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Multidimensional Modeling

Torben Bach Pedersen, Aalborg University, Denmark, http://www.cs.aau.dk/ tbp

SYNONYMS
Dimensional modeling; Star schema modeling

DEFINITION
Multidimensional modelingis the process of modeling the data in a universe of discourseusing the modeling
constructs provided by a multidimensional data model. Briefly, multidimensional models categorize data as
being eitherfactswith associated numerical measures, or as being dimensionsthat characterize the facts and are
mostly textual. For example, in a retail business,productsare sold tocustomersat certaintimesin certainamounts
and at certainprices. A typical fact would be apurchase. Typical measures would be the amount and price of
the purchase. Typical dimensions would be the location of the purchase, the type of product being purchased,
and the time of the purchase. Queries then aggregate measurevalues over ranges of dimension values to produce
results such as the total sales per month and product type.

HISTORICAL BACKGROUND
Multidimensional databases do not have their origin in database technology, but stem from multidimensional matrix algebra,
which has been used for (manual) data analyses since the late19th century. During the late 1960s, two companies, IRI and
Comshare, independently began the development of systems that later turned into multidimensional database systems. The
IRI Express tool became very popular in the marketing analysis area in the late 1970s and early 1980s; it later turned into
a market-leading OLAP tool and was acquired by Oracle. Concurrently, the Comshare system developed into System W,
which was heavily used for financial planning, analysis, andreporting during the 1980s.
A concurrent development started in the early 1980s in the area of so-called statistical data managementwhich focused
on modeling and managing statistical data [1], initially within social science contexts such as census data. Many important
concepts of multidimensional modeling such as summarizability (ensuring correct aggregate query results for complex data)
have their roots in this area. An overview is found in [15].
In 1991, Arbor was formed with the specific purpose of creating “a multiuser, multidimensional database server,” which
resulted in the Essbase system. Arbor, now Hyperion, later licensed a basic version of Essbase to IBM for integration into
DB2. It was Arbor and Codd who in 1993 coined the term OLAP [2].
Another significant development in the early 1990s was the advent of large data warehouses[5] for storing and analyzing
massive amounts of enterprise data. Data warehouses are typically based on relational star schemasor snowflake schemas,
an approach to implementing multidimensional databases using relational database technology. The 1996 version of [5]
popularized the use of star schema modeling for data warehouses.
From the mid 1990s and beyond, the introduction of the “data cube” operator [4] sparked a considerable research interestin
the field of modeling multidimensional databases for use in data warehouses and On-Line Analytical Processing(OLAP).
In 1998, Microsoft shipped its MS OLAP Server, the first multidimensional system aimed at the mass market. This has lead
to the current situation where multidimensional systems are increasingly becoming commodity products that are shipped at
no extra cost together with leading relational database systems.
A more in-depth coverage of the history of multidimensionaldatabases is available in the literature [16]. Surveys of
multidimensional data models can also be found in the literature [12, 17].
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First, an overview of the concept of a multidimensional cubeis given, then dimensions, facts, and measures are covered in
turn.

Data Cubes Data cubes provide true multidimensionality. They generalize spreadsheets to any number of dimensions. In
addition, hierarchies in dimensions and formulas are first-class, built-in concepts, meaning that these are supportedwithout
duplicating their definitions. A collection of related cubes is commonly referred to as amultidimensional databaseor a
multidimensional data warehouse.
A dimensional cube for, e.g., CD sales can be obtained by including additional dimensions apart from just the album and
the city where the album was sold. The most pertinent exampleof an additional dimension is a time dimension, but it is also
possible to include other dimensions, e.g., an artist dimension that describes the artists associated with albums. In acube,
the combinations of a dimension value from each dimension define thecellsof the cube. The actual sales counts are stored
in the corresponding cells.
In a cube, dimensions are first-class concepts with associated domains, meaning that the addition of new dimension values is
easily handled. Although the term “cube” implies 3 dimensions, a cube can have any number of dimensions. It turns out that
most real-world cubes have 4–12 dimensions [5, 16]. Although there is no theoretical limit to the number of dimensions,
current tools often experience performance problems when the number of dimensions is more than 10–15. To better suggest
the high number of dimensions, the term “hypercube” is oftenused instead of “cube.”
Figure 1 illustrates a three-dimensional cube based on the number of CD sales of two particular albums in Aalborg, Denmark,
and New York, USA, for 2006 and 2007. The cube then contains sales counts for two cities, two albums, and two years.

