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Mode Interaction in Structures�An Overview
Esben Byskov
Department of Building Technology and Structural Engineering, Aalborg University,
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark
e-mail: esben@bt.aau.dk

AbstractKoiter [1]was the �rst to formulate an asymptotic expansion to investigate postbuckling behavior and
imperfection sensitivity of elastic structures. Since then, a large number of analyses of particular structures
have appeared as well as some new expansions aimed at speci�c problems, such as interaction between
buckling modes associated with simultaneous or nearly simultaneous buckling modes. In this contribution,
various methods of this kind are discussed and compared as regards applicability and ease of use. Focus will
be on Koiter's slowly varying local mode amplitude [2] and [3], on Byskov & Hutchinson's expansion [4]
and on Peek & Kheyrkhahan's method [5], which enlarged the scope of the previous expansions in that it
covers nonlinear prebuckling states, also. Other important contributions�a number of which are based on
these methods�are also discussed. On the other hand, many important works, e.g. the comprehensive paper
by Hunt [6] will not be mentioned in any detail. The accuracy of the methods as well as their mathematical
complexity and ease of use are compared. Finally, in view of today's inexpensive and powerful computers,
an obvious question is concerned with whether full analyses must always be preferred because asymptotic
expansions are obsolete.
Keywords: stability, elastic, mode interaction.

INTRODUCTION
It seems relevant to de�ne the meaning of the term Mode Interaction in the present context. Here, mode
interaction is to be understood as the phenomenon of erosion of load-carrying capacity caused by interaction
between buckling modes associated with the same or nearly the same classical critical load when simultaneity
is the result of a design process. Thus, the well-known interaction in spherical and long cylindrical shells,
which is not the outcome of an optimization, but a feature inherent in the structure, falls outside this scope. It
is equally important to stress that only linear-elastic buckling problems will be addressed below.
As an example, in designing a truss column against buckling it appears that a structure which experiences
global buckling of the entire column at the same time as the �anges buckle locally is the optimum one.
However, mode interaction in the presence of geometrical imperfections may erode this optimum, although
the so-called naive design may still be the best.
One of the �rst studies of a structure experiencing mode interaction is the one by van der Neut [7], which
dealt with interaction in a model column consisting of two �ange plates connected by webs that only provide
suf�cient coupling between the �anges. Here, interaction occurred between an overall, postbuckling neutral
Euler buckling mode and postbuckling stable plate buckling of the �anges. Yet, interaction between these
modes proved to make the structure imperfection sensitive to certain values of local plate buckling load
versus overall Euler buckling load. In his investigation van der Neut used a direct analytic approach, and no
general theory of mode interaction was presented. A few years later, Koiter and Kuiken [2] developed the
method that is often referred to as the method of the slowly varying local mode amplitude, and applied it to
the problem of van der Neut. In 1976 Koiter broadened the scope of the method in his General Theory of
Mode Interaction in Stiffened Plates and Shell Structures [3]. In the monograph by Thompson and Hunt [8]
a theory of interaction between coincident modes was developed. Optimization of van der Neut's column
and of a truss column is studied, and the very simple and elegant analysis as well as the results for the latter
are new. Other early studies are due to Tvergaard, see [9] and [10], who, by use of a method that was



particularly well suited for the problem at hand, found some erosion of the load-carrying capacity of wide,
stringer stiffened panels in spite of the fact that the overall mode is a postbuckling neutral Euler-like mode
and that the local mode is a postbuckling stable plate mode. In [11] Budiansky describes an asymptotic
expansion to handle mode interaction, but does not develop a full set of formulas and does not study any
structure. Budiansky suggests that it may be justi�ed to exclude the mixed second order solution, see later, if
it proves impossible or very dif�cult to determine it. In a preliminary version of their paper [4], Byskov and
Hutchinson made this exclusion, which prompted Koiter to write his report [3]. From a geometrical viewpoint
it is clear that exclusion of the mixed second order �eld which results in an incorrect value of the coupling
term is not justi�ed, because it is equivalent to making a local description of a surface by the exact values
of the tangents and of the curvatures along the axes, but using an incorrect value of the mixed second order
derivative.1 In [4] a general theory of mode interaction valid for simultaneous or nearly simultaneous modes
under the assumption of linear prebuckling is established. Another condition, which must be met, is that the
wavelengths of the interacting modes do not differ by orders of magnitude. Peek and Kheyrkhahan [5] do not
assume linear prebuckling and thus extend the work of the previous authors.
The methods mentioned above have been utilized by many authors, whose work will be described in some
detail below.

