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Fictitious crack model of concrete fracture 

R. Brincker* and H. Dahl* 

UNIVERSITY OF AALBORG 

The substructure method introduced by Petersson is 
reformulated for the three-point bending specimen in 
order to obtain complete load-displacement relations 
without significant truncation. The problem of insta­
bility caused by the linearization of the softening in the 
fracture zone is discussed, and an alternative energy 
formulation is given so that it is possible to distinguish 
between stable and unstable situations. The reformu­
lated substructure method is implemented on computer 
to give a multilinear stress crack opening displacement 
relation for the material in the fracture zone, and some 
qualitative results are given. 

Introduction 

The fracture mechanical properties of concrete 
in tension have been an important subject in con­
crete research over the last decade. The fracture 
properties have been studied both experimentally and 
theoretically by using fracture mechanical concepts. 

Several models based on fracture mechanical ideas 
have been established to describe the fracture of con­
crete in tension. The fictitious crack model (FC model) 
formulated by Hillerborg and co-workers 1

-
6 is one of 

the most well known. 
In the FC model a material point on the crack 

extension path is assumed to be in one of three poss­
ible states: an undisturbed elastic state (no fracture, no 
lack of compatibility), a fracture state in which the 
material is softened by microcracking (the fictitious 
crack), and a state of no stress transmission, where the 
point lies on a free surface. 

The elastic state of all points in the body excluding 
those in the FC zone is described by the linear theory 

*Inst itute of Building Technology and Structural Engineering, 
University of Aalborg, Sohngaardsholmvej 57, DK-9000 Aalborg, 
Denmark. 

of elasticity. The separation of points in the FC zone 
is described by a special constitutive relation, the so­
called stress crack opening displacement relation (<J-W 
relation) given by the function f( ·) defined in Fig. 1. 

Petersson,4 implemented the FC model on com­
puter using the so-called substructure method. In 
effect, the body was partially cut through along the 
crack extension path. The problem was discretized by 
defining a finite number of nodes in which he satisfied 
the compatibility conditions in the elastic part of 
the body and the fracture conditions in the FC zone. 
The conditions were expressed by a set of linear 
equations. However, he did not treat the body as being 
divided into two separate substructures or sub-bodies, 
allowing the crack to extend to ultimate fracture. This 
leads to a significant truncation of the calculated 
force-d isplacement relation which is difficult to 
remove without introducing an unacceptably large 
number of nodes. The basic idea is sound, however, 
because the use of boundary nodes instead of a tradit­
ional finite-element method (FEM) technique speeds 
up the calculations tremendously. Based on the reduc­
tion of the number of nodes, the increase in speed can 
be estimated as approximately by a factor 100 for the 
problem considered. In the case of a larger body, the 
increase in speed will be even larger. 

This Paper shows how the problem of truncation of 
the force-displacement relation can be overcome by 
effectively dividing the body into two sub-bodies using 
a displacement boundary value technique to solve the 
problem. This results in a fast and accurate algorithm 
well suited for simulation of tensile fracture problems. 
However, the method is limited to applications to 
problems where the crack path is known beforehand. 

The Paper also gives an alternative method based 
on minimizing the total potential energy of the system, 
leading to a formulation which makes it possible to 
check the stability of the system in each incremental 
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Fig. 1. Stress crack opening displacement relation for the 
material in the FC zone 

step of the calculation of the force-displacement 
relation. Finally, the Paper describes how the refor­
mulated substructure method is implemented on a 
computer in a way that makes it possible to use a 
multilinear a-w relation in the FC zone, and some 
qualitative results are given. 