Figure 1: Sales Data Cube

Depending on the specific application, a highly varying percentage of the cells in a cube are non-empty, meaning that cubes
range fromsparseto dense. Cubes tend to become increasingly sparse with increasing dimensionality and with increasingly
finer granularities of the dimension values.
A non-empty cell is called afact. The example has a fact for each combination of time, album, and city where at least one
sale was made. A fact has associated with it a number ofmeasures. These are numerical values that “live” within the cells.
In our case, there is only one measure, the sales count.
Generally, only 2 or 3 dimensions may be viewed at the same time, although for low-cardinality dimensions, up to 4
dimensions can be shown by nesting one dimension within another on the axes. Thus, the dimensionality of a cube is
reduced at query time byprojectingit down to 2 or 3 dimensions viaaggregationof the measure values across the projected-
out dimensions. For example, if the user wants to view just sales by City and Time, she aggregates over the entire dimension
that characterizes the sales by Album for each combination of City and Time.
An important goal of multidimensional modeling is to “provide as much context as possible for the facts” [5]. The concept
of dimensionis the central means of providing this context. One consequence of this is a different view ondata redundancy
than in relational databases. In multidimensional databases, controlled redundancy is generally considered appropriate, as
long as it considerably increases the information value of the data. One reason to allow redundancy is that multidimensional
data is oftenderivedfrom other data sources, e.g., data from a transactional relational system, rather than being “born” as
multidimensional data, meaning that updates can more easily be handled [5]. However, there is usually no redundancy in
the facts, only in the dimensions.
Having introduced the cube, its principal elements, dimensions, facts, and measures, are now described in more detail.
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Dimensions The notion of a dimension is an essential and distinguishingconcept for multidimensional databases.
Dimensions are used for two purposes: theselectionof data and thegroupingof data at a desired level of detail.
A dimension is organized into a containment-like hierarchycomposed of a number oflevels, each of which represents a level
of detail that is of interest to the analyses to be performed.The instances of the dimension are typically calleddimension
values. Each such value belongs to a particular level.
In some cases, it is advantageous for a dimension to havemultiple hierarchiesdefined on it. For example, a Time dimension
may have hierarchies for bothFiscal Yearand Calendar Yeardefined on it. Multiple hierarchies share one or more
common lowest level(s), e.g., Day and Month, and then group these into multiple levels higher up, e.g., Fiscal Quarter and
Calendar Quarter to allow for easy reference to several waysof grouping. Most multidimensional models allow multiple
hierarchies. A dimension hierarchy is defined in the metadata of the cube, or the metadata of the multidimensional database,
if dimensions can be shared.
In Figure 2, the schema and instances of a sampleLocationdimension capturing the cities where CDs are sold are shown.
The Location dimension has three levels, the City level being the lowest. City level values are grouped intoCountrylevel

>

Country

City

>

Denmark

Aalborg

USA

New York Tucson Washington DC

Figure 2: Schema and Instance for the Location Dimension

values, i.e., countries. For example, Aalborg is in Denmark. The> (“top”) level representsall of the dimension, i.e., every
dimension value is part of the> (“top”) value.
In some multidimensional models, a level may have associated with it a number oflevel propertiesthat are used to hold
simple, non-hierarchical information. For example, the duration of an album can be a level property in the Album level of
the Music dimension. This information could also be captured using an extra Duration dimension. Using the level property
has the effect of not increasing the dimensionality of the cube.
Unlike the linear spaces used in matrix algebra, there is typically no ordering and/or distance metric on the dimension
values in multidimensional models. Rather, the only ordering is the containment of lower-level values in higher-level
values. However, for some dimensions, e.g., the Time dimension, an ordering of the dimension values is available and is
used for calculating cumulative information such as “totalsales in year to date.”
Most models require dimension hierarchies to formbalanced trees. This means that the dimension hierarchy must have
uniform height everywhere, e.g., all departments, even small ones, must be subdivided into project groups. Additionally,
direct links between dimension values can only go between immediate parent-child levels, and not jump two or more levels.
For example, all cities are first grouped into states and theninto countries, cities cannot be grouped directly under countries
(as is the case in Denmark which has no states). Finally, eachnon-top value has precisely one parent, e.g., a product must
belong to exactly one product group. Below, the relaxation of these constraints is discussed.

