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Abstract—Two-way relaying in wireless systems has initiated
a large research effort during the past few years. Nevertheless,
it represents only a specific traffic pattern and it is of interest
to investigate other traffic patterns where such a simultaneous
processing of information flows can bring performance advan-
tage. In this paper we consider a four-way relaying multiple-
input multiple-output (MIMO) scenario, where each of the two
Mobile Stations (MSs) has a two-way connection to the same
Base Station (BS), while each connection is through a dedicated
Relay Station (RS). The RSs are placed in such a way that one
RS and the terminals associated with it do not interfere with the
other RS, and vice versa. We introduce and analyze a two-phase
transmission scheme to serve the four-way traffic pattern defined
in this scenario. Each phase consists of combined broadcast and
multiple access. We analyze the sum-rate of the new scheme
for Decode-and-Forward (DF) operational model for the RS. We
compare the performance with state-of-the-art reference schemes,
based on two-way relaying with DF. The results indicate that
the sum-rate of the two-phase four-way relaying scheme largely
outperforms the four-phase scheme, while closely approaching
the performance achievable when the BS is replaced by two BSs.

I. INTRODUCTION

Wireless transceivers commonly work in a half-duplex
mode, such that one-way relaying suffers from a loss in
spectral efficiency as the relay cannot transmit and receive
at the same time. This loss has been mitigated with the intro-
duction of two-way relaying based on wireless network coding
(WNC) [1]–[3]. Various aspects of two-way relaying have been
investigated, such as achievable rates [4], optimal Decode-
and-Forward (DF) broadcasting strategies [5] and differential
modulation based Amplify-and-Forward (AF) strategies [6].
Paper [7] extends the optimal broadcasting into multiple-input
multiple-output (MIMO) case.

In [8] we have leveraged the principles behind WNC to de-
vise lattice-based Denoise-and-Forward transmission schemes
for the four-way relay scenario, applicable to wireless cellular
systems and depicted on Fig. 1. Each of the two Mobile
Stations (MSs) U1 and U2 has a two-way connection to the
same Base Station (BS), through a dedicated Relay Station
(RS). The RSs are placed in such a way that one RS and the
terminals associated with it do not interfere with the other RS,
and vice versa. The state-of-the-art schemes for this scenario is
time-division multiplexing two independent two-way relaying
schemes in time as shown in Fig. 2(b). A similar scenario has
recently been considered in [9], where DS-CDMA is used to

BS RS2 U2 RS1 U1 

Figure 1. Four-way relaying with Base Station (BS), two Relay Stations
RS1 and RS2, and two Mobile Stations (MSs) U1 and U2.

avoid interference, the nodes use BPSK modulation and the
relay applies physical-layer network coding.

In [8] we have considered the four-way relaying scenario
in which each node is equipped with a single antenna. In
this paper we show that the use of multiple antennas at
the BS and the RS is a highly non-trivial extension of the
four-way relaying schemes described in [8]. Namely, a BS
with a single antenna applies superposition coding in order to
simultaneously send to both RSs. The use of multiple antennas
at the BS opens the possibility to spatially separate the flows
going to RS1 and RS2, respectively. The fact that the RSs are
deployed in a way not to interfere with each other ensures
that there is no loss of Degrees of Freedom (DoF) due to
interference cancellation. We compare the sum-rate of the
proposed two-phase four-way relaying scheme on Fig. 2(a)
with two different reference schemes. The first is depicted
on Fig. 2(b) and is the same physical setup as Fig. 2(a),
as there is a single 2M -antenna BS, but the communication
on Fig. 2(a) is a time-division multiplexing of two schemes
for two-way relaying. More interestingly, we compare the
proposed scheme to the setup on Fig. 3, in which the two
users are served by two different, non-interfering BSs, each
with M antennas. The three schemes have identical DoF, but
the numerical results show that the proposed scheme achieves
similar sum-rate performance as the setup with two BSs on
Fig. 3, while being superior to the scheme on Fig. 2(b). This
implies that, practically, with the proposed scheme one BS can
be saved.

