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Abstract—Droop controlled inverters are widely used in is-
landed microgrids to interface distributed energy resources and
to provide for the loads active and reactive powers demand.
In this scenario, an important issue is to assess the stability of
the microgrids taking into account the network and currents
dynamics that are also affected by the control parameters. This
paper shows how a dynamic phasor approach can be used to
derive a closed loop model of the microgrid and then to perform
an eigenvalues analysis that highlights how instabilities arise for
suitable values of the frequency droop control parameter. Fur-
ther, it is shown that the full order system is well approximated
by a reduced order system which captures the inverters phase
and line currents dynamics.

I. INTRODUCTION

Modern power microgrids consist of a continuously increas-
ing number and variety of different and distributed power
sources and loads connected via various topologies. The
droop technique is widely used to control microgrid inverters
to properly interface the distributed power resources to the
electrical network and to support for the active and reactive
power loads demand [1], [2], [3]. Because of the nonlinearity
of the control technique, even in presence of small microgrids
with few inverters, the closed loop model of such systems
may become very complex. Neverthless, a precise assessment
of the stability of the microgrids is very important. In the past
this was usually tackled via a small-signal analysis performed
by neglecting the dynamics of the line and loads and/or of
the currents [4], [5], [6], [7], [8]. This approach is usually
justified by a-priori because of the low-pass characteristic
of the power measurement block and because of the choice
of a suitabily small frequency droop parameter. Then, the
resulting approximated system is validated by experimental
simulations. Recently, many papers have proposed a dynamic
phasors approach to take into account for the network and for
the currents dynamics, see among the others [9]. Further, some
efforts have been also put for a more theoretically rigorous
analysis of the interesting issues related to the control and sta-
bility of distributed generation systems with droop controlled
inverters [10] also with a large signals perspective [11], [12].
In this paper, a model of an AC microgrid consisting of two
inverters connected via a resistive-inductive line and of two
local resistive-inductive loads is drawn by using a dynamic
phasor representation of the Kirchhoff voltage and current laws
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Fig. 1. AC microgrid in islanded-mode with two inverters and two local
loads.

governing the system. Also, a singular perturbation approach is
used in order to draw a reduced order system where the loads
dynamics are assumed to be at steady-state. Then, the closed
loop equations of the full order model are used to compute
the equilibrium point of the system and then to assess its local
stability. An eigenlocus analysis that highlights the impact of
the control parameters on the small-signal stability of the AC
microgrid under investigation is also performed. Simulations
showing that the reduced order system well approximates
the full order system are reported. The rest of the paper is
organized as follows. In Sec. II an open-loop model of the
microgrid under investigation is derived in the domain of
dynamic phasors by assuming local angle reference frames.
Then, in Sec. III the closed-loop full order and reduced
order models of the system are drawn. A numerical analysis
of the full order model showing the time evolutions of the
currents, the powers, the angle delay between the two inverters,
the inverter frequencies, the eigenlocus plotted for increasing
frequency control parameter is presented in Sec. IV. Further,
in Sec. IV, the full order model and the reduced order model
are compared and numerical simulation results shows that the
time domain evolution of the full order model’s line current is
well approximated by that of the reduced order model as well
as the time domain evolution of the full order model’s angle
and the time domain evolution of the reduced order model’s
angle. Sec. V concludes the paper.

II. AC MICROGRID MODEL

The AC microgrid under investigation is depicted in Fig. 1.
Two inverters are connected by means of a resistive-inductive



line Zc = Rc + ωLc and to the corresponding resistive-
inductive local loads Za = Ra + ωLa and Zb = Rb + ωLb.
We assume that the voltage uk provided by the k-th inverter,
the corresponding k-th output current iok and the correspond-
ing k-th local load current ik are