THREE METHODS
The order of themethodsmentioned here is not according to chronology, but is chosen tomake the presentation
natural.

The Byskov-Hutchinson Method
In order to establish a common frame of reference, a very short account of the asymptotic method developed
by Byskov and Hutchinson [4] is given below. Following [4] the displacement �eld u(x; λ) is expanded
according to:

u(x; λ) = λu0(x) + ξj(λ)uj(x) + ξj(λ)ξk(λ)ujk(x) + · · · , sum over (j, k) = (1, . . . , M) (1)

whereu0 denotes the prebuckling displacement �eld, x the spatial coordinates, ξj is the amplitude of buckling
mode uj , λ is a scalar load parameter, M is the number of interacting modes, and ujk designates the second
order �eld associated with both uj and uk. The expansion given by (1) and similar expansions for strains ε
and stresses σ are introduced in the potential energy or the principle of virtual displacements with the result:

Prebuckling: σ0 · l1(δu) = T · δu (2)

Buckling: σJ · l1(δu) + λJσ0 · l11(uJ , δu) = 0 , no sum over uppercase indices (3)
Postbuckling: σjk · l1(δu) + λcσ0 · l11(ujk, δu) = 1

2

(
σj · l11(uk, δu) + σk · l11(uj, δu)

)
(4)

where l1( ) and l11( , ) are linear and bilinear operators associated with the strain de�nition, respectively, a dot
(·) indicates integration over the entire structure, T designates the load distribution, δ signi�es variations, λJ

is the classical critical load associated with mode J , λc = min(λJ), and:

σ0 = H(ε) , σj = H(εj) , σjk = H(εjk) (5)

where H( ) is a linear, i.e. Hooke, constitutive operator.
Based on the expressions (1)�(5) the value of λc may be determined from:
(

1− λ

λJ

)
ξJ + ajkJξjξk + bjkmJξjξkξm =

(
1− λ

λJ

)
ξ̄J , J = (1, . . . , M) (6)

where ajkJ and bjkmJ are the �rst and second order postbuckling constants, respectively, and ξ̄J is the amplitude
of the imperfection in the shape of buckling mode J . The value of the ajkJ may be determined once the

1The reason why Byskov and Hutchinson in their preliminary version of [4] made this exclusion was a combination
of lack of time and severe dif�culties in obtaining a sound estimate of the mixed second order �eld.



buckling problems are solved, while computation of bjkmJ requires solution of the postbuckling problems,
too.
Comparison between the buckling and postbuckling problems shows that the postbuckling problem, as it
stands, is singular if λc ≈ λc. On the other hand, the orthogonality conditions:

σ0 · l11(uj, ukm) = 0 , (j, k,m) = (1, . . . , M) (7)

ensure solvability. However, if the wavelength of one mode, say j, is much smaller than that of another, say
k, then the mixed second order problem for ujk, see (4), becomes ill-conditioned, which is a main problem
concerning this method.
One advantage of the Byskov-Hutchinson method is that it entails a sequence of linear boundary value and
eigenvalue problems which lend themselves to implementation into �nite element programs as well as other
numerical and analytical methods.

Koiter's Slowly Varying Local Mode Method
Koiter's method, see [2] and [3], is particularly aimed at structures whose buckling modes differ substantially
in wavelength. Typically, one of the interacting modes is a long-wave global mode uG, while the other, uL,
is a short-wave local mode. Using this notation (1) becomes:

u(x; λ) = λu0(x) + ξG(λ)uG(x) + ξL(λ)uL(x)

+
(
ξG(λ)

)2
uGG(x) + ξG(λ)ξL(λ)uGL(x) +

(
ξL(λ)

)2
uLL(x) + · · · (8)

