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MODELLING POINT PATTERNS WITH LINEAR STRUCTURES
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e-mail: jm@math.aau.dk, jgr@math.aau.dk

ABSTRACT

Many observed spatial point patterns contain points placeghly on line segments. Point patterns exhibiting
such structures can be found for example in archaeologwt{tots of bronze age graves in Denmark) and
geography (locations of mountain tops). We consider aqadi class of point processes whose realizations
contain such linear structures. Such a point process idremtsd sequentially by placing one point at a time.
The points are placed in such a way that new points are oftareglclose to previously placed points, and the
points form roughly line shaped structures. We consideukitions of this model and compare with real data.

Keywords: Archaeology; Dirichlet Tesselation; Geologikdlihood; Simulation; Spatial Point Processes.

1 INTRODUCTION 2 MODEL

. . . Figures 3 and 4 show two kinds of points, those
_ Many observed spat|_al point patterns _Coma'r}oughly located along lines, and others which seem to
points placed roughly on line segments; we will referyq gistributed fairly randomly across the observation
to these structures as linear structures. In the daVégion. We model this by a superposition of two
section below we consider two datasets, both of WhiC'boint processes called the ‘cluster process’ and the
contain linear structures (See Figures3and 4).Theﬁrq§ackground process’_ Brief|y1 the Cluster process
data set is the locations of barrows (bronze age buriq&, constructed Sequentia”y, and each cluster point
sites) in a region of Denmark, and the other data set isan be of two types: ‘dependent’ cluster points and
the locations of mountain tops in a region of Spain.  ‘independent’ cluster points, where the independent
cluster points (and also the background points) are
Blackwell (2001), Blackwell & Mgller (2002), and independent and uniformly distributed, while each
Skare et al. (2006) consider point process modelsdependent cluster point is attracted by previously
with linear structures close to the edges of (deformedyenerated cluster points.
Dirichlet (or Voronoi) tessellations. However, for the
two abovemen_tloned data _sets and many oth_ers, the 21 LIKELIHOOD
exact mechanism responsible for the formations of
lines is unknown. Thus the development of tractable This section specifies the likelihood when we have
and practically useful spatial point process modelsio missing data in the following sense. The likelihood
capable of producing point patterns with linearis given below by the joint distribution of the cluster
structures becomes important. processx; = (X1, ...,%) and the background process
Xp = (Xt1,---,X%n), Where then points xi,...,x, are
In this paper we develop a particular class ofcontained in a given bounded convex regitnc R?
such models using a sequential construction by placingf area|W| > 0. The assumption thal/ is convex
one point at a time. The model is easy to simulatdecomes important later. In our applications, the data
and its likelihood function is known on closed form.Z = (z,...,zn) is a permutation ok = (x,...,Xn).
Perhaps somewhat surprising it is a flexible model fof his permutation as well ak and the knowledge

producing linear structures without incorporating amyWhether eactr is a cluster or background point are
lines into the model. unknown, i.e., they constitute the missing data.

_ : oints, and make the following model assumptions,
defines the model, Section 3 presents the data se{Shere 0< p<1, 0<q<1, andA >0 are model

Section 4 concerns simulation of the model, and finally)arameters:
Section 5 discusses inference, model checking, and
extentions of the model. (i) The number of points is fixed.

_ _ _ We letm= n— k denote the number of background
The paper is organized as follows. Section 2%
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(i) The number of cluster pointsis arandom variable is the joint density of (x.,X,) with respect to
following a binomial distribution with index and the measurev on U|n:oWI x W' given by v =
probabilityg. 3o Vk, Wherey; is the product measure of Lebesgue

measure oW' and Lebesgue measure Wi~ (with

obvious madifications it = 0 or| =n). In (2) and
elsewhere, for notational convenience, we interpret

(iv) Conditional onk, the m background points irx, f(-|X1,...,X_1;p,A) as the uniform density oV if
are independent and uniformly distributedWna j=1.
socalled binomial point process b).

(i Conditional on k, we have thatx. and x, are
independent.

