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Analysis of stress updates in the material-point method

Søren Andersen∗ and Lars Andersen
Department of Civil Engineering

Aalborg University, Aalborg, Denmark
e–mail: sa@civil.aau.dk

Summary The material-point method (MPM) is a new numerical method for analysis of large strain
engineering problems. The MPM applies a dual formulation, where the state of the problem (mass, stress,
strain, velocity etc.) is tracked using a finite set of material points while the governing equations are solved
on a background computational grid. Several references state, that one of the main advantages of the
material-point method is the easy application of complicated material behaviour as the constitutive response
is updated individually for each material point. However, as discussed here, the MPM way updating and
integrating stresses in time is problematic. This is discussed using an example of the dynamical collapse of
a soil column.

Introduction

The material-point point method is a new computational method for modelling large-stain dy-
namical engineering problems. The material-point method was originally developed by Sulsky
and coworkers [1, 2]. An important extension, known as the generalized material point method
(GIMP), is presented by Bardenhagen and Kober [3].

Theory

In the MPM a continuum problem is discretized by representing the domain of the problem, Ω,
by a finite set p = 1, ..Np material points. Each material point is assigned a mass, stress, velocity
and density, denoted mp,σσσp,vp, ρp, respectively. The domain associated with the material point,
p, is denoted Ωp and the volume of this domain is denoted Vp. In addition, a finite set grid nodes
i = 1, ..Nn, are defined where the governing equations are solved. In the original MPM formula-
tion the material points are represented using the Dirac delta function when forming the governing
equations on the grid. Hence, the interpolation between the material points and the mesh is gov-
erned by the nodal shape functions Ni(x). In the GIMP, further a particle characteristic function,
χp(x), is defined for each material point.

The governing equation is the balance of momentum

ρ
dv

dt
= ∇ · σσσ + ρb, (1)

where ρ = ρ(x, t) is the current density, v = v(x, t) is the spatial velocity, σσσ = σσσ(x, t) is the
Cauchy stress tensor and b = b(x, t) is the specific body force. Utilizing the GIMP formulation,
the discrete equation becomes

mi
dvi
dt

= f
int
i + f

ext
i , (2)

wheremi
dvi

dt
=

∑
pmp

dvp

dt
N̄ip is the nodal momentum rate of change,

f
int
i = −

∑
p

σσσpVp
∂N̄ip

∂x
and f

ext
i =

∫
∂Ωτ

NiτττdS +
∑
p

mpbpN̄ip (3)
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is the internal force and external forces, respectively.

The weighting and the gradient weighting function are defined by

N̄ip =
1

Vp

∫
Ωp

⋃
Ω

NiχpdV and
∂N̄ip

∂x
=

1

Vp

∫
Ωp

⋃
Ω

∂Ni

∂x
χpdV. (4)

For comparison, if the particle function is defined by χp(x) = δ(x−xp) the original MPM formu-
lation is retrieved. Another comparison relevant for this discussion is that the MPM formulation is
similar to a finite element formulation, where the Gauss points are replaced by material points.

Time-integration scheme

Equation 2 is the basic equation that using appropriate boundary conditions is integrated in time
in order to find the evolution of the state variables, that are defined at the material points. This
constitutes to updating the position, velocity, stress and density at the material points. The typical
procedure applied here and in the references [1, 2] is to use explicit time integration. Hence, the
time domain is divided into a finite set of timesteps and the size of the time-steps has to satisfy the
Courant criterion.

The update of position and velocity is performed by

x
k+1
p = x

k
p +Δt

Nn∑
i=1

N̄ip
mivi +Δt(f int,ki + f

ext,k
i )

mi

(5)

and

v
k+1
p = v

k
p +Δt

Nn∑
i=1

N̄ip

(f int,ki + f
ext,k
i )

mi
. (6)

where the nodal mass and velocity are determined by

mk
i =

Np∑
p=1

mk
pN̄ip and v

k
i =

∑Np

p=1 v
k
pmpN̄ip

mp
, (7)

respectively.

Similarly, the strain increments at the material points are found by

Δεεεp =
Δt

2

Nn∑
i=1

(
∇N̄ipvi + (∇N̄ipvi)

T
)
. (8)

Then the stress increments are found individually at each material point.

Problems regarding stresses

When considered at a specific time-step, the material point method is similar to a finite element
method for the grid, but where the integration in now performed using the set of material points
instead of using Gauss points. This leads to an inaccurate integration. In most implementations
of MPM, the grid nodes are fixed spatially, while the material points will move in a dynamical
problem. Hence, the material points move relatively to the grid between the different time steps,
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which leads to a further loss of precision. Thus although initially optionally discretized, the inte-
gration involved in assembling Eq. 3 will not be complete. An effect of the relative motion is the
co called grid-crossing error. Typically, the gradients of nodal shape-functions are discontinuous
across element boundaries. Hence, as a material point that changes cell between to time-steps be-
tween two time-steps will contribute significantly differently to the internal force, when it moves
relatively to the grid. The definition a particle characteristic function in the GIMP somewhat limit
the grid-crossing error. As a result of this the material point will experience an unphysical accel-
eration according to Eq. 6 and an unphysical strain increment according to Eq. 8. However, due to
the nature of the explicit time integration these effects will be smoothed spatially over time, and
as has been shown realistic results can still be obtained.