Facts Facts are the objects that represent thesubjectof the desired analyses, i.e., the interesting “thing,” or event or
process, that is to be analyzed to better understand its behavior.
In most multidimensional data models, the facts areimplicitly defined by their combination of dimension values. If a non-
empty cell exists for a particular combination, a fact exists; otherwise, no fact exists. (Some other models treat factsas
first-class objects with a separate identity [12].) Next, most multidimensional models require that each fact be mappedto
precisely one dimension value at the lowest level in each dimension. Other models relax this requirement [12].
A fact has a certaingranularity, determined by the levels from which its combination of dimension values are drawn. For
example, the fact granularity in our example cube is “Year byAlbum by City.” Granularities consisting of higher-level or
lower-level dimension levels than a given granularity, e.g., “Year by Album Genre by City” or “Day by Album by City” for
our example, are said to becoarseror finer than the given granularity, respectively.
It is commonplace to distinguish among three kinds of facts:eventfacts,statefacts, andcumulative snapshotfacts [5].
Event facts (at least at the finest granularity) typically modelevents in the real world, meaning that a unique instance, e.g., a
particular sale of a given (particular physical instance ofa) product in a given store at a given time, of the overall real-world
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process that is captured, e.g., sales for a supermarket chain, is represented by one fact. Examples of event facts include
sales, clicks on web pages, and movement of goods in and out of(real) warehouses (flow).
A snapshot fact models thestateof a given process at a given point in time. Typical examples of snapshot facts include the
inventory levels in stores and warehouses, and the number ofusers using a web site. For snapshot facts, the same physical
object, e.g., a specific physical instance of a can of beans ona shelf, with which the captured real-world process, e.g.,
inventory management, is concerned, may be “measured” at several time points, meaning that data related to that particular
physical object will occur in several facts at different time points. This is unlike event facts, where a specific physical object
such as a particular instance of a can of beans can only be soldonce, and will thus only occur in one fact.
Cumulative snapshot facts are used to handle information about a process up to a certain point in time. For example, the
total sales in the year to date may be considered as a fact. Then the total sales up to and including the current month this
year can be easily compared to the figure for the corresponding month last year.
Often, all three types of facts can be found in a given data warehouse, as they support complementary classes of analyses.
Indeed, the same base data, e.g., the movement of goods in a (real) warehouse, may often find its way into three cubes of
different types, e.g., warehouse flow, warehouse inventory, and warehouse flow in year-to-date.

Measures A measurehas two components: anumerical propertyof a fact, e.g., the sales price or profit, and aformula
(most often a simple aggregation function such as SUM) that can be used to combine several measure values into one. In a
multidimensional database, measures generally representthe properties of the chosen facts that the users want to study, e.g.,
with the purpose of optimizing them.
Measures then take on different values for different combinations of dimension values. The property and formula are chosen
such that the value of a measure is meaningful for all combinations of aggregation levels. The formula is defined in the
metadata and thus not replicated as in the spreadsheet example. Most multidimensional data models provide the built-in
concept of measures, but a few models do not. In these models,dimension values are used for computations instead [12].
It is important to distinguish among three classes of measures, namelyadditive, semi-additive, andnon-additivemeasures,
as these behave quite differently in computations.
Additive measure values can be summed meaningfully along any dimension. For example, it makes sense to add the total
sales over Album, Location, and Time, as this causes no overlap among the real-world phenomena that caused the individual
values. Additive measures occur for any kind of fact.
Semi-additive measure values cannot be summed along one or more of the dimensions, most often the Time dimension.
Semi-additive measures generally occur when the fact is of type snapshot or cumulative snapshot. For example, it does not
make sense to sum inventory levels across time, as the same inventory item, e.g., a specific physical instance of an album,
may be counted several times, but it is meaningful to sum inventory levels across albums and stores.
Non-additive measure values cannot be summed along any dimension, usually because of the chosen formula. For example,
this occurs when averages for lower-level values cannot be summed into averages for higher-level values. Non-additive
measures can occur for any kind of fact.