II. SYSTEM AND CHANNEL MODELS

We consider a two-way cellular network in which a BS
exchanges information with the MSs U1 and U2 with the
aid of RS1 and RS2, see Fig. 2(a). Each of the MS, RS
has M antennas, while the BS has 2M antennas, therefore
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(a) Four–way relaying transmission scheme consisting of two phases
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(b) Four–way relaying transmission scheme consisting of four phases

Figure 2. Four–way relaying transmission schemes.
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Figure 3. Two separate Two–way relaying transmission scheme.

ensuring that the DoF of the two flows are not decreased
due to the BS. All nodes are half-duplex and no direct
links are assumed between a MS and the BS. For simplicity,
we use 1, R1, B,R2, 2 as the indices to denote U1, RS1,
BS, RS2 and U2, respectively. The channels are denoted
by H11 ∈ C[M×M ](U1-RS1), H12 ∈ C[M×2M ](BS-RS1),
H22 ∈ C[M×2M ](BS-RS2) and H21 ∈ C[M×M ](U2-RS2).

Fig. 2(b) illustrates a four-way relaying scheme based on
time-division between two different two-way relaying in-
stances. The first phase is the multiple access (MA) from
U1 and BS to RS1. The second phase is the broadcast (BC)
from RS1 to U1 and BS. The third and fourth phases are
similar. Fig. 3 shows another benchmark, where there are two
simultaneous but non-interfering two-way relaying transmis-
sions with two BSs. For a fair comparison, each of the BSs
on Fig. 3 uses M antennas. Similar to Fig. 2, the channels are
denoted by H11 ∈ C[M×M ](U1-RS1), Ĥ12 ∈ C[M×M ](BS-
RS1), Ĥ22 ∈ C[M×M ](BS-RS2) and H21 ∈ C[M×M ](U2-
RS2). In all cases the relay uses DF operation.

Each channel in Fig. 2 and Fig. 3, is known at all the nodes.
Each MS has a two-way, uplink/downlink traffic to/from the
BS. zk ∼ CN (0, 1), k ∈ {1, R1, B,R2, 2} represents a vector
containing circularly symmetric white Gaussian noise with
covariance RzkzH

k
= I, where {·}H stands for conjugate

transpose. We assume the source information is normalized
E
{
xkx

H
k

}
= I. The maximal transmission power of node

k is Pk which is decided by beamforming matrix or power
allocation matrix.

III. CAPACITY REGION CONSTRAINTS

A. Capacity region constraints of two-phase four-way relaying

The downlink data at BS is xB = [xB1,xB2] while
xBi ∈ C[M×1] is intended to Ui, i = 1, 2. Zero-forcing (ZF)

beamforming is applied at BS to avoid the mutual interference
between xB1 and xB2 at RSs. So we have H22WB1 =
H12WB2 = 0, here WBi ∈ C[2M×M ], i = 1, 2 is the beam-
forming matrix of xB1 and xB2. Therefore, the columns inside
WBi are orthogonal to each other due to the ZF operation.
We assume PBi = diag([pBi]) as the two power allocation
matrices at BS, where pBi ∈ C[M×1]. To prevent WBi

from affecting the power allocation, WBiW
H
Bi = I needs

to be satisfied. Then the transmitting signal from the BS is
WB1(PB1)

1
2xB1 +WB2(PB2)

1
2xB2. The total transmission

power at the BS has to satisfy Tr {PB1}+ Tr {PB2} ≤ PB .
The uplink data from Ui is xi ∈ C[M×1]. We assume Wi ∈

C[M×M ] as the beamforming matrix of Ui. Note that Wi is
similar to WBi(PBi)

1
2 at BS, such that Wi takes charge of

the beamforming as well as the power allocation at the MS.
Then the transmitting signal from Ui is Wixi. The covariance
matrix is then E

{
Wixi(Wixi)

H
}

= Qi with transmission
power constraint Tr {Qi} ≤ Pi. At the end of phase 1, due
to the ZF principle at the BS, RSi receives

yRi = Hi2WBi(PBi)
1
2xBi +Hi1Wixi + zRi, i = 1, 2. (1)

Define Rdi as the downlink data rate of Ui and define Rui as
the uplink data rate of Ui. From [10], the capacity region of
the MIMO MA channel in (1) is

Rui ≤ τ log2

∣∣IM + Hi1QiH
H
i1

∣∣ (2a)

Rdi ≤ τ log2

∣∣IM + Hi2WBiPBiW
H
BiH

H
i2

∣∣ (2b)

Rui +Rdi ≤ τ log2

∣∣IM + Hi1QiH
H
i1 (2c)

+Hi2WBiPBiW
H
BiH

H
i2

∣∣ , i = 1, 2

where τ is the duration of phase 1, and the hence the duration
of phase 2 is 1 − τ . The whole capacity region is the union
of the capacity region at all power allocation setting points.
In the following, for simplicity, we also only present the
capacity region, when the power allocation and/or the input
covariance matrices are fixed. The optimization regarding the
related variables is covered in Section IV.