A simple way of viewing Koiter's idea is to envision a structure which suffers local imperfections in the shape
of a short-wave local buckling mode, while its global imperfections are small. A truss column, such as the
one treated by Thompson and Hunt [8] and by Byskov [12] or the van der Neut column [7], [2], [13] and [14],
are a good examples. In these structures, when the load is increased from 0, then the column bends in a shape
very similar to the global mode. At the same time the local buckles on the concave side of the column grow
in amplitude, while the buckles on the convex side decrease in size. Of course, this effect is largest where the
global curvature is the largest, e.g. at the midpoint of a simply supported realization of the column. Thus, the
local buckles grow or decrease at different rates depending on the position along the column axis. The term
ξGξLuGL(x) in (8) is aimed at describing this phenomenon. Note, however, that the mixed second order �eld
uGL(x) does not change shape with increased load. In view of this, Koiter suggested that this term may be
omitted, provided that the local mode amplitude ξL is no longer only a function of λ, but also of the spatial
coordinate x. Thus, Koiter's series is:

u(x; λ) = λu0(x) + ξG(λ)uG(x) + ξL(x; λ)uL(x) +
(
ξG(λ)

)2
uGG(x) +

(
ξL(x; λ)

)2
uLL(x) + · · · (9)

where ξL(x; λ) is assumed to vary slowly with x.
The idea behind Koiter's approach is intuitively clear, but in reality not that easy to apply to speci�c structural
problems, because it requires a good physical understanding of the mechanics of the problem and a fair
amount of mathematical skills, mainly associated with the consequences of the slow variation and the terms
that may be omitted because of that. Moreover, implementation of the method in terms of �nite elements is
not a straightforward task�it is dif�cult to tell a computer that a function is slowly varying.

The Peek-Kheyrkhahan Method
While the previous two methods expand all �elds about one of the classical critical loads, typically the
minimum one, the Peek-Kheyrkhahan method, see [5], relaxes this constraint and allows for expansions about
almost any point on the prebuckling path, albeit it is recommended to choose the point associated with the
smallest classical critical load λmin, see Fig. 1. Although [5] contains a detailed recipe for application of the
method it seems to have been utilized by few other authors, see later.
One major idea is thus to choose another reference point than the bifurcation point associated with the lowest
buckling load�or any other bifurcation point for that matter. In the same spirit the space of admissible
displacements A is decomposed into a subspace A0, which is spanned by a �nite number of modes ũj(x),
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Fig. 1 Buckling and postbuckling with linear and nonlinear prebuckling.

and a complementary space Â, which is not necessarily the orthogonal complement of A0. That this could
be feasible was originally pointed out by Thompson and Hunt [8]. The expansion established by Peek and
Kheyrkhahan is more complicated than the ones of Byskov and Hutchinson and of Koiter. In the notation
used above, the expansion is:

u(ξk; λ; ε) = u0(x; λ) + ξjũj(x) + û(ξk; λ; ε) , sum over j = (1, . . . , M) (10)

where ε is the imperfection amplitude and ũj(x) does not necessarily denote buckling modes, as mentioned
above. Since Peek and Kheyrkhahan do not assume linear prebuckling the derivations become more involved
than the ones performed by Koiter [2] and [3] and by Byskov and Hutchinson [4]. Expanding about the
reference point presents further complications because of the nonlinear prebuckling state, and a number
of new derivatives about this point with respect to the load parameter λ must be included in the analysis.
Using the notation of [5] the potential energy is φ(u, λ, ū), where u denotes the displacements and ū is the
imperfection. In order to arrive at a set of algebraic equations with the amplitudes ξi of the modes a reduced
potential ψ is introduced by:

ψ(ξi, λ, ε) ≡ φ(u(ξi, λ, ε), λ, ε¯̄u) (11)

where ¯̄u denotes the shape of the imperfection and ε is the amplitude. The Frechet derivatives ψ,i of the
reduced potential with respect to ξi are then expanded to give:

ψ,i = φiε + φijξj + φijλξj∆λ + 1
2
φijkξjξk + φijεξjε + φiελε∆λ + 1

6
φijklξjξkξl + 1

2
φijkλξjξk∆λ

+ 1
2
φijλλξj(∆λ)2 + · · · = 0 , sum over (j, k, l) (12)

where the terms stem from Frechet derivatives of φ. Because of space limitations, it is not possible to show
all terms, but, as an indication of their type, the simplest is given here:

φij ≡ φc
uuuiuj , no sum over (i, j) (13)

where superscript c indicates that the term is evaluated at λ = λc. In their paper [4], Byskov and Hutchinson
write a similar, but much simpler expansion for their potential energy φ:

φ = 1
2

∑
J

(λ− λJ)(ξJ)2σ0 · l2(uJ) + 1
2
ξiξjξkσi · l11(uj, uk)

+ 1
4
ξiξjξkξl

(
σij · l11(uk, ul) + 2σi · l11(uj, ukl)

)
+ λ

∑
J

ξJ ξ̄Jσ0 · l2(uJ) ,

sum over (i, j, k, l), sum over J as indicated (14)



where l2( ) is the quadratic operator associated with l11( , ), i.e. l2(u) = l11(u, u). By taking derivatives of
φ, as given by (14), with respect to ξK , it is possible to identify a number of the terms from (12), but, clearly,
(12) must contain many more terms because of the less restrictive assumptions behind it.
Without going into further details, it should be obvious from the above that the Peek-Kheyrkhahan method
[5] covers a larger �eld of problems than that of Byskov and Hutchinson [4] at the expense of a much more
complicated set of formulas.

APPLICATIONS
Over the years, the three methods have been utilized by several authors interested in problems of a more or
less practical nature. Already at this point it is worth mentioning that in the interest of space it is not possible
to cover all�not even all important�contributions.

Thin-Walled Beams
A large portion of the work, which has utilized one or the other of the available methods or has applied
a different approach, has been concerned with compression or bending of thin-walled beams or beam-like
structures.
Truss Columns
Probably the simplest example of a structure exhibiting mode interaction is the truss column, see Fig. 2, and,
consequently, many studies regarding mode interaction in this have been performed. The �rst of these seems

Fig. 2 Truss columns.

to be the one by Thompson and Hunt [8], followed by Crawford and Hedgepeth [15]. In both cases an ad
hoc procedure, which considered a simply supported truss column, see the left-hand sketch in Fig. 2, with
locally imperfect �anges, but straight overall column axis. Under these assumptions it is a fairly straight-
forward procedure to determine bifurcation from the straight con�guration into a sinusoidal overall buckling
mode. Although both modes are Euler buckling modes and, as such imperfection insensitive by themselves,
interaction makes the truss column imperfection sensitive, especially for designs with simultaneous classical
critical loads and when the local classical critical local is the lower. These analyses disregarded continuity of
the �anges and, therefore, overestimated the severity of the mode interaction. This issue was addressed by
Byskov in [12] who applied the Byskov-Hutchinson as well as the Koiter approach. Since one of the central
assumptions in this case is that the bay length is much smaller than the column length, the Byskov-Hutchinson
expansion should not provide reliable results. It turned out that both methods furnished results which indicated
less imperfection sensitivity than the ad hoc procedure and that their predictions are close. One reason for
this is that in application of the Byskov-Hutchinson expansion to this problem only the buckling modes must
be retained, while the postbuckling �elds all vanish with the consequence that only the terms ajkJ of (6)
enter. Thus, ill-conditioning of the postbuckling problems caused by different orders of magnitude of the
wavelengths does not enter. Since the analysis by use of the Byskov-Hutchinson method is much simpler
than that of the Koiter approach, this result might tempt one to always apply the former method rather than
the latter. However, as shown by Byskov [16], if the asymptotic expansion of Byskov and Hutchinson is
applied to a clamped-clamped realization of the truss column, see the right sketch in Fig. 2, no imperfection
sensitivity is predicted because all ajkJ vanish. This is because the only ones of these constants that may be
non-vanishing are found as the integral of the axial force of the overall mode multiplied by the square of the
derivative of the transverse displacement component of the local mode and, here, the axial force of the overall
mode varies as a cosine along the length of the �anges, i.e. the contributions from the parts with negative
axial force cancel the contributions from the rest. This error does not occur if Koiter's method is applied.



