
Aalborg Universitet

Modelling of Context: Designing Mobile Systems from Domain-Dependent Models

Nielsen, Peter Axel; Stage, Jan

Published in:
Proceedings of 32nd Information Systems Research Seminar in Scandinavia

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Nielsen, P. A., & Stage, J. (2009). Modelling of Context: Designing Mobile Systems from Domain-Dependent
Models. In J. Molka-Danielsen (Ed.), Proceedings of 32nd Information Systems Research Seminar in
Scandinavia: Inclusive Design TAPIR Akademisk Forlag.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 23, 2025

https://vbn.aau.dk/en/publications/a8f7e5a0-c3bc-11de-bcee-000ea68e967b


Modelling of Context: Designing 
Mobile Systems from Domain-
Dependent Models 
Peter Axel Nielsen and Jan Stage 
Department of Computer Science, Aalborg University, Denmark  
{pan, jans}@cs.aau.dk. 
Abstract. Modelling of domain-dependent aspects is a key prerequisite for the 
design of software for mobile systems. Most mobile systems include a more or 
less advanced model of selected aspects of the domain in which they are used. 
This paper discusses the creation of such a model and its relevance for technical 
design of a mobile software system. Conventional approaches to modelling of 
context focus either on the application domain or the problem domain. These 
approaches are presented and their relevance for technical design of software for 
mobile systems is discussed. The paper also reports from an empirical study 
where a methodology that combines both of these approaches was introduced and 
employed for modelling of the domain-dependent aspects that were relevant for 
the design of a software component in a mobile telephone. The empirical study 
was conducted in two companies that produce software for mobile telephones. 
The resulting models of domain-dependent aspects are presented, and the 
experiences from the modelling process are discussed. It is concluded that a dual 
perspective based on both of the conventional approaches is relevant for capturing 
the aspects that are necessary for creating the domain-dependent models that are 
integrated in a mobile software system. 

1 Introduction 
Mobile software development challenge the modelling activities that precede the 
technical design of a software system. The context of a mobile system includes a 
broad spectrum of technical, physical, social and organizational aspects. Some of 
these aspects need to be built into the software. Selecting the aspects that are 
needed is becoming increasingly more complex with mobile systems than we 
have previously seen with more traditional information systems.  
Lyytinen and Yoo [1] identify several drivers towards more and more mobile 
environments which they term the nomadic information environments. These 
include: mobility where the computing service follows the user rather than the 
user comes to the computing service, digital convergence where the 
standardization of services across platforms increases accessibility and 
networking, and mass scale where devices and mobile services will be available at 
significantly lower costs. In their survey of the new challenges for research on 
mobile systems, Lyytinen and Yoo [1] argue for several research agendas of 
which one is “How do we design and integrate sets of personalized mobile 
services that support users’ task execution in multiple social and physical 
contexts?” [1]. 
The context of a mobile system includes technical, physical, social and 
organizational domains. These dynamically changing domains in which mobile 
systems are used can be modelled for two reasons. First, we need to build selected 
aspects of these domains into the software. Without a representation of certain 
aspects from these domains, the mobile system cannot provide the services that 
users are requesting [2]. In this sense, a mobile software system is domain 



dependent. For example, a GPS system needs an internal representation of the 
place where it is currently located. This representation is designed from models of 
selected aspects of the relevant domains in which the system is used. The GPS 
system is primarily dependent on the physical and technical domains. This kind of 
modelling is a primary concern for many conventional software engineering 
methods. Second, the process of designing a mobile system is based on an 
understanding of the domains in which it will be used. For the GPS system, the 
design of the physical appearance and the features of the system require an 
understanding of the activity of a prospective user and the social and 
organizational domains in which this user will be acting. Therefore, such aspects 
are modeled to ensure that the designers have them available when needed. This 
kind of modelling is a primary concern for many design methodologies such as 
participatory design, user centered design and contextual design. 
Both of these approaches are necessary in sorftware development. Yet the 
challenges of each approach when developing software for mobile systems are 
staggering, and combining the two is even more demanding. Clemmensen and 
Nørbjerg [3] state that software engineering and the user-centered approaches that 
deal with human-computer interaction and usability are based on different 
theories and cannot be integrated. They argue that the standard software 
engineering methods are fairly ignorant of human-computer interaction issues, 
e.g. the Rational Unified Process [4] has little to say on design of human-
computer interaction or usability design. It has, however, been argued that even 
though the two worlds are currently separated, it is realistic to try to bridge or fill 
that gap [5]. 
In this paper, we are specifically focusing on the former approach, i.e modeling of 
the domain-dependent aspects that will be built into the software. The purpose is 
to explore to what extent conventional approaches to modeling of domain-
dependent aspects are relevant for and how they can be combined in the design of 
mobile software systems.  In the following Section 2, we present conventional 
approaches to modeling of domain-dependent aspects. Section 3 presents the 
empirical study of domain-dependent modeling we have conducted in two 
software organizations. In Section 4, we present the results of the study with focus 
on the relevance of modeling approaches and the challenges of modeling domain-
dependent aspects of mobile software systems. The broader aspects of the results 
are discussed in section 5 where we also compare to the results obtained in other 
studies related to mobile systems. Finally, Section 6 provides the conclusion. 

2 Conventional Modelling Approaches 
Software engineering methods that deal with modelling have different focus and 
perspective [6], and Avison and Fitzgerald [7] distinguish between process 
modelling, data modelling and object modelling.  