If we had ‘no missing data’ in the sense that
(v) Conditional onk, if k > 0 then the first cluster (x;,x,) is observed but we do not know whether
pointx; follows a uniform distribution oW, and each cluster point is an independent or dependent
if 2 <i < kand we also condition oRry,..., X1  cluster point, then (2) would specify the likelihood
then theith cluster pointx; follows a density for 6 = (g, p,A). However, when considering the data
f(:|x1,...,Xi—1;p,A) with respect to Lebesgue in the data section, the following quantitiescw, n
measure oilV. Further, are missing data. Let = (uy,...,uy) whereu; = 1
if z is one of the cluster points, ang = 0 if z
f(Ixe,.. ., i—1;p,A) = pxh(-{X1,...,X-1};A) s one of background points. Given the value wf
1 define the permutatiom = (cy,...,w) of thosei
+H1-p)x w| @ with U = 1 such thatxe = (zu,,...,Zy ), and the
permutationn = (n1,...,Nm) of thosei with u; =0
depends only on(xi,...,x-1) through the such that, = (z,,,...,2,,). In other wordsz,, is the
point pattern {x;,...,x-1}, and the density ith cluster point, and;, is the jth background point.
h(-|{Xx1,...,%-1};A) is specified below by Thus(x.x,) is in a one-to-one correspondence with
formula (4). (zu,w,n), with a density which for each fixed value

In the mixture density (1), the uniform density on©f (U @) is constant for all possible valuesmfcf. (2).
W is used for the distribution of an independentcOnsequently, conditional on the datave have that

cluster point, and the density-|{xy,...,x_1}:A) for (u,w) is in a one-to-one correspondence withand

the distribution of a dependent cluster point. Noteth® POINt patterr{X;1,...,x} of background points,

that an independent cluster poirt is statistically With probability mass density
independent of previous cluster poimnts,...,% 1, 1,/1-q m
while it influences the distribution of later dependent nmu,wlz,8) O W <|VV|> X
cluster points. Moreover, (1) implies that the location k
of a new cluster point does not depend on the time- _ o

ordering of the previous cluster points. il:l Foax - %23 p,A). (3)

One way of simulating our model is by first
generating mutually independent and uniformly 2.2 THE CONDITIONAL DENSITY OF
distributed pointsys,...,y, in W. We independently DEPENDENT CLUSTER POINTS
divide these points into background points, o .
independent cluster points, and dependent cluster W€ nNow turn to specifying a particular form of
points in accordance to the probabiliti€d — q), the conditional density of dependent cluster points

: : h, such that realizations of the model exhibit linear

1 - p), and pq, respectively. Ify; is a background " " o e
gE ind?a)pende?](tq cIusE[)er B/oir)llt ?r/lle;m — yi. Ifgyi uis structures. Conditional on pairwise distinct cluster
a dependent cluster point, it is transformed into 0|.ntsx1,...,>‘<i_1y\;\|th_2§| < k, we define the density
dependent cluster poing, depending on other cluster NO4{X1;---,Xi-1};4) in (1) by
pointsx; with j < i as specified below, and involving 12exp(—r2/A)
some further simulation steps given by (A)-(D) also h(X|{X1,...,%-1};A) = : AR TEe
Combining (i)-(v), we obtain that for 0 < rj < lj, where the notation means the following.

Let || - || denote Eucledian distance, and

m
T[(meblqa pv)\) = ) qk ﬂ X R 2. vy _y. i i
k W] Ci={EeR*:|E—xj| <1E=xp|,]'=1,....,i—1}

k . , .
|—| F(Xi[X0, %13 PA) (2) the cells of the Dirichlet (or Voronoi) tessellation&f
i=

with nucleixy, ..., %_1 (Okabeet al, 2000), wherg =



1,...,i—1. Thenx belongs almost surely to a unique by the linesL1,L»,L3 and the boundary d#V is the
Dirichlet cell, sayCj, andCj "W is convex (this is Dirichlet cellCy.

where the assumption thHatis convex is used). Define
ri = |Ixi — x;||, andl; as the length of the line segment
throughx; and with endpoints at; and the boundary
of CjNW. See the example in Figure 1, where 4  (A)Generate a uniform point; in W, which is
andj = 2. Under the distribution (4); appears in cell independent ok, ..., Xi_1.