Direct substructure method 

A simply supported beam such as the standard test 
specimen proposed by RILEM 7 of length /, width d 
and height h loaded by a force F 1 in the middle is 
considered (see Fig. 2(a)). A crack of length a is 
assumed to be present in the tensile side of the beam 
just beneath the applied load. When the load is 
applied to the beam, the crack extends, and a fracture 
zone of length c develops in front of the crack tip. 

l ~j 

l F,/2 

y 
~ 6, 

V 

A u 

X 
a 

(a) 

Instead of following Petersson,4 who solved the 
problem like a contact problem by cutting the beam 
partially through at mid-section, the beam is divided 
into two separate sub-bodies or substructures A and B, 
as shown in Fig. 2(b). Instead of the stress condition 
given by F 1, a displacement condition b1 is applied at 
the middle, and a displacement condition !5 2 is applied 
at the right-hand support, transforming the original 
stress boundary conditions into a new set of boundary 
conditions given in terms of displacements. 

For the body considered the stress solution will be 
symmetric, and advantage could be taken of this by 
considering only one of the substructures. However, 
in order to illustrate the applicabi lity of the method to 
non-symmetric problems the whole body is con­
sidered. If the problem is non-symmetric, mixed-mode 
conditions in the fracture zone might occur, and the 
problem becomes substantially more complex. How­
ever, numerical investigations indicate that the crack 
chooses a path in such a way that the local symmetry 
is approximately preserved, i.e. the dominant mode is 
mode one.8 Therefore it is not difficult to generalize 
the method to a more complex situation where the 
global symmetry is not preserved. 

Integral equations 

Node co-ordinates and displacements are measured 
in the (x, y) and (u, v) co-ordinate systems, respectively 
(see Fig. 2(b )) , the x-axis lying on the lower side of the 
beam. Assuming small displacements, the rigid-body 
displacements can be expressed as 

UoA 21y (J) 

(2) 

~ F1/2 

y =h 

l o, 

Elastic zone 
y =a+c 

B Fracture zone 
y =a 

Crack 
y =O 

(b) 

Fig. 2. Beam considered: (a) with crack of length a and fracture zone of length c; (b) divided into 
substructures A and B 
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where u0 A and u0 
8 are the displacements on the virtual 

surfaces created by dividing the origina l body into two 
new bodies . Let the stresses O"( y ) be applied to the 
virtual surfaces. The displacements u/ and ua 8 caused 
by these stresses are given by 

u/ ( y ) r: O"(y' )g(y , y')dy' 0 :( y :( h (3) 

Ua B ( y) = - t' 0"( y' )g( y' y' )d y ' 0 :( y :( h ( 4) 

where g( y, y') is Green's function for the displace­
ments considered. The total displacement fields of the 
two bodies A and B are then given by 

which yield the crack opening di splacement 

w(y) = U
8 

- UA 

(5) 

(6) 

fh ' ' )d ' ~ 4 
6 

I (7) - 2 " 0"( y )g ( y, y Y + u 2 - l Y 

The conditions we have to satisfy a re the compatibility 
condition 

w(y) = 0 => 

fh ') ' )d ' ~ 4 6 I 2 " 0"( y g( y, y y - u 2 + l 0 

(8) 

the fracture condition 

f(w( y)) = O"( y) => 

( f" 61 ) f - 2 (/ O"( y' )g( y, y')dy' + 62 - 4[ y O"(y) 

(9) 

which determines the unknown stresses O"( y ), a nd 
finally the equilibri um condition 

f" (/ O"(y)dy = 0 (10) 

Fictitious crack model of concrete fracture 

System of linear equations 

The first step in establishing the system of linear 
equations is to discretize the integra l equations, i.e . the 
co-ordinate y is restricted to the discrete values y; , 
i = I, 2, ... , n, and consequently the stresses O"(y) 
and Green's function g( y, y') are expressed in terms of 
the nodal forces s; a nd Green's matrix g;j = g(y;, yj), 
respectively. The spacing a0 between nodes is assumed 
to be constant. 