2.1 Process Modelling 
Process modelling base design of a software system on a model of the way 
in which a specific work process is carried out. The aim is that the 
software system will partly or fully automate the work process that is 
modeled. 
A typical methodology within this approach is “Structured Analysis and 
Structured Design” (SASD). The first presentation of data flow modeling 
which was the core of this approach was DeMarco [8] that came out in 
1979 and the first coherent method was Yourdon [9] from 1982. A more 
recent version is [10]. 



2.2 Data Modelling 
Data modeling was developed as an abstract approach to database design 
as opposed to a direct focus on physical design. The classical reference is 
Date [11] that was fist published in 1977, and it is now in the eight edition.  
This approach focused on the data that were processed in the user 
organization, and it was closely related to the relational database as the 
implementation platform and diagramming techniques of which the entity-
relationship model [12] was most prominent. 

2.3 Object Modelling 
The concept of classes and the idea of focusing on classes and objects 
stem from Simula programming language developed by Nygaard and 
Dahl, cf. [13]. In 1975, the concepts were also proposed for modelling 
through the Delta system description language that extended Simula [14].  
In the early 1980s, Jackson launched the Jackson System Development 
method (JSD) for analysis and design [15]. The basic concept is “entity” 
but the term is clearly inspired by object-oriented thinking. Since classes 
and objects are not clearly differentiated, it is not possible to describe 
structural connections. The method’s strength is that it introduces an event 
concept for describing entity dynamics. None of these methods gained 
substantial influence as modeling approaches. 
The first significant methods for object-oriented analysis and design 
emerged around 1990. One stream of methods originated from object-
oriented programming, e.g. [16] and [17]. A different stream of work 
originated from system development, e.g. [18], [19] and [20]. Some of 
these methods were joined into the “The Unified Software Process” [21] 
and later “The Rational Unified Process” (RUP) [4]. This method 
development was complemented with creation of a modeling language 
“Unified Modelling Language” (UML) of which the first version was 
standardized in 1998 [22]. 
For business applications as well as for technical applications object-
oriented modelling has become a dominant paradigm. The advancement of 
UML and several strong object-oriented programming languages like 
Java, C++ and C# have pushed further in that direction. 

2.4 Modelling for Technical Design 
The three approaches approaches presented above all provide 
methodological guidance for turning the results of the modeling activities 
into a technical design. In this sense, they build the aspects that have been 
modeled into the system. 
The process modeling approach takes its point of departure in the way 
users work. This relates more generally to a focus on this domain: 
•  Application domain: The individual persons or roles and the 
organization that administrates, monitors, or controls a problem domain. 
The application domain is where the users are and do whatever they do 
when they use the system. For an air traffic control system, the application 
domain is in the control tower where the controllers perform their air 
traffic control. The controllers monitor the traffic on the screen, decide on 
interventions, and direct the flights in their air space.  
With the process modeling approach, the domain-dependent aspects are 
elicited from the application domain and built into the system through the 
activities in which the software functions are designed. 



The data modelling approach takes a different point of departure by 
focusing on the data that people work with in the user organization. It has 
been argued that this was a much more stable foundation for software 
design than the way in which the users worked, e.g. [15]. The data 
modeling approach relates more generally to a focus on this domain: 
•  Problem domain: The part of the context that is administrated, 
monitored or controlled by a system. 
The problem domain is part of what is outside the system (i.e., in the 
context). For an air traffic control system the problem domain is that part 
of the context constituted by flights, departures, aircrafts, aircrafts’ 
positions and trajectories, changed altitude, changed speed, etc. 
Everything that the controller in the tower needs to know about to control 
the air space effectively is in the problem domain. It is fundamental to air 
traffic control that the controller watches the aircrafts’ positions and 
trajectories on a large monitor displaying data from the radar system rather 
than looking out the tower’s windows with a pair of binoculars. The 
system creates and maintains the controllers’ view of their air space and it 
is there crucial that the model of the air space (i.e., the problem domain) is 
in accordance with the controllers’ professional language and competence. 
With the data modeling approach, the domain-dependent aspects are 
elicited from the problem domain and built into the system through the 
activities in which the database and the related software are designed. 
The object modeling approach is more varied. Some of the methods, in 
particular the early ones, are focusing on the problem domain, e.g. [17], 
[18] and [19]. The RUP methods is completely opposite as it departs from 
use cases which are descriptions of the application domain. 
Rumbaugh et al. [20] is the only classic object-oriented method that 
emphasizes both the problem domain and the application domain. Two of 
the three fundamental models are the class diagram, emphasizing the 
problem domain, and a description of functions by means of data-flow 
diagrams from structured analysis, emphasizing the application domain. 
This dual focus is an interesting and innovative approach. Unfortunately, 
the description of functions is not related to the object-oriented model. 
System developers with experience using the Rumbaugh method also 
point out that constructing the functional model is rarely worth while. 

2.5 Software for Mobile Systems 
The overview above illustrate that popular software engineering methods 
have a strong focus on technical aspects and the representation of 
information in the system. Yet they have very little in particular to offer in 
modelling context for mobile systems. Rational Unified Process [4], for 
example, offers several principles of which none address how to model the 
context of a mobile system. Microsoft Solutions Framework [23], as 
another example, offers a set of principles for software engineering, but, 
again, has nothing in particular to say on modeling the context of a mobile 
system. 
The literature on human-computer interaction has a stronger emphasis on 
the context of computerized systems. The basic literature deals with user 
interface design from a general point of view, e.g. [24] and [25]. They 
provide extensive guidelines and techniques for user interaction design but 