RSi decodes the signal xi and xBi, then re-encodes the
messages of xi and xBi into xRi ∈ C[M×1]. We assume
TRi ∈ C[M×M ] to be the beamforming matrix at RSi with
covariance matrix QRi = E

{
TRixRi(TRixRi)

H
}

and the
transmission power constraint is imposed as Tr {QRi} ≤ PRi.
At the end of phase 2, the received signals at the two MSs
and the BS are

yi = HH
i1TRixRi + zi, yB =

2∑
i=1

HH
i2TRixRi + zB (3)

where yi is received by Ui and yB is received by the BS.
Equation (3) describes the combination of a BC and a MA
channel, both with side information: the BC channel from RSi
to Ui and BS and the MA channel at BS with signals from RS1
and RS2. When the input covariance matrices are fixed, the
capacity region of this combined MIMO BC and MA channels



in (3) is (see Appendix A for the derivation):
Rdi ≤ (1− τ) log2

∣∣IM + HH
i1QRiHi1

∣∣ (4a)

Rui ≤ (1− τ) log2

∣∣I2M + HH
i2QRiHi2

∣∣ (4b)

Ru1 +Ru2 ≤ (1− τ) log2|I2M +
∑
i=1,2

HH
i2QRiHi2|(4c)

B. Rate region constraints of four-phase four-way relaying

We use τ1, τ2, τ3, τ4 to denote the time ratios spent by phase
1,2,3,4, respectively. Notice that, τ1+τ2+τ3+τ4 = 1 must be
satisfied. We assume W̃Bi ∈ C[2M×2M ] as the beamforming
matrix for x̃Bi ∈ C[2M×1] at BS with covariance matrix

E
{
W̃Bix̃Bi

(
W̃Bix̃Bi

)H}
= Q̃Bi with the transmission

power Tr
{
Q̃Bi

}
≤ PB . The definition of beamforming

matrices and covariance matrices at RSs and MSs remains the
same as in section III-A. At the end of phase 1, RS1 receives

yR1 = H12W̃B1x̃B1 + H11W1x1 + zR1, i = 1, 2. (5)

From [10], when the power allocation and the input covariance
matrices are fixed, the rate region of the MIMO MA channel
in (5) is 

Ru1 ≤ τ1log2

∣∣IM + H11Q1H
H
11

∣∣ (6a)

Rd1 ≤ τ1log2

∣∣∣IM + H12Q̃B1H
H
12

∣∣∣ (6b)

Ru1 +Rd1 ≤ τ1log2

∣∣IM + H11Q1H
H
11 (6c)

+H12Q̃B1H
H
12

∣∣∣ .
At the end of phase 2, the received signals are

y1 = HH
11TR1xR1 + z1, yB = HH

12TR1xR1 + zB . (7)

where y1 is received by U1 and yB is received by the BS.
From [7], when the input covariance matrices are fixed, the
rate region of MIMO BC channel in (7) is{

Rd1 ≤ τ2log2

∣∣IM + HH
11QR1H11

∣∣ (8a)

Ru1 ≤ τ2log2

∣∣I2M + HH
12QR1H12

∣∣ . (8b)

Similar to phase 1 and phase 2, the rate region of phase 3
and phase 4 is

Ru2 ≤ τ3log2

∣∣IM + H21Q2H
H
21

∣∣ (9a)

Rd2 ≤ τ3log2

∣∣∣IM + H22Q̃B2H
H
22

∣∣∣ (9b)

Ru2 +Rd2 ≤ τ3log2

∣∣IM + H21Q2H
H
21 (9c)

+H22Q̃B2H
H
22

∣∣∣
Rd2 ≤ τ4log2

∣∣IM + HH
21QR2H21

∣∣ (9d)

Ru2 ≤ τ4log2

∣∣I2M + HH
22QR2H22

∣∣ . (9e)