The van der Neut Column
Several authors have used the van der Neut Column as a test example of their own method. The original work
by van der Neut [7] and the later study by Gilbert and Calladine [17] did not rely on asymptotic methods, but
attacked the problem more directly, while Koiter and Kuiken [2] and Byskov, see [13] and [14], apply their
asymptotic methods. The results obtained by Koiter and Kuiken [2] must be judged very accurate and valid
for relatively large as well as small imperfections. Therefore, in his papers [13] and [14], Byskov used these
results as a basis for assessing the range of applicability of the Byskov and Hutchinson asymptotic expansion
[4]. Except for differences in numerical values, the above-mentioned analyses all demonstrate the original
�ndings of van der Neut that his column is imperfection sensitive, neutral or even imperfection insensitive
depending on the ratio between local and overall classical critical loads.
Other Columns
The van der Neut Column must be considered a model structure and, thus the numerical values obtained in
the above-mentioned investigations are not important for practical purposes. On the other hand, a number
of other, more realistic thin-walled columns or column-like structures have been studied by many authors.
An integrally stiffened panel, which may be viewed as a wide column, was the subject of an early study by
Tvergaard [9] who applied a series expansion which was tailored to the speci�c problem.
Sridharan and coworkers have contributed a number of papers, see e.g. [18] and [19], that are concerned with

Fig. 3 Various column cross-sections.

columns and column-like structures like some of the ones shown in Fig. 3. In much of his work, Sridharan
has utilized the Byskov-Hutchinson asymptotic expansion, sometimes with variations, see later. In addition
to valuable results aimed at practice, Sridharan found that Tvergaard in his paper [9] overestimates the
imperfection sensitivity of his panel. According to Sridharan, the main reason for this is that in Tvergaard's
analysis disregards the term which is quartic in the local mode amplitude ξL from the potential energy, a
term which furnishes a stabilizing effect. At the time of Tvergaard's study a generally applicable asymptotic
method was not available, and, therefore, his analysis was a more specialized one which was aimed at the
problem at hand.
In a series of papers Kolakowski and coworkers have studied the same kind of structures as Sridharan, see
e.g. [20], [21] and [22], and provided a wealth of useful results. In most of his work, Kolakowski uses the
Byskov-Hutchinson asymptotic expansion, often implemented in a �nite strip analysis.
In their paper [23], Menken, Kouhia and Groot performed a �nite element analysis of mode interaction in
T-beams, which utilized the Byskov-Hutchinson expansion [4]. Interaction betweenmore than one local mode
and an overall mode was studied. Comparison with experimental results showed very good agreement. A
so-called �simple� model having 6 degrees of freedom was also used to capture the essentials of the behavior.
Shells
The asymptotic method by Byskov and Hutchinson [4] was established in a paper concerned with mode
interaction in stringer stiffened shells. By changing the number of stringers while keeping the stringer and
skin material constant it was possible for a particular family of shells to cover cases with postbuckling stable,
neutral and unstable local panel modes. For all designs the overall shell mode was postbuckling unstable.
It was found that, independently of the postbuckling characteristics of the local mode, the shells exhibited
increased imperfection sensitivity due to mode interaction. The study was semi-analytic and carried out
using a smearing-unsmearing technique to describe the effect of the stringers. Later Byskov and Hansen
[24] employed a �nite element method entailing the transverse displacement component and an Airy-type
stress function to carry out a computation where the stringers are discrete entities and found that the results



by Byskov and Hutchinson were quite accurate. Hui [25] applied Koiter's method of the slowly varying
local mode amplitude to the shells of Byskov and Hutchinson and, at the same time, extended the analysis to
include the effect of torsional stringer stiffness. Although the results found by Hui are valuable they suffer
from the same problem as the analysis of the same shells by Koiter [3] in that the number of axial half-waves
of the local mode cannot be considered very large compared with that of the overall mode, which is a crucial
assumption of Koiter's method. Three-mode interaction was considered by Byskov, Damkilde and Jensen
[26] with the outcome that interaction between two overall shell modes and a local panel mode may predict
an increased imperfection sensitivity over a two-mode analysis.
Kasagi and Sridharan [27] studied composite shells using the Byskov-Hutchinson expansion combined with
central features from Koiter's method. In spite of the application of the concept of a slowly varying local
mode they kept the u12-term, and thus, their expansion becomes:

u(x, θ) = ξ1u1(x, θ) + ξijfi(θ)φj(x)u2(x, θ) + ξ2
1u11(x, θ) + ξ1ξijfi(θ)φj(x)u12(x, θ)