nothing specific on design of mobile systems and very little on modelling 
of domain-dependent aspect as a basis for technical design. 
Some of the literature in human-computer interaction deals specifically 
with user interaction design for mobile systems. There is a general 
textbook  on design of user interaction for mobile systems [14]. This 
textbook has a strong focus on mobile systems but significantly less on the 
modelling of domain-dependent aspects and very little emphasis on the 
relation to software engineering and technical design of software. 
There is also a frowing body of literature on context awarteness. Some of 
this literature discusses definitions of ‘context’ and the implications for 
systems that are aware of their context. This group includes both 
conceptual work, e.g. [2], [27] and [28], practical guidelines for modelling 
and design, e.g. [29], [30] and [31], as well as examples of the process of 
analysing mobile activity [31] and designing context-aware mobile 
systems [32]. A common characteristic of this literature is that they work 
with various domain models, but there is very little about the relation to 
other models that are made for design of technical aspects, including the 
representation of information about the relevant domains. 
There is some literature that deals with technical design of context-aware 
systems. For example, Anagnostopoulos et al. [33] formulate a set of 
requirements for what should be modelled in designing mobile systems: 
context data acquisition (e.g., from sensors), context data aggregation, 
context data consistency, context data discovery, context data query, 
context data adaptation, context data reasoning, context data quality 
indicators, and context data integration. 
Henricksen et al. [34] start by recognizing that what is unique to 
modelling context for mobile systems: information on context is temporal, 
it is imperfect, context has several representations, and context 
information is highly interrelated. Thedy then go on to suggest a graphical 
modelling language that allow them to use three entity types ‘people’, 
‘device’, and ‘communication channel’. In addition, they can model 
association between entities like ‘static’ or ‘temporal’, dependencies 
between associations, and finally qualities of dependencies like ‘accuracy’ 
and ‘certainty’. 
Lei and Zhang [35] apply the theory of conceptual graphs to mobile 
context modelling. All items in the context are monitored and the 
conceptual graphs model this as simple graphs associated with rules and 
constraints. Baumeister et al. [36] extend UML with mobile objects, 
locations, and mobile activity. They formulate the extension in terms of 
stereotypes and end by providing a modified metamodel for UML. 



3 Empirical Study 
We have conducted an empirical study of the way in which conventional 
approaches to modeling of domain-dependent aspects can be combined in the 
design of mobile software systems. In this section, we describe the method of the 
study. 

3.1 Setting 
The study was carried out as part of a training course that was conducted 
for two companies that develop software for mobile telephones. In both 
companies, it was part of a method deployment effort. The purpose of the 
course was to teach them how to model domain-dependent aspects and 
how the resulting models could be integrated in software design. In one of 
the companies, the course was conducted once, while in the other it was 
conducted twice for two different departments. 
In both cases, the course was held in the company’s own buildings. 

3.2 Participants 
The participants in the courses were software developers from the two 
companies. The first company was a mobile telephone producer, where the 
participants came from a software development group. The second 
company was a producer of specific components for a mobile telephone. 
In both cases, there were 20-25 participants each time we held the course. 
The courses were held by the authors of this article. The courses were 
planned in collaboration and held by one of the authors. Both authors had 
considerable experience in giving analysis and design courses for software 
developers.  

3.3 Methodology 
The course was based on an object-oriented method known as Object-
Oriented Analysis & Design (OOA&D), described in [37]. The basic 
modeling approach of the method is also presented in [38]. The method 
combines modeling of the problem and application domains. 
The combination of the problem and application domain models is based 
on a simple architectural model of a general computerized system, cf. 
figure 1. The system contains a representation of the problem domain; this 
representation is also known as the model. The model keeps track of 
objects and events in the problem domain. This can be illustrated with the 

 

Fig. 1. The system and its context. The context 
is split into problem domain and application 
domain. The system is split into model, 
functions, and user interface. The problem 
domain is represented in the model. The user 
interface presents the functions and the model. 



air traffica control system: When an air craft enters the air space, the 
model gets a new object that represents the aircraft. When the radar 
detects that an aircraft has changed altitude and position, the object that 
represents this aircraft in the model will also change altitude and position. 
The users in the application domain get access to the model through the 
functions. When a controller wants to see the data from the radar on her 
monitor she utilizes a function that reads the relevant objects in the model. 
There is a whole range of functions that the controller may utilize at her 
discretion and by these functions update or read the model’s objects. A 
warning that two aircrafts are too close is also issued by a function 
assisting the controller. 
The user interface provides access to functions and handle input and 
output of information about the problem domain. The model objects are 
presented in a way that allows the users to view the state of affairs in the 
problem domain through the system. The functions are presented in a way 
that allows the users to view and activate the possible operations the 
system offers to manipulate the objects in the model. 
With OOA&D [28], the problem domain is modelled in terms of objects 
and events. The model is expressed in UML as a class diagram with all 
problem domain classes and a statechart diagram describing the dynamics 
of each problem domain class. These domain-dependent aspects are later 
designed into the computer system model. The model is a representation 
of the problem domain and it tracks objects and events in the problem 
domain. The system only registers events if information about them is 
required by the users.  
The application domain is modeled by use cases and the functions of the 
system. The functions are modelled through functional specification. 

