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ABSTRACT
In this paper, we consider the application of compressed
sensing (aka compressive sampling) to speech and audio
signals. We discuss the design considerations and issues
that must be addressed in doing so, and we apply com-
pressed sensing as a pre-processor to sparse decompositions
of real speech and audio signals using dictionaries com-
posed of windowed complex sinusoids. Our results demon-
strate that the principles of compressed sensing can be ap-
plied to sparse decompositions of speech and audio signals
and that it offers a significant reduction of the computational
complexity, but also that such signals may pose a challenge
due to their non-stationary and complex nature with varying
levels of sparsity.

1. INTRODUCTION

Sparse decompositions of signals using over-complete (or
redundant) dictionaries have been used for processing of
speech and audio signals for many years. Such sparse de-
compositions are also closely related to parametric mod-
eling of signals, as such parametric modeling can be cast
in the framework of sparse decompositions (or vice versa).
Parametric models of speech and audio signals have proven
to have a wide range of applications, including compres-
sion, enhancement, analysis, etc. In fact, audio coders based
on these principles have already been a part of the MPEG
audio coding standards for a long time. Curiously, the fields
of parametric modeling, including estimation theory, and
sparse decompositions have largely developed independently,
ignorant of each others’ important ideas and results.

Recently, important new theoretical advances in what
has been dubbed compressive sampling or compressed sens-
ing (CS) have been made [1, 2, 3] and has spawned a flurry
of activity in research on this topic. The basic results are,
basically, that under some fairly weak conditions, signals
that are composed as linear combinations of few linearly
independent vectors need only to be sampled at a low rate
to facilitate a high quality reconstruction. Here, few means
that the number of basis vectors is small relative to the num-
ber of samples. More specifically, if a signal is composed

of a linear combination of T vectors, we can reconstruct the
signal using κT samples (where κ is a small positive inte-
ger) formed as random linear combinations of the, say, N
original samples . It is then clear that if κT is much smaller
than N , we have achieved a compression of sorts, a com-
pression that can be implemented directly in the sampling,
provided that the level of sparsity is known a priori. Hence
the name compressive sampling.

Until now, this principle has only been applied to speech
and audio signals in the context of linear predictive coding
of speech, where the sparsity is in the residual domain [4, 5].
In this paper, we consider the application of the principles
of compressed sensing to speech and audio signals in the
context of sparse decompositions based on redundant dictio-
naries. We consider the possible advantages of doing so and
the related design issues that must be addressed and possi-
ble caveats. Moreover, by our choice of dictionary, namely
windowed complex exponentials, we demonstrate that the
principles also apply to parametric modeling of speech and
audio signals.

The remaining part of this paper is organized as follows.
In the next section, Section 2, we cast the problem of sparse
decompositions within the compressed sensing framework
and discuss the basic results of compressed sensing. Then,
in Section 3, we discuss its application to speech and audio
signals and the related design issues. Finally, we provide
some examples of the application of the sparse decomposi-
tions and compressed sensing to real speech and audio sig-
nals in Section 4 before concluding on our work in Section
5.

2. SPARSE DECOMPOSITIONS AND
COMPRESSED SENSING

We will start out by first introducing the sparse decomposi-
tion before considering its combination with CS. The sparse
decomposition problem can be defined as follows. Given a
segment of a signal x ∈ RN and a fat matrix Z ∈ CN×F

containing the dictionary and we seek to find a sparse coef-
ficient vector c ∈ CF with F � N that recovers x exactly,



i.e.,
x = Zc, (1)

or approximately. To do this, we need to introduce a sparsity
metric on c. A commonly used measure for this is the vector
1-norm, denoted ‖ · ‖1, which can be related to the number
of non-zero coefficients under certain technical conditions.
The vector c is said to be T -sparse if it contains T non-zero
coefficients and we will here use this synonymously with
the term sparsity. We can now pose the sparse decomposi-
tion problem as the following:

minimize ‖c‖1
s. t. x = Zc.