uk =
√

2 Uk cos θk, (1a)

iok =
√

2 Iok cos(θk + ϕk), (1b)

ik =
√

2 Ik cos(θk + φk), (1c)

with k = a, b and where Uk, θk, Iok and Ik are the
time-varying voltage amplitude, the time-varying angle, the
time-varying output and load currents amplitude of the k-th
inverter determined with respect the k-th local reference frame.
Further, ϕk and φk are the time-varying angle delays of the
k-th output inverter current and load current with respect to
the corresponding voltages instantaneous phases θk. Both Uk
and θk are determined by the frequency and amplitude droop
laws. Assume, then, that the line current ic is given by

ic =
√

2 Ic cos θc =
√

2 Ic cos(θa + xa), (2)

where θc is the time-varying angle determined with respect to
the local line reference frame and xa = θc − θa is the angle
delay between the angle of ua and the angle of the line current
ic. The Kirchhoff voltage laws of the circuit depicted in Fig. 1
allow to write the following equations

Lk
d

dt
ik =−Rkik + uk, (3a)

Lc
d

dt
ic =−Rcic + ua − ub, (3b)

where k = a, b, and the Kirchhoff current laws determine

ioa =ia + ic, (4a)
iob =ib − ic. (4b)

A dynamic phasor representations of (3) and (4) is obtained
by chosing θk as reference time-varying angle for each k-th
inverter, with k = a, b, and by chosing θa as the reference
time-varying angle for the line current ic. Each uk, iok, ik
and ic is expressed in terms of its own corresponding dynamic
phasor as

uk =
√

2 Re{Ukeθk}, (5a)

iok =
√

2 Re{(idok + iqok)eθk}, (5b)

ik =
√

2 Re{(idk + iqk)eθk}, (5c)

ic =
√

2 Re{(idc + iqc)e
θa}, (5d)

where k = a, b. Notice that the direct idc and quadrature
iqc component of the line current are defined with respect a
rotating reference frame given by the angle θa of the voltage
ua. Define δ = θa − θb as the angle delay existing between
the voltage ua and the voltage ub. Then, by using (5) in (3)

and by solving for any θk ∈ [0, 2π) [11] we get

Lk
d

dt
idk =−Rkidk +

d

dt
θk Lki

q
k + Uk, (6a)

Lk
d

dt
iqk =− d

dt
θk Lki

d
k −Rki

q
k, (6b)

Lc
d

dt
idc =−Rcidc +

d

dt
θa Lci

q
c + Ua − Ub cos δ, (6c)

Lc
d

dt
iqc =− d

dt
θa Lci

d
c −Rciqc + Ub sin δ, (6d)

where k = a, b, and by using (5) in (4) and by solving for any
θk ∈ [0, 2π) we get

idoa =ida + idc , (7a)
iqoa =iqa + iqc , (7b)

idob =idb − idc cos δ + iqc sin δ, (7c)

iqob =iqb − i
q
c cos δ − idc sin δ. (7d)

Eq. (6) show that the currents dynamics are affected by those
of θk. Particularly, since each (d/dt)θk, with k = a, b, is deter-
mined with the standard frequency droop law, the contribution
of the inductance Lj , with j = k, c, to each corresponding
current dynamic depends on a fixed frequency term ωLj ,
where ω is the frequency reference for both frequency droop
laws, and on a time-varying term. In turn, this last depends
on the frequency control parameter mk and on the measured
active power Pk. Notice that ωLj corresponds to the j-th
inductive reactance if the microgrid in Fig. 1 admits a steady-
state regime. Thus, in order to neglect the network dynamics
one has to ensure that the j-th nominal reactance ωLj is much
greater than the product mkPkLj , with k = a, b, j = k, c, and
where Pk is time-dependent.

III. CLOSED LOOP MODEL

The closed loop model of (6) is obtained by determining
the amplitude Uk and the frequency (d/dt)θk of each k-th
voltage, with k = a, b, according to the frequency and voltage
droop laws

d

dt
θk =ω +mk(P̄k − Pk), (8a)

Uk =Ūk + nk(Q̄k −Qk), (8b)

where ω is the reference frequency for both inverters, Ūk is
the k-th voltage reference, mk and nk is the k-th frequency
and voltage droop coefficients, P̄k and Q̄k is the k-th active
and reactive power references, Pk and Qk are the k-th “in-
stantaneous” active and reactive powers provided by the k-th
inverter, with k = a, b. Each k-th Pk and Qk is given by