3.4 Research Method 
On the overall level, our research approach was a combination of action 
research and case study research. This combination is commonly referred 
to as action case [39]. The study was action research in the sense that we 
were part of a situation in a software company where we helped diagnose 
the current development practice, devised an action plan, implemented the 
action plan, and reflected on the lessons learned from this [40]. Action 
research employs a dual learning cycle [41] in which the practitioners we 
collaborated with were occupied with solving a number of specific 
problems with how to model domain-dependent aspects as well as the 
interior of a mobile application and we, the action researchers, focused our 
attention on the modelling method. Action research must address, utilise 
and make a contribution relative to a body of knowledge; in particular it 
must declare the framework in which learning is to take place [42], [43]. 
The body of knowledge that we have contributed to is that of methods for 
developing and modelling mobile applications in the specific software 
companies. 
The study was case study research in the sense that we have not been 
involved in the software development project itself. We have worked with 
the software developers and we have through our interactions gained 
insight into the development context and the larger activities and company 
setting in which the development took place. Towards these issues we 
have been observers rather than actors [44]. 



3.5 Procedure 
The course was conducted in 3 full days. The first two days focused on 
modeling, with half a day as introduction to the method and the basic 
concepts, a full day on problem domain modeling and half a day on 
application domain modeling. The third day focused on system design 
where the main issue was the transformation of the problem and 
application domain models into an overall design of the software. 
The course comprised a mix of lectures and exercises. The exercise was to 
model and design an FM radio as an integrated component in a mobile 
telephone. This is an application that is available in some mobile 
telephones. It enables the user of the mobile telephone to listen to radio 
while the telephone functionality is not in use. The heart of the system is 
an FM radio receiver. The user can interact with certain information and 
functions relating to the FM radio through the telephone’s user interface. 
After each lecture, there was an exercise in the same topic. The 
participants worked with the exercise in small groups of 3 to 5 
participants. The exercise was completed with a short presentation of the 
results to the other groups. 
When the course was completed, the authors made models of the problem 
and application domains. These models were based on the models made 
by the participants and the knowledge acquired durting the course. It was 
presented as a best solution to the exercise, and we collated comments 
from the participants. This model was refined from course to course. 
After the courses, the authors collaborated with the companies to integrate 
the method in the developers’ work. That part of the work is not described 
in this paper. 

3.6 Data Collection 
During the course, the lecturer made notes about the questions that were 
asked and the difficulties that the developers faced in learning the method 
and using it for modeling domain-dependent aspects. The notes also 
included questions that were asked by the participants in the lectures and 
in particular when the Notes and exercises 
We also collected all the models that were made during the courses. 
Finally, we have documented all comments that came up in the evaluation 
of each course. 
We have analysed the empirical data by focussing on issues related to the 
notion of context. We have traced through the models and analysed the 
various modelling concepts. We have also analyzed and categorized the 
questions that were noted during the course and the issues that were 
emphasized in the final evaluation of each course. The purpose of the 
analysis was to identify challenges when modelling the domain-dependent 
aspects of a mobile system and the solutions we employed. 

4 Results 
This section presents the results of the empirical study. First, we present domain 
models that were produced in the study. Second, we provide an overview of the 
lessons learned. 
 
TABLE 1. SYSTEM DEFINITION FOR THE FM RADIO. 
F Functionality Play radio, change radio settings, automatic tuning (search), manual 

tuning, define station presets 
A Application domain Listen to radio and change station without interfering with normal use 



of the telephone 
C Conditions The system should use the API, it must cooperate with the media 

server, and it must turn off automatically when the GSM part becomes 
active 

T Technology Specifications of implementation platform, execution platform, 
interfaces to TEA, GSM part, and media server 

O Objects Radio state, Station(s) 
R Responsibility Automatic cooperation with the GSM part, manual use of the radio 

 
4.1 Domain Models 

The first result of using OOA&D is a system definition that provides an 
overall delineation of the problem and application domains as a whole. 
The system definition for the FM radio is summarized in Table 1. 
 
TABLE 2. CLASSES AND EVENTS IN THE PROBLEM DOMAIN. 

 Radio GSM 
part 

Radio 
Chip 

Station Preset 
Station 

Current 
Station 

GSM part activated       
GSM part deactivated       
Radio turned on       
Radio turned off       
Radio setting changed       
Radio chip turned on       
Radio chip turned off       
Search activated       
Search completed       
Frequency entered       
Preset station defined       
Preset station selected       

 
 
Problem Domain Model 
Within the frame of the system definition, the classes and events in the 
problem domain were selected. They are shown in Table 2, where all 
classes are listed in the horizontal dimension and all events in the vertical 
dimension. A checkmark in the table means that the class is involved in 
the event. 
The structural relations between the problem domain classes are shown in 
the class diagram shown in  
Fig. 2, in the UML notation. 
 

 
 
Fig. 2. Class diagram for the problem domain. 
For each of the classes in the class diagram, there was a statechart diagram 
describing the dynamic behaviour of objects from this class. 
 



TABLE 3. EXAMPLE OF A USE CASE FOR THE FM RADIO. 

Use case The radion is turned on by the user when he wants to listen to radio on the mobile 
telephone. The user then selects a preset station. 

If there is no signal on the frequency that is preset, an error message appears. 
Otherwise, the radio will play the station on the channel. 

If the telephone receives a call, the radio is muted. When the call is completed, the 
radio resumes. 

Objects Radio, Preset Station, Current Station 

Functions Turn radion on, Select preset station, Display error, Mute radio, Resume radio 
 
Application Domain Model 
The key elements of the application domain were also described. The first 
part of this is descriptions of all actors and a set of use cases. For the FM 
radio, there were two actors: the user and the GSM part of the telephone. 
The user is anobvious actor. The GSM part was included as an actor, 
because it can activate functions, e.g. mute the radio when a call is 
received. 
The use cases describe how a prospective user will apply the system for 
listening to radio. Table 3 shows an example of a use case. 
 
 
TABLE 4. EXCERPT FROM FUNCTION LIST FOR THE FM RADIO. 