(2)

As an example, consider the signal produced by a pitched
instrument. Such a signal can be well-modeled by a finite
sum of sinusoids. In this case, the dictionary consists of
complex sinusoids and the entries in c are their complex
amplitudes. We then seek to describe the signal using as few
non-zero complex amplitudes as possible, corresponding to
selecting a low-order sinusoidal model.

The problem in (2) is what is referred to as a second
order-cone program (SOCP) in the convex optimization lit-
erature, and it can be solved efficiently using standard meth-
ods. It should be stressed that it cannot be cast as a linear
program and it is therefore not basis pursuit as originally
introduced in [6]. This is because the 1-norm of the stacked
real and imaginary parts of vector c is not the same as the
1-norm of c.

The main idea of CS [1, 2, 3] is to map the observed
signal x to a lower-dimensional vector y ∈ RK with K <
N via a fat so-called measurement matrix Φ ∈ RK×N by
the following transformation:

y = Φx. (3)

Similarly, the measurement matrix is also multiplied on to
Zc, and we can write the sparse decomposition problem as

minimize ‖c‖1
s. t. Φx = ΦZc,

(4)

or, introducing Q = ΦZ, as

minimize ‖c‖1
s. t. y = Qc.

(5)

The key point of CS theory is that under certain conditions,
namely an appropriate choice of measurement matrix Φ [2,
3, 7], solving (2) will result in a solution vector ĉ identi-
cal to that of (5). Therefore, reconstruction of the signal
using ĉ obtained from (5) will reconstruct not only y as in
constraints of (5), but also x exactly as x = Zĉ when c is
sparse. We note that while many of the proofs and condi-
tions have been stated in the literature for orthogonal bases,

the principles apply also for frames [1], as is the case con-
sidered here.

In the CS literature, much emphasis has been put on
the ramifications of these results for simplifying sensors and
A/D converters. From the above discussion, it is, however,
clear that also in traditional applications of sparse decom-
positions, i.e., to signals that have already been sampled,
there is a possibly huge benefit of using the principles of CS,
namely that the problem in (5) is of a possibly much lower
dimensionality than the original sparse decomposition prob-
lem in (2). More specifically, the problem in (2) involves
solving for F variables subject to N constraints while (5)
involves also F variables, but only K constraints. If K is
much smaller than N , the savings in computational com-
plexity is potentially huge as problems of the forms consid-
ered here generally have cubic complexity. CS may there-
fore be used as a pre-processor for the many applications
of sparse decompositions we have seen through the past
decade. That the complexity involved with solving prob-
lems of the form (2) has been a concern and a limiting fac-
tor can be witnessed by the wide spread use of approximate
solutions obtained using greedy methods like matching pur-
suit.

3. DISCUSSION

Next, we will discuss some important issues in applying CS
and sparse decompositions to speech and audio signals.

A) Dictionary Complex sinusoids have been reported
to work well for sparse decompositions for a wide range
of applications. They are, however, also well-known to
perform poorly for modeling transient phenomena, even if
these are modulated sinusoids, and also stochastic signal
components. The solution to these problems are generally
composite dictionaries (or unions of bases), where also mod-
ulated sinusoids and even time-domain Kronecker delta func-
tions are included. Also, voiced speech signals can be mod-
eled not only as sparse in the frequency domain, but also
as sparse in the residual domain after linear prediction has
been applied [4, 5]. This complicates matters somewhat for
CS as the measurement matrix should be chosen such that it
is incoherent with the dictionary. Fortunately, random mea-
surement matrices can generally be expected to have a low
coherence with both time-domain spikes and complex sinu-
soids. Furthermore, random measurement matrices that are
universally applicable regardless of the type of dictionary
can be constructed [7].