Pk =Re{Uk(idok + iqok)∗} = Uki
d
ok, (9a)

Qk =Im{Uk(idok + iqok)∗} = −Ukiqok, (9b)

where the superscript ‘∗’ indicates the complex conjugate and
k = a, b. If the circuit in Fig. 1 with the inverter subject
to droop control admits a sinusoidal regime, (9) correspond



to the classical definitions of active and reactive powers. By
using (9b) in (8b) we obtain

Uk =
Ūk + nkQ̄k
1− nk iqok

(10)

where iqok is given by (7) and k = a, b. In turn, the corre-
sponding frequency (d/dt)θk of the k-th inverter is obtained
by substituting (10) with (9a) in (8a):

d

dt
θk = ω +mk

(
P̄k − Uk idok

)
, (11)

being idok and iqok defined in (7), Uk given by (10) and k =
a, b. Then, by substituting (11) and (10) in (6) and since (d/
dt)δ = (d/dt)(θa−θb), the closed loop model of the microgrid
represented in Fig. 1 is

La
Ra

d

dt
ida =− ida +

1

Ra
Ua +ma

(
P̄a − Ua idoa

) La
Ra

iqa

+
ωLa
Ra

iqa, (12a)

La
Ra

d

dt
iqa =− ωLa

Ra
ida − iqa −ma

(
P̄a − Ua idoa

) La
Ra

ida, (12b)

Lb
Rb

d

dt
idb =− idb +

1

Rb
Ub +mb

(
P̄b − Ub idob

) Lb
Rb
iqb

+
ωLb
Rb

iqb , (12c)

Lb
Rb

d

dt
iqb =− ωLb

Rb
idb − i

q
b −mb

(
P̄b − Ub idob

) Lb
Rb
idb , (12d)

Lc
Rc

d

dt
idc =− idc +

ωLc
Rc

iqc +ma

(
P̄a − Ua idoa

) Lc
Rc
iqc

+
1

Rc
Ua −

1

Rc
Ub cos δ, (12e)

Lc
Rc

d

dt
iqc =− ωLc

Rc
idc − iqc −ma

(
P̄a − Ua idoa

) Lc
Rc
idc

+
1

Rc
Ub sin δ, (12f)

d

dt
δ =ma

(
P̄a − Ua idoa

)
−mb

(
P̄b − Ub idob

)
, (12g)

where idok, iqok and Uk with k = a, b are given by (7) and (10)
respectively. Typical values of the loads inductances Lk and
resistances Rk, where k = a, b, allow to assume

La
Ra

,
Lb
Rb
� Lc

Rc
. (13)

Therefore, by applying a singular perturbation approach [13]
to (12) with (7) and (10) one obtains

0 = −zda +
ωLa
Ra

zqa +
1

Ra

Ūa + naQ̄a
1− na(zqa + zqc )

, (14a)

0 = −ωLa
Ra

zda − zqa, (14b)

0 = −zdb +
ωLb
Rb

zqb +
1

Rb

Ūb + nbQ̄b
1− nb(zqb − z

q
c cos δz − zdc sin δz)

,

(14c)

0 = −ωLb
Rb

zdb − z
q
b , (14d)

where we have used z and δz to indicate the currents and the
angle of the reduced order model respectively, we have used
singularly perturbed variables in (7) and where the assumption
of small ratios Lk/Rk does not imply small ωLk/Rk. Since
the voltages amplitudes Ua and Ub are positive, from (10) and
by solving (14b), (14d) for zda and zdb respectively and then
substituting in (14a) and (14c) one obtains

0 =(zqa)2 − 1

na
(1− nazqc )zqa −

ωLa
naZ2

a

(Ūa + naQ̄a), (15a)

zda =− Ra
ωLa

zqa, (15b)