Function Complexity Type 

Turn radio on Simple Update 

Turn radio off Simple Update 

Select preset station Simple Read + Update 

Mute radio Medium Signal 

Sech for stations Complex Update 
 

4.2 Experience from the Modelling Process 
This section presents the second part of results of our action case study. 
Here, the emphasis is on the experience that was gained when using the 
method to create the domain-depdendent models that were presented 
above. 
 
The System Definition 
The purpose of the system definition is to delineate the context of the 
system considered on an overall level. The following challenges were 
experienced with the system definition: 
 
• Vehicle for keeping focus 
• Defining granularity 
• Point of view 
• Application domain versus functions 
 
It was difficult to make a good system definition for the FM radio. The 
reason is that it expresses key decisions that are difficult to make. 
However, once it was made, it turned out to be a very powerful tool for 



keeping focus during the whole modelling activity. Sometimes, the 
participants forgot to use the system definition when they discussed an 
issue related to the limits of the problem or application domains. 
The system definition inherently involves defining the granularity in the 
model of the system’s context. For example, the system definition 
mentions key objects, and this influences the considerations made during 
problem domain analysis. The participants had difficulties selecting a 
relevant level of granularity. They could either model a single component 
of the system or the whole system. When they focussed on the whole 
system, they also had a choice of seeing it as one or a few complex 
components or a larger number of simpler components. The solution 
employed was to see the system as one unit with relations to other 
systems. 
A system can always be described from two opposite points of view. 
Either from the outside where it is considered as a black box; or from the 
inside where the focus is on its components. For example, the participants 
could describe the relation between the user and the mobile telephone with 
the radio, or they could describe the radio as a component and its interplay 
with other components. The participants shifted between these points of 
view. For the system definition, it was suggested to see the system as a 
black box and, therefore, not deal with its components. 
The system definition has the application domain as one of its six 
elements. The aim of this is to emphasize who the users are and what their 
role is in the user organization. The participants had problems describing 
this element. In most cases there was no clear distinction between 
application domain and functions. This is also reflected in the system 
definition shown in Table 1. A mobile system is usually operated by a 
single user. Therefore, the application domain becomes very simple, and 
the developers had difficulties believing that it could be that simple. 
This challenge emphasizes a key difference between conventional and 
mobile systems. For a stationary application, it is often useful to describe 
the domain where it is applied. For a mobile system, that is not possible 
because of the mobile nature of the system. This follows from the 
definition of a mobile system that was provided in the introduction. For a 
mobile system, it is more interesting to describe the application situations, 
i.e. the situations in which the device is used. 
 
The Problem Domain Model 
The problem domain model describes the part of the context that the users 
administer, monitor and control by means of the system. The modelling of 
this faced the following challenges: 
 
• Identifying classes 
• Identifying events 
• No physical counterparts 
• Classes with a single object 
• Classes versus functions 
• Users and clients 
• Structural relations 
 
Identification of the key classes was relatively straightforward. It was 
difficult to get started, but once the first candidates were identified, the 
participants suggested several more. The criterion used was whether the 



system would need to maintain information about objects from a class that 
was suggested. In addition, a class must be manageable. Some classes may 
be so small that they are really only representing an attribute. An example 
is Current Station. It is still included in the model because it represents a 
key concept that should appear in the model. We identified classes of a 
category that is not seen in conventional systems. The FM radio depends 
on two other components that are modelled as classes: GSM Part and 
Radio Chip in Fig. 2. In order to interact with these components, the FM 
radio needs to maintain updated information about their current state. 
It turned out to be much more difficult to identify events. We ended up 
modelling events that represent user actions and state changes for related 
components that the system needs to register or respond to. The 
identification of events involved significant discussion of the way in 
which the system can detect that these events have happened. 
The problem with events and to some extent also classes originates from 
the nature of the context. With a conventional system, there is often an 
existing physical context with tangible objects that we can model. A 
classical example is an inventory system, where the context includes the 
warehouse and the physical objects in it. Another example is air traffic 
control, where the context includes physical objects such as airplanes. For 
the typical mobile system, there is usually not an existing context with 
physical objects. The key classes in the class diagram for the FM radio 
model virtual objects that only exist in the computer system. We solved 
this by considering to what extent the system should administer, monitor 
or control other components that were part of the device. These became 
classes. 
In object-oriented methods, a class can be defined as a description that is 
common for a set of objects. Moreover, it is often suggested that classes 
with only a single object are very unusual. In our case, four out of six 
classes had only one object (Radio, GSM Part, Radio Chip and Current 
Station). We have seen the same with other applications for mobile 
devices. Thus single object classes are more common. Other examples of 
potentially relevant single object classes are screen, loudspeaker and 
headset but also more abstract items like a session and a connection. 
The participants modeled the problem domain before they modeled the 
application domain. A consequence of this order was that they defined 
problem domain classes that really reflected requirements to functionality 
and thereby pertained to the application domain model. We solved this by 
emphasizing the criterion: “Do you want to maintain information about 
this?” This problem is solved with experience, because more experienced 
designers model the problem and application domains in parallel. 
The context of the mobile device included clients, which is a generic term 
we introduced to cover both users and other components that will use the 
system we are modeling. The question was whether these clients should be 
included in the model of the problem domain. The general answer is that 
they should be in the model if we need to register information about them. 
For the FM radio it was considered as a possibility that different users 
could have their individual sets of preset stations. In that case, User would 
have been a class in the model of the problem domain.  