+ ξijξklfi(θ)φj(x)fk(θ)φl(x)u22(x, θ) + · · · , sum over i and j (15)

where the notation complies with the one used by Byskov and Hutchinson. In (15) x and θ denote the axial and
the circumferential coordinate, respectively, while the ξ's are coef�cients. The rationale behind the presence
of the u12-term is that there are many other modes, other than the primary ones u1 and u2, which are hidden
in the functions fi and φj . The analyses show that the shells treated by Kasagi and Sridharan exhibit strong
imperfection sensitivity due to mode interaction.

COMPARISON OF THE THREE METHODS
From the literature it appears that the Byskov-Hutchinson expansion [4] is the more popular of the three
methods mentioned above. This may be somewhat surprising in that it has some inherent weaknesses, as
mentioned above. One reason is probably that both Koiter's papers [2] and [3] as well as the paper by Peek
and Kheyrkhahan [5] utilize a notation which may be alien to most engineers. While most formulas in [4]
are expressed in terms of principles of virtual work [2], [3] and [5] base their developments on application
of Frechet or Gateaux derivatives of potential energy, which, at least to most engineers, tend to obscure the
physical contents of the formulas in question. As an example, (7) of [5]:

φ̇,uu≡
[

d

dλ
φ,uu (

0
u(λ), λ, 0)

]

λ=λc

= φ,cuuu +φ,cuuλ , u̇ =

[
d

0
u

dλ

]

λ=λc

is not expressed in the language of most structural engineers. Moreover, when Peek and Kheyrkhahan speak
of decomposing the space of admissible displacements A �into a subspace A0, which is spanned by by a �nite
number of modes

i
ū, and a complementary space Â such that:

a = A0 ⊕ Â , A0 ∩ Â = {0}�
the terminology lies far from the day-to-day language of the structural engineer. This is a pity, especially
because Peek and Kheyrkhahan provide a detailed recipe for implementation of his method.
Although Koiter [3] does not use terms such as �admissible space,� his level of abstraction is also rather high.
For instance (2.1) in [3]:2

P[u] = P0
2[u]− λP′2[u] + P3[u] + P4[u]

and (2.9):

P3[u1] = P21[u1, u2] = P12[u1, u2] = P3[u2] = 0

do not immediately lend themselves to interpretation, unless one is familiar with Koiter's nomenclature. In
addition to this, as mentioned above, the concept of a �slowly varying function� is dif�cult to implement in a

2The fonts used by Koiter [3] are different from the ones used here.



computer program and, by the way, special attention must be paid to this idea during derivation of the analysis
of a particular structure.
In conclusion, it may be said that, although the method of Byskov and Hutchinson [4] must be applied with
care, it is the easiest of the three methods to utilize and program.

PROBLEMS AND POSSIBLE IMPROVEMENTS OF THE SERIES
Like most other asymptotic methods, the above-mentioned ones center on the immediate neighborhood of the
bifurcation point. Therefore, it may not be a justi�ed demand that the expansions hold for large values of the
perturbation parameter�nobody would use a MacLaurin expansion to determine the values of, say sin(x),
for large values of x. Thus, we must expect poor performance of the series if no special precautions are taken,
as was done by Koiter in his method of the slowly varying local mode amplitude. Otherwise, much of the
effort may be wasted on improving the description of the behavior in the immediate vicinity of the bifurcation
point. In his study [14] of the van der Neut Column Byskov applied the Byskov-Hutchinson expansion with
the overall and the (primary) local modes, as well as the overall mode and an in�nity of local modes, see
Fig. 4. As mentioned above, the results obtained by Koiter and Kuiken [2] may be considered accurate, in
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Fig. 4 Imperfection sensitivity of the van der Neut Column. Fairly thick �anges λL/λG = 0.75. PLM:
The Byskov-Hutchinson method with the primary local mode. KK: Koiter's method. ∞LM: The Byskov-
Hutchinson method with in�nitely many local modes.