C; with probability p; = |C; "W/ /|W]|. If we condition . _ _
on thatx € Cj, andNa(x;,02l) denotes the radially (B)Find the (almost surely unique) closest poiqt

We can easily make a simulation under (4) by the
following steps.

symmetric bivariate normal distribution with meap to‘t{: (1d§ i <txi), thg t?]alf(;l_"leLj é?mth){[i iﬂd
N _ with endpointx;, and the distanck from x; to the
and standard deviatiom = /A /2, thenx; follows the intersection point betweet; and the boundary of

restriction ofN(xj,0?l) to C; NW. W

(C) Generate? from an exponential distribution with
parameter 1A and restricted to the intervéd,12).

(D) Returnx; as the point orij with distancer; from
Xj.

In (B), we calculatd; in the same way as in (a)-(c)
above.

Fig. 1.Example with i= 4 and three cluster points;x
X2, X3, and their respective Dirichlet cellsiCCy, Cs.
The new cluster pointand the distances &nd r, are
shown.

Neither the calculation of the distribution
p1,...,Pi—1 or the construction of the entire Dirichlet
tessellation is needed when evaluating the density (4)
or simulating from this distribution as explained in theFig. 2.Example with i= 5, showing four cluster points
following. X1,...,X4 and a new cluster point;Xfilled circles),
where xis closest to x. The half line ly (dashed line),
the lines L, Lo, L3 (solid lines), and the intersection
points \{, v3 and \4 (empty circles) are also shown.

To evaluate the density (4) we use the following
steps.

(a) Find the closest poing; to x; with j < i, the half-
line L; with endpointx; and passing througk,

and the intersection point; betweenL; and the 3 DATA
boundary ofV. Calculatdj = ||vj — X;||.
(b) For eachj’ € {1,...,i—1}\ {j}, find the lineL; The first data set is the location of barrows in

passing througftx; +xj/)/2 and perpendicular to a 15x 15 km region in Western Jutland, Denmark.
the line througtx; andx;. If v is the intersection Barrows, which are bronze age burial sites resembling
point betweerl; and thelL j, then calculaté; =  small hills, are important sources of information for
[vjr —Xj[|. If LinLj = 0, then setj = . archaeologists. Contrary to other areas of Denmark,
a relatively large proportion of the barrows are still
present in the Western Jutland due to less intensive
Figure 2 shows an example, where= 5, step (c) agriculture. Figure 3 shows the locations of the
returnsls = ||v3 — x4||, and the area around bounded barrows.

(c) Returnrj = ||x; — ;|| andli = min{ly,...,li_1}.
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The spatial distribution of barrows across Denmark  The other data set is the location of mountain tops
shows a variety of patterns, particularly clusters ofn a 105 x 7.5 km region in Northern Spain. The data
points along various lines, where some lines seerhas been taken from a hiking map, and is shown in
to stretch across the landscape for hundreds dfigure 4. Many mountain tops are located along linear
kilometers. The barrow lines have traditionally beerstructures, which of course is a consequence of the fact
regarded as reflecting a prehistoric system of road$hat many tops are located along the mountain ridges.
cf. Miller (1904), though there are other potentialHowever, visually the linear structures are somewhat
explanations for this phenomenon, see e.g. Sahlquisbscured by the many tops located off the ridges. Note
(2001). that the height of each top is known, and many of the

) ] . tops not located on the ridges are lower than the ones
~ The model in this paper has the following o the ridges, but for this paper we will ignore the
interpretation in the context of this data: the barrowsyqgitional information of height and only consider the
are placed according to a 'local decision-making rule’ noint pattern of positions. In our model, all the tops off

‘(’j‘{hzre V‘&e interprey; as the location where a personhe ridges are simply set to be background points.
ied, an

— the survivers decide if the point should be a
background point, independent cluster point, or
dependent cluster point

— in casey; is a dependent cluster point, the person o e
is buried in a barrow close to the closest previous e . .00
cluster point, justifying the terminology ‘cluster | . * "« & °
process’ forx. *

N PR
.