The model of the problem domain can employ the following object-
oriented structures:  generalization, aggregation and association. In our 
study, it was quite easy to explain these means of expression in general, 
but it was hard to relate them to their “actual counterparts” when the 
system was running. It was especially difficult with aggregation and 
association. This was solved by focusing on the ‘has-a’ definition of 
aggregation. In addition, we used construction and destruction of objects 
to differentiate between associated and aggregated objects. 
 
The Application Domain Model 
The purpose of the application domain model is to describe how the model 
of the problem domain is applied by users and other systems. Key 
elements in the model are use cases and a complete list of system 
functions. The modeling of this faced the following challenges: 
 
• Identifying users 
• Generating use cases 
 
The conventional approach is to define the users of the system as the 
people who are working in the application domain. Above, it was 
emphasized that it was impossible to identify a specific application 
domain for the FM radio. As a consequence, we had no simple way of 
identifying the users of the system. In addition, many components in a 
mobile system are applied by other components. Some of these 
components may then have users, and a difficult question was whether we 
should describe the component as the user or the user of that external 
component as the users of the system in question. To solve this, we 
introduced the notion of client which includes users as well as other 
systems or components. Thereby, we emphasized the direct user of the 
system considered. 
A related problem was that it was difficult to generate use cases. They are 
usually defined by identifying tasks in the application domain and then 
selecting those that will be supported by the system. This is basically a 
top-down approach. The difficulty of describing the application domain 
for the FM radio implied that we could not use that approach. Instead, we 
tried a bottom-up approach, where the participants described a set of 
activities that would involve use of the system. 
For the system definition, it was suggested to focus on application 
situations instead of the application domain. This might also make it easier 
to generate relevant use cases. However, we did not try this idea out in our 
study. 
 
Modelling System Behaviour 
The problem domain model is by nature static. During the modelling of 
the context for the FM radio, certain dynamic issues were considered. 
These issues were: 
 
• Detecting event occurrences 
• Handling errors 
• Connected devices 
 
Events are described as part of the problem domain model. In design, it is 
decided how they are represented in the model and presented on the user 



interface. When the system is running, the model should be updated each 
time an event occurs. Therefore, we need to consider for each event how 
we can detect an occurrence. This issue is important already in the 
modelling activity. If an event occurrence cannot be detected, the event 
should not be in our model. 
In the modelling of the context of the FM radio, errors turned out to be a 
very important issue. These errors were often complex and related both to 
the problem domain, the application domain and the functions of the 
system. With a classical administrative system, errors are handled by 
humans. Therefore, it is not as important to include them in the model. 
This was different for the mobile system that we modelled. Here, the 
system would need to handle errors, and therefore they should be 
described. Based on this experience, we would suggest that potential 
conflicts between systems are identified on an overall level in the system 
definition as part of the description of the technical platform. 
The system needs information about the devices that are connected. If the 
set of connected devices can change dynamically, they need to be 
registered by the system. In our case, we turned out to have a static set of 
connected devices. Therefore, we did not inquire into this aspect. 

5 Discussion 
The lessons we have learned from the action case study are twofold. First, the 
participants have managed to model the context of their mobile system by means 
of the concepts we offered them from OOA&D. They modelled the domain-
dependent aspects they will need to represent in the system and explicitly leaving 
out quite many aspects of the context that the mobile system need not be 
concerned with. The distinction between problem domain and application domain 
helped them decide for their system what is part of the dynamically changing 
context which need to be modelled. The concepts of object and event helped them 
figuring out how to represent that part of the context in the model. The model 
contains objects, but more importantly the objects experience events that 
represent the defined changes. 
Second, the participants did meet several challenges as explained in section 4.2. It 
is interesting to note that the challenges were concerned with how to apply the 
distinctions and concepts. When the participants had understood how to apply the 
distinction and the concepts, they had no problems with modelling by means of a 
subset of the modelling language UML 2.0. We therefore contend that the 
challenges for modeling domain-dependent aspects of mobile systems is not really 
a matter of extending the existing modelling language irrespective of whether that 
is based on conceptual graph theory or on UML.  
The lessons learned from the action case study emphasize two other issues. First, 
the approaches to modelling context for mobile systems described in section 2 and 
3 have something to offer for both the concern for representation and the concern 
for presentation. The results from the action in section 4 show in detail that 
modelling is all about deciding what should be represented in the model. That 
should be clear from the described experience with how to identify objects and 
how to identify events in subsection 4.2. The linkage to concern for presentation 
is as follows. The very reason to include a particular object or a particular event is 
that it needs to be presented in the user interface. The class ‘Current Station’ is in 
the model as a representation of the problem domain. It is there because we want 
to be able to show in the display what the current station is. Similarly, the event 