The conditions given in equations (8)- (10) can now 
be expressed as the sums 

11 62 61 L g;A - 2 + 2 l Y; 0 
j=k 

(11) 

S; 

k :( < m (12) 

11 

L sj = 0 k :( i :( n ( 13) 
j =k 

where k is the first node of the fracture zone, Yk = a, 
and m is the first node of the elastic zone, Ym = a + c. 
Taking/(·) as a linear function 

f(w) = fo + rxw 

equation (1 2) yields 

n 61 
fo - 2rx j~k g;A + rx6 2 - 4rxl Y; - s; 

k !( i<m 

(14) 

0 

(1 5) 

If f( · ) is not taken as a linear function, but as a 
piecewise linear function to approximate a more 
general O"-w relation, the problem can still be expressed 
as a system of linear equa tions formed by equations 
(I!), (13) and (1 5). In this case, different rx-values have 
to be used for the nodes according to where they are 
situated on thef-curve. T he system of linear equations 
can then be written 

Ax = b (16) 

which determines the unknown displacement 62 • where the coefficient matrix A is given by 

2rxkgk,k + 2rxkgk,k + l 2rxkgk,ll - (J.k 

2rxk+ l gk+ l.k 2rxk+lgk+l,k+l + 2rxk+ 1 gk+ 1,11 - lXk+ I 

A 
2rxm - l gm - l,k 

-glll,k 

2rxll, - l gm - l.k+ 1 2am- l gm - 1.11 -CJ.m - 1 
(1 7) 

-gm,n 0·5 - gm,k+ l 

-gll ,k -gll,k +l - gll ,ll 0·5 

0 
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and where x and b are given by 

X (18) 
Sm 

s, 

b 

. (j l 

Jo.m - 1 - 4ctm - l ~ Ym - 1 

(j l 
21 Ym 

(19) 

0 

The non-linearity of the problem is then introduced by 
updating the coefficient matrix A and the right-hand 
side b according to the movements of the nodes on the 
/-curve. T he problems of keeping track of where the 
nodes are situated and the problems of updating A 
and b are treated in the section on implementation . It 
must be noted, however, that equation (14) expresses 
the crack opening displacement relations for the nodal 
forces and not for the stresses . This means that the 
constitutive parameters fo and a for the first node 
i = I and the last node i = n have to be multiplied 
by a factor 0· 5 to correct for the smaller areas 
corresponding to these nodes. 

W hen the nodal forces are determined by solving 
the system of linear equations described above, the 
total force F 1 is obtained from the equilibrium 
condi tion 

ll 

tF1l + L sjyj = 0 (20) 
j~k 

and the crack opening displacements w; are given by 

11 bl 
w; = - 2 L gijsj + c5 2 - 4 I Y; k ~ i < m 

j ~ k 

(2 1) 

Energy substructure method 

In the preceding section, a system oflinear equations 

82 

was established by forming a coefficient matrix A 
containing essentially Green's coefficients gij and the 
discrete spring constants et; describing the loca l 
properties of the crack opening displacement relation. 
In this case, where the spring stiffnesses a are less than 
zero the tota l potential energy might become non­
positive definite; i. e. the solu tions found by solving 
system equation (16) do not correspond to a true 
minimum for the potential energy. In this case no 
stable solution exists, and the simulation procedure 
becomes unstable. Experience shows that this is a 
serious problem. The problem is due to the piecewise 
linear approximation to the softening problem in the 
fracture zone, and reflects the poor approximation 
of the HillerborgjPetersson model in the case of 
unloading. 

The standard way to check for system stabi lity is to 
require that x'Ax )! 0 for all x; i.e. the matrix A has 
to be positive definite. However, this is only meaning­
ful if x 'Ax can be interpreted as the quadra tic part of 
the total potential energy of the system. In this case, 
where the sequence of the equations (rows can be 
interchanged) and the sign of the coefficients of a given 
row are arbitrary, this is clearly not so. Using the 
formulation given above, there is no simple way to 
check that the energy is positive definite, and therefore 
no simple way to investigate when and why the 
simulation procedure becomes unstable. 