— if instead they; is a background point or an
independent cluster point, then he is buried where| , - .
he died. Tt e

In other words, if the model produces point patterns

resembling the data, this indicates that placing

barrows close to previously placed barrows may

be an alternative explanation to the observed linear| -
structures in the point pattern of barrows.

Fig. 4. The locations of mountain tops in1®.5 x 7.5
km region.

4 SIMULATION

We now show some simulations of the model with
e R various choices of parameters to see how flexible the
N model is and whether it can produce point patterns with
. W T some resemblance to the data.

e,

Figure 5 shows simulated point pattern with
the same number of points as in the barrows
data set, and where the parameters @, 0) =
(0.98,0.95,150m). These parameters have been
chosen by simulating the model with various
parameter settings and choosing the simulation that
visually resembles the data best. The first observation
we make is that the model is capable of producing
linear structures, although the mechanism behind this
Fig. 3.The locations of barrows in 85x 15km region. model is only a method of attracting new points to




previously placed points, and no actual line segment®bviously this simulation has much clearer linear
are incorporated into the model. Furthermore, there argtructures than the data.

many similarities between the patterns in Figures 3 and
5: long linear structures with short linear structures
extending from them, and large gaps with no or few | e o =
points. The model has a higher tendency to produce **
short linear structures extending from the long linear ) PO .
structures than the data in this particular simulation, © ot > e
but we should of course remember that the simulation| ... *
has been made with a rather arbitrary choice of
parameters and other parameter settings may produce- , ., Lt
better fits; we return briefly to the issue of parameter | ** ° T o s
estimation in Section 5, but a full discussion of this . : tt
topic is beyond the scope of this paper. One obvious
feature of the data that is not found in the simulation .. .
is a few small, but densely packed, clusters of points;| .- e L et
such clusters will never appear in the model nomatter| « % PR
the choice of parameters. ) : e :

19°)

Fig. 6. A simulation with n= 203 and parameters
(p,q,0) = (0.98,0.98,400m)

Vel s
: °.
S
Fig. 5. A simulation with n= 1147 and parameters e
(p,g,0) = (0.98,0.95,150m)

Figure 6 shows a simulation with the same
number of points as in the mountain data set,
and with parametergp,q,o0) = (0.98,0.98,400m);
again the parameters have been chosen by trial
and error. Comparing with the data in Figure 4,Fig. 7. A simulation with n= 203 and parameters
we see no obvious discrepancies. Both contaifip,q,0) = (0.95,1.00,200m)
medium length linear structures, gaps with no or few
points, and quite many solitary points. We have also
made another simulation with parametépsq, o) = 5 DISCUSSION
(0.95,1.00,200m) mainly to illustrate that with an
adjustment to the parameters we can get linear This paper is exploring the limits of our model
structure which are much more visible; see Figure 7by comparing simulations to actual observed data sets.
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Obviously, a proper statistical analysis should involvechanging the order of the cluster points such that all
a much more thorough treatment of the data. independent cluster appear first to form a Dirichlet
tesselation oRR?. Although the model construction is
easy, many aspects of this model can prove difficult,
the model is simple to simulate due to its sequentia?.UCh as per_fect simulation on a f|n|t_e _sqbset (e,
tglmulatlon without edge effects). The infinite model

construction, it does not seem possible to estima S also of practical relevance since it gets rid of the
parameters analytically, using e.g. the posterior mean P g

However. since the likelihood is known Completelya'rtificial boun_daries of the finite modgl (this is the
(except f;)r missing data), an MCMC based approac eason why Figure 7 has almost no points close to the
using a Metropolis-within-Gibbs algorithm can be oundary).

used for making approximate posterior simulations of

the parameters and the missing data. Hastings ratios for

updates both for parameters and missing data are easily ACKNOWLEDGEMENTS
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