‘Frequency entered’ is there because we want to be able to show on the display 
that a frequency has been entered for the current station. The linkage between the 
representation and the presentation is in one sense intrinsic because we cannot 
show any item or behaviour in the problem domain that is not represented in the 
model. The linkage is also in some sense extrinsic because there is separation of 
concerns in the system’s architecture. The architecture is layered and how the 
problem domain is represented is hidden for the above layers. Vice versa, how the 
problem domain items and behaviour is presented is hidden for the model. 
Second, the modelling of domain-dependent aspects of mobile systems as we 
have explained it in section 2 and 3 is an improvement compared to other 
software engineering methods like RUP [4] and MSF [23] because: (a) it 
recognizes a context that is outside the system that needs to be represented within 
the system, and (b) it offers a better linkage to the design of the human-computer 
interaction. It is also an improvement compared to the human-computer 
interaction methods because: (a) it points directly at what in the context that needs 
to be presented, (b) it offers a better linkage to software engineering, and (c) it 
utilizes a clear, layered software architecture that separates concerns between the 
model (what is represented) and the user interface (how it is presented).  
For a mobile system adaptability is a main issue. When Anagnostopoulos et al. 
[33] state the modelling requirement that “the application should be capable of 
adapting its behavior according to contextual information” little has really been 
said as any non-trivial software system should have reasonable responses to its 
stimuli which in the case of a mobile system will encompass contextual changes. 
At a more specific level adaptability is easier said than implemented. The 
approach to modeling that we have presented here is particularly directed at 
deciding exactly which contextual changes that are taken to be important to the 
system. This means that the model will be adaptive towards the changes that are 
already modeled as events in problem domain. It also means that the system is 
incapable of adapting to whatever changes that may occur in the context which 
we have not modeled. At one level there is little surprise in this as the system can 
only perform according to an algorithmic specification. At another level it is often 
forgotten in the process of modeling that a system can only adapt to events that 
have already been foreseen. 
Adaptability towards changes in the problem domain is thus dealt with by 
modeling the changes as events. Adaptability towards changes in the application 
domain and in the underlying technical resources has to be dealt with in a slightly 
different way. Changes in the application domain have to be handled by providing 
several sets of interaction. That means we will have to model this in more than 
one set of use cases. A particular set of use cases will then be designed for a 
particular purpose (or situation as discussed above). The user’s purpose (or 
situation) changes the available interaction should change similarly. To achieve 
that, the user’s purpose (or situation) has to be modeled as part of the problem 
domain, i.e., we need to know about the user’s task, purpose or situation.  
Changes in the underlying technical resources have to be handled by 
encapsulating the different underlying resources. An example of that is that in one 
situation we are connected to the world by a Bluetooth connection to a stationary 
device and in another situation we are connected to the world by a WiFi 
connection. Again, we need to know about which technical resources are with 
reach and they should thus be modeled as part of the problem domain. It then 



becomes an event when we are entering Bluetooth reach and another event when 
we are leaving. 

6 Conclusion 
This paper addresses how we can model domain-dependent aspects of mobile 
systems with the purpose of providing a basis for designing the system. We have 
surveyed existing research literature on this question. The existing literature 
focuses either on the problem domain or the application domain. For designing a 
mobile system, this is not adequate. 
We have presented results from an empirical study of domain modeling in relation 
to a specific mobile software system. We have modeled the application and 
problem domains for this system with the aim of providing a useful basis for 
technical design of the mobile system. The application has been used in an action 
case study where we have enquired into teaching and deployment of a modelling 
method in a large group of software developers in mobile software companies. 
From the action case study we have presented both the results in terms of the 
models we arrived at and in terms of the process we went through. The resulting 
models show that the problem domain for the example case has been modelled in 
terms of classes and events. The process experience emphasizes the challenges 
faced by software developers whehn modeling domain-dependent aspects of a 
mobile system.  
The method we have applied in the action case study and reported on in this paper 
suggests modelling of domain-depdendent apsepcts of mobile systems based on 
ther following five principles: 
 
• The modelling of context is based on a fundamental distinction between the problem 
domain and the application domain. 
• The starting point is a system definition that assists in defining the system’s scope 
and delimits the problem and application domains. 
• The problem domain is modelled in terms of the basic concepts ‘object’ and ‘events’ 
and described in a class diagram and a set of statechart diagrams. 
• The application domain is modelled in terms of ‘use cases’ and ‘functions’ and 
described in related specifications. 
• The model and its selection of objects and events are useful for both design of 
representation and presentation in a software system. 

ACKNOWLEDGMENTS 
The research we report in this paper extends ideas that we have developed in close 
collaboration with Lars Mathiassen and Andreas Munk-Madsen through the decade 1990-
2000. For the empirical research that we build on we are greatly in depth to Siemens 
Mobile, RTX Telecom and the software developers we have worked with. 

REFERENCES 
[1] Lyytinen, K. and Y. Yoo, Research Commentary: The Next Wave of Nomadic Computing. Information 
Systems Research, 2002. 13(4): p. 377-388. 
[2] Dey, A.K. and G.D. Abowd, Towards a Better Understanding of Context and Context-Awareness. 
1999, Georgia Institute of Technology. 
[3] Clemmensen, T. and J. Nørbjerg, Separation in theory, coordination in practice - teaching HCI and 
SE. Software Process: Improvement and Practice, 2003. 8(2): p. 99-110. 
[4] Kruchten, P., The Rational Unified Process: An Introduction. 3 ed. Object Technology Series, ed. G. 
Booch, I. Jacobsson, and J. Rumbaugh. 2003: Addison-Wesley Pearson Education. 
[5] Seffah, A. and E. Metzker, The obstacles and myths of usability and software engineering. 
Communications of the ACM, 2004. 47(12): p. 71-76. 
[6] Nielsen, P.A., Reflections on development methods for information systems: a set of distinctions 
between methods. Office, Technology and People, 1989. 5(2): p. 81-104. 
[7] Avison, D. and G. Fitzgerald, Information Systems Development: Methodologies, Techniques and 
Tools. 3 ed. 2002, London: McGraw-Hill. 
[8] DeMarco, T. (1979). Structured Analysis and System Specification. Yourdon Inc. & Prentice-Hall, 
Englewood Cliffs, New Jersey. 
[9] Yourdon, E. (1982). Managing the System Life Cycle. Yourdon Inc., New York. 
[10] Yourdon, E. (1989). Modern Structured Analysis. Prentice-Hall, New York.  
[11] Date, C. J. 1977 An Introduction to Database Systems (The Systems Programming Series). Addison 