The Modeling Process Now, the process to be carried out when doing multidimensional modeling is covered. One
difference from “ordinary” data modeling is that the multidimensional modeler should not try to include all the available data
and all their relationships in the model, but only those parts which are essential “drivers” of the business. Another difference
is that redundancy may be ok (in a few, well-chosen places) ifintroducing redundancy makes the model more intuitive for
the user. For example, time-related information may be stored in both a Calendar time dimension and a Fiscal Year time
dimension, or specific customer info may be present both in a person-oriented Customer dimension or a group-oriented
Demographics dimension.
Kimball [5, 6] advocates a four-step process when doing multidimensional modeling.

Choose the business process(es) to model

1.2.Choose the grain of the business process

3.Choose the dimensions

4.Choose the measures

Step 1 refers to the facts that not all business processes maybe equally important for the business. For example, in a
supermarket, there are business processes forsalesandpurchases, but the sales process is probably the one with the largest
potential for increasing profits, and should thus be prioritized. Step 2 says that data should be captured at the right grain,
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or granularity, compared to the analysis needs. For example, “individual sales items” may be captured, or perhaps (slightly
aggregated) “total sales per product per store per day” may be precise enough, enabling performance and storage gains.
Step 3 then goes on to refine the schema of each part of the graininto a complete dimension with levels and attributes. For
the example above, a Store, a Product, and a Time dimension are specified. Finally, Step 4 chooses the numerical measures
to capture for each combination of dimension values, for example dollar sales, unit sales, dollar cost, profit, etc.
When doing multidimensional modeling “in the large” for many types of data (many cubes) and several user groups, the most
important task is to ensure that analysis results are comparable across cubes, i.e., that the cubes are somehow “compatible.”
This is ensured by (as far as possible) picking dimensions and measures from a set of common so-called “conformed”
dimensions and measures [5, 6] rather than “re-definining” the same concept, e.g., product, each time it occurs in a new
context. New cubes can then be put onto the common “DW bus” [6]and used together. This sounds easier than it is, since
it often requires quite a struggle with different parts of anorganisation to define for example a common Product dimension
that can be used by everyone.

Complex Multidimensional Modeling Multidimensional data modeling is not always as simple as described above.
A complexity that is almost always present is that of handling changein the dimension values. Kimball [5, 6] calls
this the problem ofslowly changing dimensions. For example, customer addresses, product category names,and
the way products are categorized may change over time. This must be handled to ensure correct results both for
current and historical data. Kimball advises three types ofslowly changing dimensions: Type 1 (overwrite previous
value with current value), Type 2 (keep versions of dimension rows), and Type 3 (keep previous and current value in
different columns). Finally, the concept ofminidimensions[6] advocates the separation of relatively static information
(customer name, etc) and dynamic information (income, number of kids, etc.) into separate dimensions. Please read the
Data Warehouse Maintenance, Evolution, and Versioningentry for details on slowly changing dimensions.
The traditional multidimensional data models and implementation techniques assume that the data being modeled is quite
regular. Specifically, it is typically assumed that all facts map (directly) to dimension values at the lowest levels of the
dimensions and only to one value in each dimension. Further,it is assumed that the dimension hierarchies are simply
balanced trees. In many cases, this is adequate to support the desired applications satisfactorily. However, situations occur
where these assumptions fail.
In such situations, the support offered by “standard” multidimensional models and systems is inadequate, and more advanced
concepts and techniques are called for. Now, the impact of irregular hierarchies on the performance enhancing technique
known as partial, or practical, pre-computation, is reviewed.
Complex multidimensional data are problematic as they are not summarizable. Intuitively, data issummarizableif the
results of higher-level aggregates can be derived from the results of lower-level aggregates. Without summarizability, users
will either get wrong query results, if they base them on lower-level results, or the system cannot use pre-computed lower-
level results to compute higher-level results. When it is nolonger possible to pre-compute, store, and subsequently reuse
lower-level results for the computation of higher-level results, aggregates must instead be calculated directly frombase data,
which leads to considerable increases in computational costs.
It has been shown that summarizability requires that aggregate functions be distributive and that the ordering of dimension
values bestrict, onto, andcovering[7, 12]. Informally, a dimension hierarchy isstrict if no dimension value has more
than one (direct) parent,onto if the hierarchy is balanced, andcoveringif no containment path skips a level. Intuitively,
this means that dimension hierarchies must be balanced trees. If this is not the case, some lower-level values will be either
double-counted or not counted when reusing intermediate query results.