C. Rate region constraints of two separate two-way relaying

We use τ̂1 and τ̂2 to denote the time ratios spent by phase
1 and phase 2 of the first two-way relaying and use τ̂ ′1 and
τ̂ ′2 to denote the time ratios spent by phase 1 and phase 2 of
the second two-way relaying. We assume ŴBi ∈ C[M×M ] as

the beamforming matrix of x̂Bi ∈ C[M×1] at BSi with co-

variance matrix E
{
ŴBix̂Bi

(
ŴBix̂Bi

)H}
= Q̂Bi with the

transmission power budget Tr
{
Q̂Bi

}
≤ PB . The definition

of beamforming matrix and covariance matrix at RSs and MSs
is the same as section III-A. When the power allocation and
the input covariance matrices are fixed, the capacity region
can be obtained similar to III-B as follows:

Ru1 ≤ τ̂1log2

∣∣IM + H11Q1H
H
11

∣∣ (10a)

Rd1 ≤ τ̂1log2

∣∣∣IM + Ĥ12Q̂B1Ĥ
H
12

∣∣∣ (10b)

Ru1 +Rd1 ≤ τ̂1log2

∣∣IM + H11Q1H
H
11 (10c)

+Ĥ12Q̂B1Ĥ
H
12

∣∣∣
Rd1 ≤ τ̂2log2

∣∣IM + HH
11QR1H11

∣∣ (10d)

Ru1 ≤ τ̂2log2

∣∣∣IM + ĤH
12QR1Ĥ12

∣∣∣ . (10e)



Ru2 ≤ τ̂ ′1log2

∣∣IM + H21Q2H
H
21

∣∣ (11a)

Rd2 ≤ τ̂ ′1log2

∣∣∣IM + Ĥ22Q̂B2Ĥ
H
22

∣∣∣ (11b)

Ru2 +Rd2 ≤ τ̂ ′1log2

∣∣IM + H21Q2H
H
21 (11c)

+Ĥ22Q̂B2Ĥ
H
22

∣∣∣
Rd2 ≤ τ̂ ′2log2

∣∣IM + HH
21QR2H21

∣∣ (11d)

Ru2 ≤ τ̂ ′2log2

∣∣∣IM + ĤH
22QR2Ĥ22

∣∣∣ . (11e)

where τ̂1 + τ̂2 = 1 and τ̂ ′1 + τ̂ ′2 = 1 indicate that the two
separate two-way relay transmissions occur simultaneously.

IV. WEIGHTED SUM-RATE OPTIMIZATION

We focus on the weighted sum-rate maximization. If the
rate region is convex, a rate tuple on the boundary of the
rate region is a solution of a weighted rate-sum problem.
We assume wu1 , w

d
1 , w

u
2 , w

d
2 as the weights for Ru1 , R

d
1, R

u
2 , R

d
2

respectively, which act as the rate awards for individual
information flows. If wu1 = wd1 = wu2 = wd2 , the weighted
sum-rate problem degrades to the sum-rate problem. All the
solutions from wu1 +wd1 +wu2 +wd2 = 1 compose the boundary
of the rate region of the whole system [11]. With the rate
region constraints in III-A, the weighted sum-rate optimization
problem of two-phase four-way relaying can be formulated as

max
τ,PBi,Qi,QRi

wu1R
u
1 + wd1R

d
1 + wu2R

u
2 + wd2R

d
2

s.t. (2), (4), Qi,QRi � 0, PBi ≥ 0

Tr {Qi} ≤ Pi, T r {QRi} ≤ PRi (12)
Tr {PB1}+ Tr {PB2} ≤ PB

where � denotes the semidefinite requirement. Note that WBi

is given from the ZF operation at the BS. The optimization
focuses on the input covariance matrices at the MSs and the
relays, the power allocation matrices at the BS, and the time
division between the two phases. Similarly, we can formulate
the weighted sum-rate optimization of four-phase four-way



relaying and two separate two-way relaying as (13) and (14)
respectively.

max
τ1,τ2,τ3,τ4,Qi,Q̃Bi,QRi

wu1R
u
1 + wd1R

d
1 + wu2R

u
2 + wd2R

d
2

s.t. (6), (8), (9), τ1 + τ2 + τ3 + τ4 = 1

Qi, Q̃Bi,QRi � 0, T r {Qi} ≤ Pi (13)