Wesley Longman Publishing Co., Inc. 
[12] Peter Chen (March 1976). "The Entity-Relationship Model - Toward a Unified View of Data". ACM 
Transactions on Database Systems 1 (1): 9-36. 
[13] Dahl, O.-J., B. Myhrhaug & K. Nygaard, 1971. SIMULA 67 Common Base Language. Publikasjon nr. 
S-22, Norsk Regnesentral, Oslo. 
[14] Holbæk-Hanssen, E., P. Håndlykken & K. Nygaard, 1975. System Description and the DELTA 
Language, Norsk Regnesentral. 
[15] Jackson, M., 1983. System Development. Prentice-Hall, Englewood Cliffs, New Jersey. 
[16] Meyer, B., 1988. Object-Oriented Software Construction. Prentice Hall, Hemel Hempstead. 
[17] Booch, G., 1994. Object-Oriented Analysis and Design with Applications, second edition. Ben-
jamin/Cummings, Redwood City, California. 
[18] Coad, P. & E. Yourdon, 1991a. Object-Oriented Analysis, second edition. Prentice-Hall, Englewood 
Cliffs, New Jersey. 
[19] Coad, P. & E. Yourdon, 1991b. Object-Oriented Design. Prentice-Hall, Englewood Cliffs, New Jersey. 
[20] Rumbaugh, J., M. Blaha, W. Premerlani, S. Eddy & W. Lorensen, 1991. Object-Oriented Modelling 
and Design. Prentice-Hall, Englewood Cliffs, New Jersey. 
[21] Jacobson, I., G. Booch & J. Rumbaugh, 1999. The Unified Software Development Process. Addison-
Wesley, Reading, Massachusetts. 
[22] Object Management Group, 1998. Unified Modeling Language Specification. Framingham, 
Massachusetts. 
[23] Turner, M.S.V., Microsoft® Solutions Framework Essentials 2006: Microsoft Corporation. 
[24] Dix, A., et al., Human-Computer Interaction. 3 ed. 1998, London: Prentice-Hall. 
[25] Preece, J., Y. Rogers, and H. Sharp, Interaction Design: Beyond Human-Computer Interaction. 2002, 
New York: John Wiley and Sons. 
[26] Jones, M. and G. Marsden, Mobile Interaction Design. 2006: Wiley. 
[27] Agre, P., Changing Places: Contexts of Awareness in Computing. Human-Computer Interaction, 
2001. 16(2): p. 177-192. 
[28] Dourish, P., Seeking a foundation for context-aware computing. Human-Computer Interaction, 2001. 
16(2): p. 229-241. 
[29] Dey, A.K., G.D. Abowd, and D. Salber, A conceptual framework and a toolkit for supporting the rapid 
prototyping of context-aware applications. Human-Computer Interaction, 2001. 16(2): p. 97-166. 
[30] Graham, C. and J. Kjeldskov. Indexical Representations for Context-Aware Mobile Devices. in IADIS 
e-Society 2003. 2003. Lisbon, Portugal: IADIS. 
[31] Morse, D., S. Armstrong, and A.K. Dey. The What, Who, Where, When, Why and How of Context-
Awareness. in CHI 2000. 2000: ACM. 
[32] Kjeldskov, J. and J. Paay. Augmenting the City: The Design of a Context-Aware Mobile Web Site. in 
DUX 2005. 2005. San Francisco, CA, USA: ACM. 
[33] Anagnostopoulos, C.B., A. Tsounis, and S. Hadjiefthymiades, Context Awareness in Mobile 
Computing Environments. Wireless Personal Communications Journal, 2006. 
[34] Henricksen, K., J. Indulska, and A. Rakotonirainy. Modeling Context Information in Pervasive 
Computing Systems. in Pervasive 2002. 2002: Springer-Verlag. 
[35] Lei, S. and K. Zhang. Mobile Context Modelling using Conceptual Graphs. in Wireless And Mobile 
Computing, Networking and Communications, 2005. (WiMob'2005) 2005: IEEE. 
[36] Baumeister, H., et al. Extending Activity Diagrams to Model Mobile Systems. in NODe 2002. 2003: 
Springer-Verlag. 
[37] Mathiassen, L., et al., Object-Oriented Analysis  & Design. 2000, Aalborg: Marko  Publishers. 
[38] Mathiassen, L., et al. Modelling Events in Object-Oriented Analysis. in International Conference on 
Object Oriented Information Systems. 1994. London, U.K.: Springer. 
[39] Braa, K. and R. Vidgen, Interpretation, Intervention and Reduction in the Organizatioanl Laboratory: A 
Framework for In-context Information Systems Research. Accounting, Management and Information 
Technologies, 1999. 9: p. 25-47. 
[40] Avison, D., et al., Action Research. Communications of the ACM, 1999. 42(1): p. 94-97. 
[41] McKay, J. and P. Marshall, The dual imperatives of action research. Information Technology & 
People, 2001. 14(1): p. 46-59. 
[42] Iversen, J.H., L. Mathiassen, and P.A. Nielsen, Managing Risk in Software Process Improvement: An 
Action Research Approach. MIS Quarterly, 2004. 28(3): p. 395-433. 
[43] Nielsen, P.A., IS Action Research and Its Criteria, in Information Systems Action Research: Bridging 
the Industry-University Technology Gap, N.F. Kock, Jr., Editor. 2006, Springer Verlag: New York. 
[44] Yin, R., Case study research: Design and methods. 2 ed. 1994, Beverly Hills, CA: Sage Publishing. 
 