Figure 3: Irregular Dimensions

Figure 3 contains two dimension hierarchies: a Location hierarchy including a State level, and the hierarchy for the
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Organization dimension for some company. The hierarchy to the left is non-covering, as Denmark has no states. If
aggregates at the State level are pre-computed, there will be no values for Aalborg and Copenhagen, meaning that facts
mapped to these cities will not be counted when computing country totals.
To the right in figure, the hierarchy is non-onto because the Research department has no further subdivision. If aggregates
are materialized at the lowest level, facts mapping directly to the Research department will not be counted. The hierarchy is
also non-strict as the TestCenter is shared between Financeand Logistics. If aggregates are materialized at the middlelevel,
data for TestCenter will be counted twice, for both Finance and Logistics, which is, in fact, what is desired at this level.
However, this means that data will be double-counted if these aggregates are then combined into the grand total.
There exists several design solutions that aims to solve theproblems associated with irregular hierarchies by altering the
dimension schemas or hierarchies [8, 11].

KEY APPLICATIONS*
Multidimensional data models have three important application areas within data analysis. First, multidimensional models
are used indata warehousing. Briefly, a data warehouse is a large repository of integrated data obtained from several sources
in an enterprise for the specific purpose of data analysis. Typically, this data is modeled as being multidimensional, asthis
offers good support for data analyses.
Second, multidimensional models lie at the core ofOn-Line Analytical Processing(OLAP) systems. Such systems provide
fast answers to queries that aggregate large amounts of so-called detail data to find overall trends, and they present theresults
in a multidimensional fashion. Consequently, a multidimensional data organization has proven to be particularly wellsuited
for OLAP. The widely acknowledged “OLAP Report” company [9]provides an “acid test” for OLAP by defining OLAP
as “Fast Analysis of Shared Multidimensional Information”(FASMI). In this definition, “Fast” refers to the expectation
of response times that are within a few seconds, “Analysis” refers to the need for easy-to-use support for business logic
and statistical analyses, “Shared” suggests a need for security mechanisms and concurrency control for multiple users,
“Multidimensional” refers to the expectation that a data model with hierarchical dimensions is used, and “Information”
suggests that the system must be able to manage all the required data and derived information.
Third, multidimensional data are increasingly becoming the basis fordata mining, where the aim is to (semi-) automatically
discover unknown knowledge in large databases. Indeed, it turns out that multidimensionally organized data are also
particularly well suited for the queries posed by data mining tools.

FUTURE DIRECTIONS
A pressing need for multidimensional modeling is the aspectof standardization, i.e., agreeing on a common data model,
a graphical notation for it, and support by tools. Also, better integration between ordinary “operational modeling”
and multidimensional modeling is needed. Another future research line is the modeling of important system aspects
such as security, quality, requirements, evolution, and interoperability [14]. This will be extended to also cover the
modeling of business intelligence applications such as data mining, patterns, Extraction-Transformation-Loading(ETL),
What-if Analysis, and Business Process Modeling [14]. Finally, an importantline of research will cover the modeling of
more (complex) types of data, including integrating multidimensional data with text data, semistructured/XML/web data
and spatial/spatio-temporal/mobile data [13].

CROSS REFERENCE*
Business Intelligence; Cube; Data Warehouse; Data Warehouse Maintenance, Evolution, and Versioning; Data warehousing
systems: foundations and architectures; Dimension; Hierarchy; Measure; On-Line Analytical Processing; Statistical Data
Management; Summarizability; What-if Analysis;
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