If a safe way to check for positive definiteness of the 
energy is needed, another formulation has to be given. 
One method is to express the total potential energy of 
the system and then obtain the solution by requiring 
that the potential energy is minimized. In this case, a 
system of linear equations is obtained for which it is 
only required that the corresponding system matrix is 
positive definite. Here the whole beam is considered, 
but advantage is taken of the symmetry, and therefore 
only part A of the original beam is considered, as 
shown in Fig. 3. 

The total potential energy can be written as 

(22) 

I F,/2 

rr::::::=------------:1,)· 

----------------~n 

k 

Fractu re zone 

Fig . 3. Beam considered for the energy analysis 

-s, 

m Fracture 
zone 

Crack 
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where VF is the potential of the load F 1 , Vc is the strain 
energy of the body and V, is the strain energy of the 
springs describing the crack opening in the fracture 
zone. Using the equilibrium equation (20) the poten­
tial of the load F 1 is given by 

VF = -tFI()I 

() I 11 

2/i~ksiyi 
The strain energy of the body is 

n " 

Vc = t L S; L gusi 
i ~ k j ~ k 

(23) 

(24) 

The strain energy of the fracture springs is slightly 
more difficult to determine. Equation (14) can be 
written as 

/o; 
(25) 

which yields the strain energy 

m- 1 

V, = t L IX/wi - w0i)
2 (26) 

j ~ k 

Now substituting the expressions for wj and Woj into 
equation (26) yields 

(27) 

and the total potential energy then becomes 

V = 

(28) 

The system of linear equations is now obtained by 
requiring that av;asq = 0 for k :s;; q :s;; n 

() 11 m - 1 ( 11 Jc ) 
2 -f y" + i~k g"isi + ;~k IX; i~k giisi + :; g;" 0 

k :s;; q < n 

which yields the matrix equation 

Cs = d 

(29) 

(30) 

where the vector s contains the nodal forces s;, and 
where the matrix elements cu and the elements of the 
right-hand side d; are given by 

and 

m - 1 

cu = gi+k.i +k + L gi +k,piXpgp.i +k 
p ~ k 

0 :s;; i,j < n - k (31) 

O :s;; i<n - k 

(32) 
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Here the matrix elements cu and the elements of the 
right-hand side d; are numbered c00 , c01 , •.• and d0 , 

d 1 , • •• , respectively. It is easy to see that the com­
pliance matrix C is symmetric and that s'Cs represents 
the quadratic part of the potential energy. Therefore, 
using the energy substructure method one only has to 
show that the compliance matrix C is positive definite 
to be sure that the system is stable. 

It should be noted that the fracture spring stiffness 
coefficients IX; must be multiplied by an additional 
factor 2, since the length of the fracture springs in this 
formulation is only half the real length . 

Implementation 

Only the direct substructure method has been 
implemented, but it might as well have been the energy 
substructure method. 

In the following the incremental step used for cal­
cu lation of a typical point on the load deflexion rela­
tion for the considered beam is expla ined. The nodes 
in the FC zone are a ll lying on the O"-w relation as 
shown in Fig. 4, denoting the nodal forces and nodal 
crack opening displacements by si and wi, respectively, 
k :s;; j <m. 

The parameter controlling the problem is, as men­
tioned earlier, given by the beam deflexion 6 1 • If the 
beam deflexion is increased, all points lying on the O"- W 

relation will be moving to the right, i.e. towards larger 
wi values. The problem is to determine which point is 
the first to reach a kink on the O"-w relation, because 
when a point is crossing a kink point on the multi­
linear O"- W relation the system matrix and the right­
hand side of the system of linear equations, see 
equations (17)- (19), have to be updated, and the 
system is said to change the state of fracture. 

