in crude and

adjusted analyses.

The assumption of linearity for the continuous variables

(residential radon, fruit and vegetable consumption and NOx in

relation to brain tumour was evaluated graphically using linear

splines with boundaries placed at the nine deciles among all

participants as well as by a numerical likelihood ratio test statistic

to compare the model assuming linearity with the linear spline

model. None of these co-variates deviated significantly from

linearity.

We formed four intervals for exposure to residential radon using

the 25th, 50th and 75th percentiles for all participants as the cut-off

points and estimated the IRRs for primary brain tumour for the

higher exposure ranges compared with the lowest exposure range.

IRRs were also estimated as linear trends in residential radon

concentrations. The possible effect modification by traffic-related

air pollution was evaluated by introducing interaction terms into

the adjusted model and using the Wald’s test.

Exposure-response curves with 95% confidence limits were

visualized using a restricted cubic spline in R (library Survival and

Design, version 2.13.1), adjusting for age, sex, consumption of fruit

and vegetables, employment for at least one year in the chemical

industry and NOx at residencies since 1971 [46].

Results

Among the 57,053 cohort members, we excluded 571 due to a

cancer diagnosis before enrolment, 2 because of uncertain date of

cancer diagnosis, 960 for which address history was not available

in the CRS or their baseline address could not be geocoded, 1,603

because of missing data in potential confounders, and 2,243

because radon or NOx exposure was assessed for less than 80% of

the time from 1 January 1971 until diagnosis or censoring. The

51,674 included cohort members had lived in a total of 168,684

addresses and were followed up for cancer for an average of 12.6

years (total person years at risk was 652,028). We identified 121

primary brain tumour cases, corresponding to an overall incidence

rate of 18.6 per 100,000 person-years.

Table 1 shows the characteristics of the cohort members and the

primary brain tumour cases. Sex distribution and marital status

were similar among cases and cohort members. The proportion of

participants with employment and long school attendance was

slightly lower among cases than among the cohort members and

cases consumed slightly less fruit and vegetables. The median

predicted residential radon concentration was slightly higher for

cases (41.8 Bq/m3) than the whole cohort (40.5 Bq/m3) and

median NOx concentrations were similar for cases and the cohort

members and the 95 percentile values for both radon and NOx

exposure was higher for cases. Table 1 also shows that those living

at addresses with high radon tended to: be men, be employed,

have longer school attendance, be married or live in de facto

relationships and be exposed to lower NOx levels.

Overall the adjusted IRR associated with each 100 Bq/m3

increment increase in average radon levels was 1.96 (95% CI:

1.07; 3.58) and the adjusted IRR associated with a 103 Bq/m3-

years increment increase in cumulated radon was 1.37 (95% CI:

1.03; 1.82). The IRRs for both average and cumulated radon

exposure were exposure-dependently higher over the four radon

exposure quartiles (Table 2). The unadjusted results showed lower

IRR associated with radon levels but the IRRs were also dose-

dependently higher over the four-radon quartiles (Table 2). Traffic

related air pollution was the most important co-variate for the

change in the estimated association between radon and brain

tumour risk in model 2 and the crude model. When exploring the

effects of co-variates related to socio-economic status in an

extended model we found IRRs for the association increased

further, primarily due to adjustment for length of schooling

(Table 2). These risks estimated were only affected to a small

extent by exclusion of the 10-year latency period for radon

exposure (results not shown). Figure 1 shows the adjusted

exposure-response between average residential radon concentra-

tions and primary brain tumour risk shown in Table 2. There was

no evidence that the association between radon and risk of

primary brain tumour was modified by traffic-related air pollution,

although the point estimate of the IRR was lower among subjects

with high levels of NOx at their residence (p-value for interac-

tion = 0.15) (Table 3).

Discussion

We found significant associations and exposure-response

patterns between long-term exposure to residential radon in a

general Danish population and primary brain tumour risk.

The strengths of this study include a prospective follow-up

where information on potential confounding factors was collected

at enrolment without potential for recall bias. Complete follow-up

Residential Radon and Brain Tumours
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for cancer, vital status as well as address history from 1971

onwards was ensured by use of reliable population-based Danish

registries. The use of a recently developed regression model

facilitated estimation of residential radon in as many as 168,624

homes, over almost four decades. The model has been applied in

three previous epidemiological studies [27,29,30] and successfully

validated against independent radon measurements [28]. Model-

based estimation of radon is inevitably associated with uncertainty

[28] and it is clear that measurements in homes would provide a

more accurate assessment of radon concentrations. But use of

measurements in epidemiological studies may imply disadvantages

such as a limited number of measurements due to economy

constraints and exposure misclassification when reconstructing

past residential radon exposures. The advantage of our model-

based estimation of radon levels is the facilitation of a larger study

with historical estimates of radon exposure since 1971, at

reasonable costs. Limitations of our study include the limited

Figure 1. The spline function is adjusted for age, sex,
consumption of fruit and vegetables, employment in the
chemical industry for at least one year and traffic-related air
pollution. The exposure distribution of average residential radon is
marked on the x-axis. The spline function can be interpreted as the
exposure-response association. The difference between two points on
the y-axis on the curve is interpreted as the difference in loge(IRR) for
the corresponding difference in exposure, which can be read on the x-
axis between the same two points.
doi:10.1371/journal.pone.0074435.g001

Table 2. Incidence rate ratios (95% CI) for primary brain tumour risk associated with the residential radon concentrations.