0 =(zqb )2 − 1

nb
[1 + nb(z

q
c cos δz + zdc sin δz)]z

q
b

− ωLb
nbZ2

b

(Ūb + nbQ̄b), (15c)

zdb =− Rb
ωLb

zqb , (15d)

where Z2
a = R2

a + (ωLa)2 and Z2
b = R2

b + (ωLb)
2 are the

squared modulus of the complex load impedances Za and Zb
respectively. From (15), for sufficiently small na and nb, one
obtains the expected approximations

zda ≈
Ra
Z2
a

(Ūa + naQ̄a), (16a)

zqa ≈−
ωLa
Z2
a

(Ūa + naQ̄a), (16b)

zdb ≈
Rb
Z2
b

(Ūb + nbQ̄b), (16c)

zqb ≈−
ωLb
Z2
b

(Ūb + nbQ̄b). (16d)

The reduced order model of (12) is obtained by substituting
the solutions of (15) into (7), in

Uk,z =
Ūk + nkQ̄k
1− nk zqok

, (17)

for k = a, b and then in (12e)-(12g):

Lc
Rc

d

dt
zdc =− zdc +

ωLc
Rc

zqc +ma

(
P̄a − Ua,z zdoa

) Lc
Rc
zqc

+
1

Rc
Ua,z −

1

Rc
Ub,z cos δz, (18a)

Lc
Rc

d

dt
zqc =− ωLc

Rc
zdc − zqc −ma

(
P̄a − Ua,z zdoa

) Lc
Rc
zdc

+
1

Rc
Ub,z sin δz, (18b)

d

dt
δz =ma

(
P̄a − Ua,z zdoa

)
−mb

(
P̄b − Ub,z zdob

)
.

(18c)

The numerical results in next Section will show scenarios for
which the reduced order model (18) can be useful for the
analysis of islanded microgrids under droop control.



IV. SIMULATION RESULTS

The simulations have been carried out by considering the
following realistic values of the controls, loads and line
parameters [5] for the microgrid depicted in Fig. 1: ma =
5 · 10−4 rad/sW, na = 5 · 10−4 V/VAr, P̄a = 806 W,
Q̄a = 384 VAr, Ūa = 127 V, Ra = 13 Ω, La = 16 mH,
mb = 5 · 10−4 rad/sW, nb = 5 · 10−4 V/VAr, P̄b = 750 W,
Q̄b = 375 VAr, Ūb = 130 V, Rb = 25 Ω, Lb = 35 mH,
Rc = 0.5 Ω, Lc = 8 mH, ω = 2π 60 rad/s. The equilibrium
point of the closed loop system is id,eqa = 8.1 A, id,eqb = 4.1 A,
iq,eqa = −3.7 A, iq,eqb = −2.1 A, id,eqc = −1.7 A,
iq,eqc = 0.7 A, δeq = −0.0368 rad and the eigenvalues of
the system’s Jacobian computed around such an equilibrium
point are

λ1,2 =− 816.69± 375.1, (19a)
λ3 =− 5.39, (19b)
λ4,5 =− 60.15± 368.59, (19c)
λ6,7 =− 724.91± 375.91, (19d)