Each of the points lying on the fracture relation 
have a nearest kink point when the point is moving to 
the right on the curve. The crack opening displace­
ments of these nearest kink points are denoted wi *,see 
Fig. 4. In order to determine which point is the first 

"' Q) 

~ 
.E 
Q) 
'0 
0 
z 

Kink point on a - w curve 

Crack opening 
displacement w 

We 

Fig. 4. Location of the nodes on the stress crack opening 
relation 

83 



Brincker and Dahl 

to cross a kink on the fracture relation, the beam 
deflexion is given a small increment d6 1, and the corre­
sponding increments dwj for a ll the nodes lying on the 
fracture relation are determined by solving the system 
of linear equations using the system matrix and the 
right-hand side corresponding to the present state of 
fracture. Then the sensitivities 

/1j = (33) 

can be ca lculated . For the first elastic node,} = k, the 
sensitivity is calculated in a similar way using nodal 
forces instead of crack opening displacements 

(34) 

Here the kink point corresponds to the beginning of 
the fracture relation, and st is therefore equal to the 
tensile strength of the nodes. The point}* having the 
largest sensitivity Jl* is then moved to the nearest kink 
point by solving the system of linear equations using 
the beam deflexion increment 

(35) 

and using the system matrix and the right-hand side 
for the present state of fracture. Then the system 
matrix and the right-hand side are updated, and the 
next point on the force displacement curve can be 
calculated. If the crack opening displacement for a 
node exceeds the ultimate crack width we, the node is 
removed from the set of nodes in the fracture zone; i.e. 
there is a real crack and no stress can be transmitted. 

This procedure continues until there is only one 
elastic node left and that node is the next one to be 
moved into the fracture zone. The algorithm outlined 
above was implemented on a personal computer, and 
some qualitative relations were investigated. 

..:: 

.c 

1 00 

Table 1. Geometry and material properties for the beams 
analysed 

Height: mm 
Width: mm 
Length: mm 
Elasticity modulus £: Nfmm2 

Fracture energy Gr: N/m 
Tensile strength[.: Nfmm 2 

Results 

80 
40 

400 
32 550 

10% 
2·86 

Two problems were investigated: the problem of 
sensitivi ty to the number of nodes across the beam 
section, and the problem of sensitivity to the degree 
of approximation for the stress crack displacement 
opening relation. 

The sensitivity problems were analysed using small­
size beams. The geometry of the beams and the material 
properties are listed in Table I. 

The material properties are taken as the average 
properties for the concretes tested by Wolinksi et a/. 9 

The stress crack opening relation measured by 
Wolinski et al. is shown in Fig. 5 together with the 
approximations used in the sensitivity analysis. 

Analysis of small beams was chosen because of the 
problems of stability discussed earlier. Owing to the 
steep fracture relation shown in Fig. 5 it was necessary 
to use small beams in order to ensure that all the cases 
could be analyzed using the same beam size. It is not 
difficult to see that the problem of stability increases 
with the size of the beam. 

It is clear that the steeper the fracture relation the 
larger the risk of instability. The dependence on the 
size of the beam can be obtained by simple dimensional 
analysis. The physical quantities influencing the stab­
ility of the beam are assumed to be the size /, the tensile 
strength;;, the elastic properties given by g;j and the 
fracture properties of the material in the fracture zone 
described by fo and a.. Accepting these assumptions, it 

g• 0·75 
~ 

-- Linear o - w relation 
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Vi 
.!!! 
' (ii 
c 
Q) 

~ 050 
U) 
U) 

~ 
Vi 
Q) 
{J) 

~ 025 

~ 

---- Bi linear o- w relation 
--- Trilinear o - w relation 

:._- - -I Scatter band 

-2¥/SzWA?~--
- - ffl-2...;z_z_ 1;---

0o·~----~2o~--~4~o----~6o~--_is~o-----1~o-o-----1 ~2o ______ 14Lo ___ -~-~1~5~o---~~1~~~~-2oo 
Crack opening displacement W:Jtm 

Fig. 5. Stress crack opening relation, taken from reference 9 
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Small beam 

Large beam 

b 

a' 

w 

Fig. 6. Fracture mode/law 

is easy to see that the problem is described by three 
dimensionless products, and that these can be chosen 

as 

nJ guf.l (36) 

al 
(37) n2 

!. 