Tr
{
Q̃Bi

}
≤ PB , T r {QRi} ≤ PRi

max
τ̂1,τ̂2,τ̂ ′

1,τ̂
′
2,Qi,Q̂Bi,QRi

wu1R
u
1 + wd1R

d
1 + wu2R

u
2 + wd2R

d
2

s.t. (10), (11), τ̂1+τ̂2=1, τ̂ ′1+τ̂ ′2=1

Qi, Q̂Bi,QRi � 0, T r {Qi} ≤ Pi (14)

Tr
{
Q̂Bi

}
≤ PB , T r {QRi} ≤ PRi

The three problems (12), (13) and (14) are non-convex in gen-
eral [12]. We resort to the alternating optimization framework
here in order to obtain at least a local optimum solution for
the weighted sum-rate maximization. Let us take the problem
in (12) as an example to illustrate the alternating principle:
• If we fix PBi,Qi,QRi, the only variable is τ . The

optimization degrades to the linear programming (LP)
optimization, which is also a convex problem [12].

• If we fix τ , the rest variables are PBi,Qi,QRi. It is easy
to prove that this is a convex optimization problem [12].

Based on the above observations, we apply the iterative
algorithm shown in Algorithm 1 to solve the problem in (12),
via fixing τ to solve PBi,Qi,QRi then fixing PBi,Qi,QRi

to solve τ through the alternating steps. Note the initial value
for problem (12) is chosen to be τ = 0.5.

Algorithm 1 Alternating Optimization

set n = 0 and τ (0) = 0.5
iterate

update n = n+ 1

1) compute P
(n)
Bi ,Q

(n)
i ,Q

(n)
Ri given τ (n−1) using standard

convex problem solver
2) compute τ (n) given P

(n)
Bi ,Q

(n)
i ,Q

(n)
Ri using standard

convex problem solver
until weighted sum-rate convergence

Similar iterative algorithms also can be applied into (13)
and (14), hence the details are neglected here due to space
limitation. The iterative algorithms guarantee to converge with
small number of iterations [13].

V. NUMERICAL RESULTS

In the simulation, we assume each channel element obeys
the complex Gaussian distribution: the real and imaginary parts
of the antenna-to-antenna channel are zero mean and unit
variance Gaussian random variables. For simplicity, we set
M = 2 and each node has the same maximal power P which
is the horizontal axis in Fig. 4. To ensure the convergence, the
sum-rate is the average of 4000 channel realization results.
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Figure 4. Sum-rate comparison of the proposed scheme with the two
reference schemes.

Notice that, all the schemes on Fig. 4 support 8 streams in
all, so these 3 schemes have the same DoF. But the sum-
rates are quite different for the three schemes. The sum-rate of
four-phase four-way relaying is the lowest as it does not fully
exploit the spatial resources. Two separate two-way relaying
achieves the highest sum-rate by the cost of 2 BSs. It should
be noted that in the proposed two-phase four-way relaying,
a simple ZF beamforming is applied at the BS to avoid the
potential interference at the RSs. Yet, the efficient suboptimal
BC beamforming with a single BS results in a near-optimal
weighted sum-rate performance, very close to two spatially
separated two-way relaying processes that use two BSs.

VI. CONCLUSION

We have described a new multi-way relay MIMO scenario
of practical relevance, termed four-way relaying, in which
each of the two MSs has a two-way connection to the same
BS, while each connection is through a dedicated RS. The
main assumption is that the two RSs are deployed with ideal
spatial reuse and do not interfere with each other. We have
proposed a novel communication scheme for serving two two-
way traffic flows with multi-antenna BS, RS, and MS. We
have compared the scheme to two reference schemes, each
of them based on two-way relaying. The proposed scheme
is superior in terms of achievable sum-rate compared to the
reference scheme that is based on the same physical setup,
but serves the flows by time-mulitplexing of two two-way
relaying scheme. The most interesting result is that the sum-
rate of the proposed scheme closely approaches the sum-rate
of the scheme that uses two BSs with ideal spatial reuse,
implying that the proposed scheme practically saves one BS.
In our future work we will analyze the proposed scheme with
practical path loss coefficients and multiple cells, in order to
evaluate the overall improvement in spatial reuse.