which show that the system is locally stable for the partic-
ular choice of the line, control and load parameteres above
mentioned. Fig. 2 and Fig. 3 show the time domain evolution
of the local loads direct and quadrature currents and the
time domain evolution of the inverters and line direct and
quadrature currents respectively. Fig. 3 particularly shows the
presence of fast and slow modes in the inverters and line
currents dynamics. Comparing Fig. 2 and Fig. 3 one can notice
how the loads currents evolve on the same small temporal scale
of the fast modes which affect the inverters and line currents.
In Fig. 4 are reported the time evolutions of the active Pa, Pb,
and reactive powers Qa, Qb, of each inverter. Fig. 5 shows
the time domain evolution of the difference δ = θa − θb
between the angle θa and the angle θb. The inverters start
with the same angle, that is δ(0) = 0, and in order to
provide for the required active and reactive powers according
to the corresponding reference values, at steady-state a non-
zero angle difference is needed. Clearly, this depends also by
the local loads. In Fig. 6 it is shown the time evolution of the
instantaneous frequencies (d/dt)θa (solid line) and (d/dt)θb
(dashed line) determined by the frequency droop laws. Each
(d/dt)θk starts from the corresponding initial value given by
ω+mkP̄k, where k = a, b. Then, both (d/dt)θa and (d/dt)θb
converge to the same steady-state value given by the frequency
reference ω = 2π 60 rad/s since also Pa and Pb converge
to P̄a and P̄b respectively. Fig. 7 shows the eigenlocus for
ma ∈ [5 · 10−4, 5 · 10−2]. For each ma ∈ [5 · 10−4, 5 · 10−2]
the new equilibrium point, given by the solution of (12)
obtained setting all the derivative terms to zero, has been
computed and then used to determine the eigenvalues of the
system’s Jacobian. As it is shown, by increasing the frequency
control parameter ma some of the eigenvalues become positive
real, and for ma ≥ 2.4 · 10−2 the system is unstable. Fig. 7
and (19) show that, for ma = 5 · 10−4, the linearized dynamic
is approximately given by a third order system obtained by
neglecting the fast eigenvalues λ1,2 and λ6,7. The simulations
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Fig. 2. Time domain evolution of the direct components ida (solid line) and
idb (dashed line) of the load a and b currents and quadrature components iqa
(solid thick line) and iqb (dashed thick line) of the load a and b currents for
zero initial conditions, for ma = 5 · 10−4.
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Fig. 3. Time domain evolution of the direct components idoa (solid line),
idob (dashed line), idc (dotted line) and quadrature component iqoa (solid thick
line), iqob (dashed thick line), iqc (dotted thick line) of the inverters’ and line
direct and quadrature currents for zero initial conditions, for ma = 5 · 10−4.

in Fig. 8 allow to verify that such an approximation is valid
also for large signals for ma = 5 · 10−4. On the contrary, Fig. 9
and Fig. 10 show that for ma = 2.3 · 10−2 the error between
the reduced order model (18) and the full order model (12)
increases. On the other hand, as the eigenlocus of the reduced
order system depicted in Fig. 11 shows, the reduced model
predicts the instability occurring for the same value of the
frequency control parameter ma = 2.4 · 10−2 of the first
inverter for which the full order model is unstable. Finally,
in Fig. 12 it is reported the eigenlocus of the reduce order
system for increasing ratios Lc/Rc and for ma = 2.4 · 10−2.
As the ratio Lc/Rc increases, the real part of the complex
conjugate eigenvalues become positive and the reduced order
system is unstable.
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Fig. 5. Time domain evolution of the angle delay δ existing between the
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Fig. 7. Eigenlocus of the linearized system around the equilibrium point for
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Fig. 8. Time evolutions of the difference idc − zdc (solid line) between the
full order model direct line current idc and the reduced order model direct
line current zdc , of the difference iqc − zqc (dashed line) between the full order
model quadrature line current iqc and the reduced order model quadrature
line current zqc and of the difference δ − δz (dotted line) between the full
order model angle delay δ and the reduced order model angle delay δz , for
ma = 5 · 10−4.

V. CONCLUSIONS

The dynamic phasors approach to model two droop con-
trolled inverters forming a microgrid allows to compute the
equilibrium points of the closed loop system and to carry out
an eigenvalue analysis showing that for some values of the
frequency droop control parameter ma the system becomes
unstable. The proposed technique allows also to assess that for
sufficiently small values of ma the large signals dynamics are
well approximated by those of a reduced order model derived
by neglecting the loads dynamics, that is by applying a singular
perturbation approach to the original dynamic phasor model.
The approximation becomes worse as ma increases but the
reduced order model is still able to predict the instability. The
same technique and similar considerations can be operated
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Fig. 9. Time domain evolution of the full order model angle delay δ, for
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−250 −200 −150 −100 −50 0

−400

−200

0

200

400

Re

I
m

Fig. 12. Eigenlocus of the linearized reduced order system around the equi-
librium point for Lc/Rc ∈ [0.5, 1.5] · (Lc/Rc)nom s and ma = 2.4 · 10−2.

with different values of the remaining parameters.
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