!o (38) nJ = 
!. 

Now let us consider another beam with the corre­
sponding quantities / ',/,', gij, a',fo'. From the model 
invaria nce of the n-products it is seen that the 

z 
"" '0 

"' 

2·0 

,31-0 

z 
"" '0 

2·0 

~ 1·0 
_J 

A 5 nodes 
x 10 nodes 
o 15 nodes 
• 19 nodes 

Displacement: mm 

0·1 
Displacement: mm 

Fig. 7. Sensitivity to the number of nodes 

A 5 nodes 
x 10 nodes 
o 15 nodes 
• 19 nodes 

0·2 
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similitude requirements for the beam in the case of the 
same tensile strength , f.' = f., are given by 

fo' = fo (39) 

gij (40) 

a' (41) 

From these results it can be seen that if!' > l then the 
slope of the fracture curve a' must decrease; i.e. the 

- material has to be tougher in order to ensure the same 
behaviour of the two beams considered, see Fig. 6. 
This means that if the fracture properties of the 
materia l are kept constant and the beam size is 
decreased then the risk of instability becomes sma ller. 

In the investigation of sensitivity to the number of 
nodes the cross-section was divided into 5, 10, 15 and 
19 nodes, and the influence coefficients gu were deter­
mined by linear finite-element analysis using constant 
strain elements. The load displacement relations were 
calculated using a linear stress crack opening displace­
ment relation, and the results for the four cases 
are shown in F ig. 7. It can be seen that only the 
curve for the coarse mesh containing only five nodes 
differs significantly from the others, indicating that the 

2·0 

z 
"" '0 

"' .3 1·0 

z 
"" '0 

"' 0 
_J 

2·0 

1·0 

x Linear " - w relation 
o Bi linear" - w relation 
• Trilinear " - w relation 

Displacement: mm 

x Linear " - w relation 
o Bilinear" - w relation 
• Trilinear <I - w relation 

0·1 
Displacement: mm 

0·2 

Fig. 8. Sensitivity to the degree of approximation of the 
stress crack opening displacement relation 
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method is not very sensitive to the chosen number of 
nodes. 

Three different approximations have been used to 
evaluate the sensitivity of the method to the degree of 
approximation of the stress crack opening displace­
ment relation. The measured a-w relation and the 
three different approximations are shown in Fig. 5. 
The results from the sensitivity analysis are shown in 
Fig. 8. 

It is evident that the shape of the stress crack open­
ing displacement relation has significant influence 
on the results. Improving the approximation from a 
linear (no kinks) to a bilinear (one kink) stress crack 
opening displacement relation causes a drop in the 
calculated ultimated load of approximately 10%, and 
the shape of the load displacement relation is changed 
significantly. The approximation by a trilinear (two 
kinks) fracture relation, however, does not seem 
to change the results significantly, indicating the 
sufficiency of the bilinear approximation. 

Conclusions 

On the basis of the experience with the reformulated 
substructure method the following conclusions can be 
drawn. 

1. The method is able to simulate crack growth far 
beyond the limits of the known substructure method, 
revealing results without truncations of significance 
on the load-displacement relation. 

2. The results are not very dependent on the 
number of nodes in the crack extension path, and 
relatively rough discretizing can be used. 

3. It is important for the results that the shape of 
the stress crack opening relation is modelled approxi ­
mately correctly . However, it is not necessary to use a 
multilinear relation . A bilinear relation seems to be 
sufficient. 

4. A serious problem using the substructure 
method is that the system becomes unstable too easily 
owing to the simple local linearization of the stress 
crack opening displacement relation. The problem is 
partly solved by using the proposed energy formu­
lation, which allows for an easy check on when and 

86 

why the simulation becomes unstable, but it is expected 
that the problem can be removed only by a better 
modelling of onloading of the material in the fracture 
zone. 

5. The energy formulation should be used in 
future applications because of its simple way of check­
ing for instability, and because of its symmetric 
compliance matrix. 
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