B) Sparsity Another issue with speech and audio signals
is that the sparsity of such signals may vary greatly over
time; a low piano note may contain many partials while a
glockenspiel may contain only a few. At one particular time
instance of a piece of music, a single instrument playing
just a single note may be present while at other times, mul-
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Fig. 1. Power spectrum of trumpet tone.

tiple instruments playing multiple notes may be playing at
the same time. This means that we would have to either
a) bound the sparsity of the signal by worst-case consid-
erations, or b) somehow estimate the sparsity of the signal
over time. The feasibility of the former approach can be
illustrated by considering voiced speech. The fundamental
frequency of speech signals can be be between 60 and 400
Hz. This means that there can be at most 66 harmonics for
a signal sampled at 8000 kHz. The latter approach would
have to be computationally simple or it would otherwise
defeat the purpose of the CS. There is another aspect that
should be taken into account, though. It is generally so that
the larger the dictionary, the sparser a coefficient vector one
can obtain. This is easy to explain. Suppose a signal con-
tains a single sinusoid having a frequency in-between the
frequencies of two vectors in the dictionary, then the contri-
bution of that single sinusoid will spread to several coeffi-
cients. The expected sparsity of the coefficient vector c and
thus the number of samples K required for reconstruction
is therefore not only a function of the signal, but also the
dictionary. It is thus more likely that a single dictionary ele-
ment will match the signal (or part thereof) if the dictionary
is large.

C) Noise First, let us elaborate on what we mean by
noise: we mean all stochastic signals contributions, every-
thing that cannot easily be modeled using a deterministic
function. Stochastic signal components are inherent and
perceptually important parts of both speech and audio sig-
nals. Stochastic components occur in speech signals during
periods of unvoiced speech or mixed excitation where both
periodic and noise-like contributions are present. Similar
observations can be made for audio signals. This means
that, depending on the application, CS may not be entirely
appropriate. On the other hand, if only the tonal parts of the
signal are of interest, then it may yet be useful. It should
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Fig. 2. Reconstruction SNR in dB as a function of the as-
sumed sparsity T (dotted) with only the assumed number of
non-zero coefficients retained with CS (solid) and without
(dash-dotted).
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Fig. 3. 2-norm of difference between coefficients found
with and without CS (dash-dotted) and when only retaining
the assumed number of non-zero coefficients (solid).

also be noted that the characteristics of the noise in speech
and audio signals are time-varying, and it can often be ob-
served to vary faster than tonal parts of audio signals. This
again implies that it may be difficult to determine the re-
quired number of samples a priori and the expected recon-
struction quality in LASSO-like reconstructions [8].

4. SOME EXAMPLES

We will now present some results regarding the application
of CS to speech and audio signals. First, we will conduct
an experiment on a single segment of data, namely 60 ms of
a stationary trumpet tone whose power spectrum is shown
in Figure 1. For visual clarity, this signal has been down-
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Fig. 4. Spectrograms of original signals, trumpet (a) and voiced speech(b), and the same signals reconstructed using CS with
60 non-zero coefficients for each 40 ms segment (c) and (d).

sampled from 44.1 kHz by a factor 4. As can be seen,
the spectrum is highly sparse with only 8 harmonics being
present (note that because the signal is real, 16 non-zero co-
efficients are needed at a minimum to capture these). We
have performed sparse decomposition of this signal with
and without CS using a dictionary composed of F = 4096
complex sinusoids having frequencies uniformly distributed
between 0 and 2π. If such a signal lends itself to CS, we
should be able reconstruct the signal at the same SNR in
both cases. When using CS, one must choose how many
samples to retain. As rule of thumb four times as many sam-
ples as the number of non-zero coefficients should be used
[8], i.e., K = 4T , and this is what we do here (for more
on this, see [9]. Furthermore, a measurement matrix con-
structed from independent and identically distributed zero-
mean Gaussian variables is used throughout these experi-
ments.