APPENDIX A

For each RS in Fig. 2(a), the transmission in phase 2 is a
BC process with side information at the receivers. On the other
hand, the simultaneous transmission of RS1 and RS2 defines a
MA channel at the BS. In principle, this makes the achievable
rates of the two BC transmissions interrelated. We prove that
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Figure 5. The capacity region of MIMO MAC with fixed covariance matrices

the achievable rate region can actually be decomposed in 2
independent region: 1) a MA region through channels HH

12

and HH
22 for rates (Ru1 , R

u
2 ), independent from the links HH

11

and HH
21 and 2) 2 single link rate regions for rates Rd1 and Rd2

through HH
11 and HH

21.
From [10], the MIMO MA region is equal to the union of

pentagons and each pentagon corresponds to a different set
of transmit covariance matrices. For fixed power allocation,
consider the MA rate region through channels HH

12 and HH
22

in Fig. 5. We define A = (Ru1 (A), Ru2 (A)) and B =
(Ru1 (B), Ru2 (B)) as the corner points of the MA region, where
Ru1 (A) = log2 |I2M+ HH

12QR1H12

(
HH

22QR2H22+I2M
)−1∣∣∣,

Ru2 (A) = log2 |I2M+ HH
22QR2H22

∣∣, Ru1 (B) = log2 |I2M+
HH

12QR1H12

∣∣, Ru2 (B) = log2 |I2M+ HH
22QR2H22

(
HH

12QR1

H12 + I2M)
−1
∣∣∣. In the following we prove that point A can

be achieved as well as the capacity of individual link HH
i1 .

Likewise, point B can be achieved. Time-sharing achieves the
region border between A and B.

We recall that xRi is the re-encoded codeword at RSi. The
BS receives both codewords xR1 and xR2 though channels
HH

12 and HH
22. Let us consider a strategy where xR2 is treated

as noise in order to decode xR1. Then, transmission from RS1
is a BC process with side information at the receivers U1 and
BS. From [7], for fixed power allocation setting, the achievable
upper bound on Rd1 on link HH

11 is log2

∣∣IM + HH
11QR1H11

∣∣
(denoted as C11) while the achievable upper bound on Ru1
on link HH

12 is Ru1 (A). After decoding xR1, BS cancels its
contribution from the received signal. Then transmission from
RS2 is a BC process with side information at the receivers
U2 and BS. From [7], for fixed power allocation setting, the
achievable upper bound on Ru2 on link HH

22 is Ru2 (A) while
the achievable upper bound on Rd2 on link HH

21 is the capacity
log2

∣∣IM + HH
21QR2H21

∣∣ (denoted as C21).
We have so far proved that the MA region corner point

A can be achieved as well as the capacity of the link HH
i1 .

We denote xARi as corresponding optimal codewords. In a
similar manner we can prove that the rates corresponding
to the point B can be achieved. We denote xBRi as optimal
codewords. To summarize, an achievable upper bound on
the rate tuple (Ru1 , R

u
2 ,R

d
1, R

d
2) is (Ru1 (A), Ru2 (A), C11, C21)

and is achieved by codewords xARi. Another achievable upper
bound is (Ru1 (B), Ru2 (B),C11, C21) is achieved by codewords
xBRi.

The rates on the line AB in Fig. 5 are achieved by time-

sharing between the codewords xARi and xBRi. Since U1, U2
and BS know the exact duration of xARi and xBRi in the time-
sharing codeword, the decoding process during t is to decode
xARi, the decoding process during 1 − t is to decode xBRi.
Therefore, (tRu1 (A) + t̄Ru1 (B), tRu2 (A) + t̄Ru2 (B), C11, C21)
is achievable for every t ∈ [0, 1], t̄ = 1−t. This proves that the
line AB in Fig. 5, is achievable while the single-user capacity
of the channel with HH

i1 can also be achieved. Note that the
time-sharing does not affect the decoding at Ui, since Ui
knows the detailed structure of the re-encoded codeword, such
that it can apply the appropriate side information. Similarly,
by time-sharing between corner points and axes points, the
rates on the lines CA and BD in Fig. 5 are also achievable.
Then the whole MA region in Fig. 5 is achievable while the
capacity of link HH

i1 is achievable. We thus obtain (4) where
1− τ corresponds to the duration of phase 2.
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