However, for general problems the incremental stress update defined at the individual material
points leads to unrealistic stresses. This is due to the sum over stress increments determined from
strain increments which may generally be erroneous for the individual material points. The effect
of this is shown in the following numerical example.

Example: Collapsing soil column

A rectangular soil column placed on a frictional surface is considered. The column is 8 metres high
and 4 metres long and plane strain conditions are considered. The soil column is unsupported along
the vertical boundaries. Further, the stresses are assumed to increase linearly with the distance from
the top. As these stresses cannot be sustained on the vertical sides, a plastic collapse will occur. An
elasto-plastic material model based on the Mohr-Coulomb yield criterion, using an explicit return
mapping scheme as described by Clausen et al. [4] is applied to enforce the yield criterion.

The soil is described using the following set of material properties:

E = 20MPa, ν = 0.42, ρ0 = 103kg/m3, c = 1kPa , φ = 42o and ψ = 0o. (9)

A frictional coefficient μ = 0.6 is prescribed at the lower boundary.

An initial K0-stress state is specified with the vertical and horizontal normal stress given by

σ0yy = −dgρ0 and σ0xx = σ0zz = −dgρ0K0, (10)

where g = 9.8m/s2 is the gravity and d is the distance from the top soil surface. where the earth
pressure coefficient is given by K0 = ν/(1 − ν). Finally, σ0xy = 0 is prescribed for all material
points.

In order to visualize the collapse of the soil-column, each material is assigned a regular domain in
the initial configuration. Further, a deformation tensor is prescribed for each material point with
F
0
p = I at the start. The deformation tensor is integrated in time using the nodal velocities to
track the deformation of the initially rectangular domains. The dynamic simulation is performed
with a time step of Δt = 0.001s. The simulation is performed until the soil has reached a state
of vanishing velocities. For the present model the time of the collapse is t = 2.5s. The initial
configuration consists of 1800 material points. An adaptive scheme for splitting the material points
in case of localized deformation is employed. The final configuration consists of 9402 material
points.

In the MPM, the material points may be at arbitrary locations of the elements defined by the set
of grid-nodes. The individual stresses may be unrealistic. Hence, combined with the effect of grid
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crossing this completely degenerates the stress at an individual material point. In order to better
understand the problems, a new way of visualizing the stresses are introduced. Firstly, grid-node
stress tensors are defined by

σσσi =

Np∑
p=1

σσσpΦipmp

mi
, (11)

where σσσi is the stress tensor, associated with grid node i, σσσp is the stress of material point p, Φip

is the interpolation function while mi and mp is the nodal and material point mass, respectively.
Using the nodal stresses, a smoothed material point stress tensor is defined as

σσσsmoothp =

Nn∑
i=1

σσσiΦip, (12)

Figure 1 shows the vertical normal stress during the collapse of the soil column. The left side of the
figure shows the stresses at the individual material points, while the right side shows the stresses
calculated by Eq. (12) in order to provide a better visualization.

The first thing to observe is that the deformation occur in a realistic fashion. As the pressure
cannot be obtained, the soil column collapses until, it has reached a state, where its satisfies the
yield condition (in a global sense) and the kinetic energy has dissipated due to the bottom friction
and plastic dissipation. In the final configuration, it is still possible to observe the initial corners
due to the small amount of cohesion present. As observed, the vertical normal stress during and at
the end of the collapse varies in a very erratic fashion. This leads to a principle question: Can we
trust the simulation, when the stresses at the individual material points are so unrealistic?

As seen, the deformation occurs as physically expected although the stresses are completely erro-
neous at the individual material points. From the mentioned analogy to the finite element method
the material points plays the role as integration points when solving the governing equation of
motion. Further, from finite element analysis it is common knowledge that special care need to be
made regarding when interpreting stresses, as stresses as may only be realistic at certain locations
within an element. As observed, the mapping via the grid nodes determines a stress field, that is
physically realistic. Hence, in terms of the grid-nodes, where the equations are solved, the stress
field is realistic.

Concluding remarks

The material-point method is a new promising numerical method for large strain continuum me-
chanic problems. As illustrated it is successfully able to capture in a realistic fashion problems
involving very large deformations. However, this note provides an illustration of problematic is-
sue for the method. This pertains to the fact that stress fields varies in a unrealistic fashion at the
individual material points. As illustrated the overall solution may still be realistic, as the stresses
are realistic at the grid nodes and realistic displacement and velocity fields are observed. However,
in more complex problems the unrealistic stresses pose real problems as localized effects may be
difficult to capture. Hopefully the presented results eventually can lead to a better algorithms for
handling stresses within the MPM.
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Figure 1: Vertical normal stresses during the collapse of the soil column. Left: The stresses at the individual
material points. Right: A smoothing using Eq. (12) is introduced for a better visualization.
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