In Figure 2, the reconstruction SNR (in dB) is shown
as a function of the assumed sparsity, i.e., the number of
non-zero coefficients T in c. First, the SNR for the solution
obtained using (5) (dotted) is depicted. For comparison, (2)
results in a reconstruction SNR of more than 200 dB. Also
shown is the reconstruction SNR when only the T largest
(in magnitude) coefficients are retained for the two solu-
tions obtained using (5) (solid) and (2) (dash-dotted). It can
be seen that when sparsity is enforced, the two method per-
form similarly, only (5) is solved much faster as the prob-
lem is much smaller. This suggests that CS indeed retains
the information required to reconstruct the sparse part of
the signal, i.e., the sinusoids, and this appears to be the
case regardless of the assumed level of sparsity in the sense
that even if the assumed level of sparsity is below the ac-
tual level, the sparse decomposition with CS still works ap-
proximately as well as it would have without it. This is an



important observation as the level of sparsity cannot gen-
erally be known a priori for speech and audio signals. It
means that we basically do no worse than we were doing
with the sparse decomposition in the first place. To inves-
tigate whether the same coefficient vector is obtained using
the two approaches, the 2-norm of the difference between
the obtained vectors are shown in Figure 3 for the full vec-
tors obtained from (5) and (2) (dash-dotted) and when only
the assumed number of non-zero coefficients T is retained
(solid). Again, this confirms that CS is applicable to the
signal in questions and that the difference between the two
solutions tends to zero for a sufficiently high T and K and
that the difference is smaller for the largest coefficients.

Next, we will process and reconstruct a longer fragment
of a trumpet signal sampled at 44.1 kHz whose spectrogram
is shown in Figure 4(a) (for visual clarity, only the lower
part of the spectrum is shown, although the signal does have
harmonics extending beyond the visual part). We do this
as follows. We process the signal in 40 ms segments with
50 % overlap using a dictionary composed of F = 4096
windowed complex sinusoids, i.e., Gabor-like frames, and
construct a measurement matrix as in the previous exper-
iment. The signal is synthesized using overlap-add. We
here assume a sparsity of T = 60 non-zero coefficients and
use only the T largest coefficients in reconstructing the sig-
nal and use 4 times as many samples in the CS process,
i.e., K = 240 samples. This means that while the origi-
nal sparse decomposition problem in (2) is solved subject to
1764 constraints, we have reduced this to just 240 using CS,
i.e., by a factor more than 7. Considering that solving such
problems involves algorithms of cubic complexity, we can
therefore expect a significant reduction in computation time
and this has been confirmed by our simulations. In Figure
4(c), the reconstructed signal is shown, and it can be seen
that the harmonic parts of the spectrum have indeed been
recovered.

A similar experiment was carried out for a voiced speech
signal sampled at 8 kHz. The spectrogram of the original
signal is shown in Figure 4(b) while the reconstructed sig-
nal is shown in Figure 4(d). The signal was processed as
before, with 40 ms segments and 60 non-zero coefficients
assumed in the CS and the reconstruction. As can be seen,
the part of the speech signal that is sinusoidal has been cap-
tured, but it can also be observed that some of the upper
parts of the spectrum, that have a more stochastic nature,
have been lost. Our results clearly confirm that the princi-
ples of CS can be used for periodic signals such as voiced
speech and tonal audio signals.

5. CONCLUSION

In this paper, we have considered the application of the
principles of compressed sensing to speech and audio sig-

nals. More specifically, we have done this in the context of
sparse decompositions based on dictionaries comprised of
windowed complex exponentials. We have argued that com-
pressed sensing may serve as a pre-processor for sparse de-
compositions as the complexity of solving the involved con-
vex optimization problems is greatly reduced in the process.
Furthermore, our results demonstrate that sparse decom-
positions work equally well with and without compressed
sensing regardless of the assumed level of sparsity. This
is an important observation as the level of sparsity cannot
be known a priori and may vary over time for speech and
audio signals. This basically means that sparse decomposi-
tions with compressed sensing works no worse than sparse
decompositions did in the first place.
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