Radon Cases, n IRR (95% CI)b

Crudec Model 2c,d Model 3c,d.e

Time weighted average (Bq/m3)a

,17.2 28 1.00 1.00 1.00

17.2–40.5 29 1.20 (0.69–2.08) 1.44 (0.82–2.54) 1.53 (0.87–2.71)

40.5–67.6 31 1.27 (0.74–2.20) 1.68 (0.94–3.01) 1.86 (1.03–3.38)

.67.6 33 1.38 (0.82–2.36) 1.90 (1.07–3.39) 2.09 (1.16–3.79)

Linear trend per 100 Bq/m3 121 1.43 (0.81–2.55) 1.96 (1.07–3.58) 2.15 (1.16–4.01)

Cumulated exposure (Bq/m3-years)a

,377 29 1.00 1.00 1.00

377–895 31 1.14 (0.69–1.97) 1.40 (0.81–2.42) 1.50 (0.86–2.60)

895–1506 30 1.16 (0.67–1.94) 1.49 (0.84–2.63) 1.64 (0.92–2.94)

.1506 31 1.41 (0.83–2.39) 1.92 (1.08–3.40) 2.11 (1.17–3.81)

Linear trend per 103Bq/m3years 121 1.19 (0.90–1.56) 1.37 (1.03–1.82) 1.44 (1.07–1.93)

aFrom 1 January 1971 until censoring, with inclusion of a 10 year latency period. The cut-off points between exposure groups were the 25th, 50th and 75th percentiles for
all participants.
bAnalyses based on 51,674 cohort members and 121 brain tumours.
cAdjusted for age by using it as the underlying time scale in the Cox model and sex.
dAdjusted for consumption of fruit and vegetables, employment in the chemical industry for at least one year and traffic (time-weighted average NOx exposure
between 1971 and the censoring date).
eAdjusted for employment status, schooling and marital status. Due to exclusion of cohort members with missing value in any covariate, the number of persons is
identical in the crude and the adjusted analyses.
doi:10.1371/journal.pone.0074435.t002

Table 3. Adjusteda incidence rate ratios for primary brain
tumour in association with a 100 Bq/m3 increase in domestic
radonb within strata of NOx at the residential address.

Potential effect modifier Cases, n IRR (95% CI) Pc

NOx at front door (mg/m3)d

,21.6 58 2.53 (1.06–6.04) 0.15

$21.6 63 0.98 (0.39–2.50)

aWe adjusted the analyses for age (underlying time scale), sex, employment in
the chemical industry for at least one year and consumption of fruit and
vegetables.
bRadon exposure was entered as a continuous variable in all models as the
time-weighted average concentration at residences from 1. January 1971 until
censoring.with inclusion of a 10 year latency period.
cTest of the null hypothesis that the linear trends are identical, for Wald test for
interaction.
dTime-weighted average concentration for NOx.

doi:10.1371/journal.pone.0074435.t003
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number of cases, which prevented analyses of association for

specific neuroepithelial/astrocytic tumours. Also, the possibilities

of therapeutic exposures at large doses were not considered here.

Finally, the exposure of cohort members before 1971 could not be

estimated, as residential histories before that date were unknown.

Therefore, we were unable to assess early-life radon exposure

which is an important limitation as early life environmental

exposures might be most significant for cancer risk.

In the present study we show an exposure-response association

between residential radon and a risk of primary brain tumour that

was almost doubled per each 100 Bq/m3 increment in average

long-term residential radon exposure. This adds novel information

to this field as no study to date has been conducted on the

relationship between brain tumour risk and residential radon

exposure of the general population.

Models predicting the dose possibly reaching the brain after

alveolar uptake from radon exposure indicate that this is

equivalent to less than 0.15 mSv per year from 200 Bq/m3 [13].

The risk we found associated with residential radon exposures for

up to 39 years cannot be explained by a cumulative dose to the

brain from transport through the blood and a simple dose-

response extrapolation from high-level exposures. An alternative

explanation might be that especially unattached radon progeny

with aerodynamic diameter around 1 nm and a high extrathoracic

deposition including the nasal cavity could reach the brain via the

olfactory neuronal pathway [25,47] resulting in local intense

exposure. If this is the explanation for our finding one could,

however, have expended a more clear association between the

higher radon exposure of miners and risk for brain tumours than

found in the four previous studies of miners, although the different

particle size distribution in the mines compared to residences

could make the olfactory neuronal pathway less relevant in the

mines. However, this is hypothetical and our findings could be a

result of chance and should be challenged by more studies.

We hypothesised that the presence of PM modifies the

association between residential radon and risk of brain tumour

and tested the hypothesis with respect to outdoor traffic-related air

pollution at the residence which can penetrate indoors [19] as a

marker of indoor PM, but our results did not support this

hypothesis. In fact we found a stronger association between radon

and brain tumour at low outdoor NOx concentrations, although

the effect modification was not significant. Hypothetically,

presence of traffic emission particles mainly in the size range

from around 20 nm, could reduce the availability of unattached

radon progeny, which would reduce upper airway deposition and

could thus be of importance if the olfactorial neuronal pathway is

of relevance for brain exposure.

Conclusion

We found significant association and exposure-response pat-

terns between long-term exposure to residential radon in a general

Danish population and risk of primary brain tumour. Our findings

could be a result of chance and need to be challenged by future

studies.
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