particular in an asymptotic sense. Judging from Fig. 4, left, inclusion of more than one local mode in the
Byskov-Hutchinson expansion makes the error larger compared with the case of including the primary local
mode, only. If, however, focus is on very small imperfections, see Fig. 4, right, it is clear that inclusion of
the in�nitely many local modes improves the accuracy locally. It may be shown, see [14], that to lowest
order the results obtained by inclusion of the in�nitely many local modes are identical with those from the
Koiter-Kuiken analysis. For columns with more slender �anges, i.e. when λG ≥ λL inclusion of more than
the primary local mode does not improve results, neither for small nor larger imperfections. The reason is
that, once the postbuckling stiffness of the �anges comes into play, the asymptotic expansion by Byskov and
Hutchinson becomes less reliable.
It does not seem a reasonable demand that a series expansion should be correct, not even in the asymptotic
sense, for extremely small imperfections at the expense of the accuracy for realistic imperfection levels.
Therefore, one might seek for other series than the polynomial ones, preferably series in ξ̄j which result in a
�nite, positive value of λ for large values of ξ̄.

FINITE ELEMENT IMPLEMENTATION
Today, most analyses of important structures are performed by use of a �nite element method and one might
ask, why bother use an asymptotic method instead of performing a full nonlinear computation of the structure
with its geometric imperfections? One reason is that by applying one or the other of the asymptotic methods
you get simple algebraic equations that cover �all� imperfection levels and such equations are much faster



and safer to solve than thousands and thousands of �nite element equations. Another reason is that it is very
easy to overlook the some of the basic features of the behavior of a geometrically imperfect structure if a full
nonlinear analysis is applied. Finally, by use of an asymptotic method, possibly combined with �nite element
solution of the associated set of linear problems, see (2)�(4), it is very fast to get an estimate of whether the
structure is imperfection sensitive or not. This information may then be exploited to �nd a reasonable design.
Then, the actual structural design with a number of imperfection levels may be investigated closer by use of
a full nonlinear analysis.
Special Finite Element Problems
By now, it is a well-known fact that in kinematically nonlinear �nite element computations you should pay
attention to the issue of nonlinear membrane �locking,� i.e. the internal mismatch between different terms of
the axial strain in a beam or arch, or of the membrane strain of a plate or shell. This problem is even worse in
asymptotic �nite element analyses, as pointed out by Olesen and Byskov [28], who suggested an approximate
method to deal with membrane locking. In asymptotic postbuckling analyses the postbuckling strain εjk may
be written:

εjk = l1(ujk) + 1
2
l11(uj, uk) (16)

To be speci�c, consider a straight beam, then the axial strain εjk is:

εjk = u′jk + 1
2
w′

jw
′
k (17)

Typically, the �rst term on the right-hand side is a polynomial of degree 0 or 1, depending on whether there is
no or one internal axial degree of freedom, while the second term is usually of degree 4. To make the problem
worse, the second term is given once the buckling problems have been solved. When the cross-sectional area
of the beam is constant, the postbuckling axial strain is constant, too. This, however, may not be described
by the �nite element unless the number of axial degrees of freedom is increased to 5. The fact that the second
term may be considered a driving term in the postbuckling boundary value problem means that the two terms,
loosely speaking, do not have the ability to accommodate each other.
In computations the more rigorous and consistent method by Byskov [29], which makes use of Lagrange
Multipliers in a straightforward way, must be preferred over [28]. Application of the �direct� approach by
Noe Poulsen and Damkilde [30] seems unnecessarily complicated without providing better results than [29].
In fact, for the cases where [30] applies it gives the same results as [29], while it is very doubtful whether [30]
can be extended to cover curved structures.
Commercial Finite Element Codes
Today, the idea of performing an asymptotic mode interaction analysis has spread to commercial programs,
such as DIANA [31], which utilizes the Byskov-Hutchinson expansion for the �nite element analysis.

CONCLUDING REMARKS
Although general purpose �nite element codes exist there is still a need for asymptotic methods to reveal
the fundamentals of mode interaction in a structure. Which of the above mentioned asymptotic methods one
prefers is, to some extent, a matter of taste.
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