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Abstract

Byzantine Chant performance practice is computationally compared
to the Chrysanthine theory of the eight Byzantine Tones (octoechos). In-
tonation, steps, and prominence of scale degrees are quantified, based on
pitch class profiles. The novel procedure introduced here comprises the
following analysis steps: 1) The pitch trajectory is extracted and post pro-
cessed with music-specific filters. 2) Pitch class histograms are calculated
by kernel smoothing. 3) Histogram peaks are detected. 4) Phrase ending
analysis aids the finding of the tonic to align pitch histograms. 5) The
theoretical scale degrees are mapped to the empirical ones. 6) A schema
of statistical tests detects significant deviations of theoretical scale tuning
and steps from the estimated ones in performance practice. 7) The ranked
histogram peak amplitudes are compared to the theoretic prominence of
particular scale degrees. The analysis of 94 Byzantine Chants performed
by 4 singers shows a tendency of the singers to level theoretic particu-
larities of the echos that stand out of the general norm in the octoechos:
theoretically extremely large steps are diminished in performance. The
empirical intonation of the IV. scale degree as the frame of the first tetra-
chord is more consistent with the theory than the VI. and the VII. scale
degree. In practice, smaller scale degree steps (67-133 cents) appear to be
increased and the highest scale step of 333 cents appears to be decreased
compared to theory. In practice, the first four scale degrees in decreasing
order of prominence I, III, II, IV are more prominent than the V., VI.,
and the VII..

Keywords: Byzantine Chant, modes, Byzantine Tones, Chrysanthine
theory, Octoechos, pitch class profile, echos, computational ethnomusicol-
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ogy, kernel smoothing, non-parametric density estimation, peak picking,
tonic detection

1 Introduction

Byzantine Chant is the Christian liturgical song of the Eastern Roman Empire
(Byzantium) that gradually emerged from the Roman Empire from the 4th cen-
tury on. Since then up to now, Byzantine Chant has been the dominant liturgy
of the Eastern orthodox Christianity. Since the earliest surviving manuscripts
with notation of Byzantine Chant dating to the 9th century, and the earliest
theoretic accounts of Byzantine Chant dating to the 10th century, several no-
tation systems and theories have been introduced, including the Chrysanthine
notation and theory, still used in the official chant books of several Christian
orthodox churches practicing Byzantine Chant (Levy & Troelsg̊ard, 2011). How-
ever, Levy and Troelsg̊ard (2011) refer to medieval treaties on Byzantine Chant:
‘most of them were intended for those already proficient in the performance of
chant, and they are often imprecise with regard to basic questions of rhythm,
ornamentation, the exact tuning of scales’. Referring to various theoretic ac-
counts on Byzantine Chant, Zannos in (Zannos, 1990) argues that ‘none of them
can be said to correspond with contemporary empirical study’. In this paper, it
will be investigated to what extent performance practice is in accordance with
Chrysanthine theory.

Music theory and performance practice can be compared using Music In-
formation Retrieval (MIR), a relatively young multidisciplinary research field
at the cross section of musicology, music psychology, signal processing, and
statistics. With these methods, large collections of recorded music can be anal-
ysed. The field of computational ethnomusicology (Tzanetakis, Kapur, Schloss
Andrew, & Wright, 2007) comprises the computational analysis of ethnic or
traditional music styles. This approach is particularly useful for the study of
predominantly orally transmitted music traditions such as Byzantine Chant,
since manual transcriptions might be subjective or erroneous if created by peo-
ple with different criteria and musical backgrounds (Toiviainen & Eerola, 2006),
in particular with respect to subtle nuances in intonation or temperament. In
addition, manual analysis of scores and recordings is a time consuming task,
thus restricting studies on relatively small and statistically insignificant music
collections.

The present research studies a theoretical model of Byzantine music with
developed MIR techniques. Precisely, a theoretical model of Byzantine Chant,
namely the Chrysanthine theory, is computationally compared to empirical data
extracted from Byzantine recordings. The main analysis tool used is a pitch class
profile (Tzanetakis, Ermolinskyi, & Cook, 2002) with fine pitch resolution, ex-
tracted from audio recordings with the aid of specifically designed algorithms.
These are applied on a large music collection of Byzantine Chant . The overall
behavior and consistency of empirical scale tuning, of the steps between con-
secutive scale degrees, and of the prominence of scale degrees is contrasted to
theory through a series of tests and experiments.

This paper is organized as follows. First the Byzantine Tones, the Chrysan-
thine theory, and the used music corpus are introduced. Then the compu-
tational analysis procedure is explained, consisting of pitch detection, pitch
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histogram smoothing, scale degree alignment, and statistical tests. Results on
theory-practice comparison are given with respect to the tuning, scale steps,
and prominence of scale degrees. The paper concludes with a discussion of the
analysis.

2 The Octoechos and the Chrysanthine Theory

According to Winnington-Ingrams Mode in Ancient Greek Music (Winnington-
Ingram, 1936) a ‘mode is essentially a question of the internal relationships of
notes within a scale, especially of the predominance of one of them over the
others as a tonic, its predominance being established in any or all of a number
of ways: e.g., frequent recurrence, its appearance in a prominent position as the
first note or the last, the delaying of its expected occurrence by some kind of
embellishment’.

The tone (singular: echos, plural echoi) in Byzantine Chant is based on the
concept of the mode. According to Mavroeidis (1999) and Thoukididi (2003),
an echos is defined by the following five characteristics: 1) the scale degree steps
between consecutive scale degrees, 2) the most prominent scale degrees (two or
three scale degrees out of which I - III and I - IV are the most reoccurring scale
degree pairs), 3) a short introductory phrase that marks the reference tone, 4)
the cadences in the middle and at the end of a phrase, and 5) the modulations
(alterations) applied to particular scale notes depending on whether they are
reached by an ascending or a descending melody.

In Byzantine Chant, the number of echoi and the tuning of their scale de-
gree steps have been discussed during the long history of Byzantine Chant no-
tation and theory that developed through the following three stages: 1) the
Palaeo-Byzantine method (10th − 12th century), 2) the middle Byzantine no-
tation (mid-12th− about 1815), and 3) the new (Chrysanthine) notation (from
the 1820s) (Levy & Troelsg̊ard, 2011). The latter is attributed to the three
teachers Chrysanthos of Madytos, Chourmouzios the Archivist and Gregorios
the Protopsaltes. Subject to a reform in the 1880s concerning the tuning of
the scale degrees in particular, the Chrysanthine notation method is used in
the official chant books of the Greek Orthodox Church up to now (Levy &
Troelsg̊ard, 2011). In the 20th century, Karas (1970) suggested an alternative
Byzantine notation by re-introducing some old (palaeographic) qualitative signs,
reconstructing the interval structure and revising the classification of the modes.
However, his theory is controversial among scholars and performers of Byzantine
Chant (Angelopoulos, 1986). In this paper, we use the Chrysanthine theory as
a reference.

In Chrysanthine theory, the octave is divided into 72 equal partitions, each
of 16.67 cents1 (morio, plural: moria). The scale degree steps are measured
in multiples of a morio. Scale degree steps can be of the size of a semitone
(100 cents = 6 moria) and a whole tone (200 cents = 12 moria). But also step
sizes between the halftone and the whole tone are frequently used: the minor
tone (166.67 cents = 10 moria) and the minimal tone (133.33 cents = 8 moria)
(Thoukididi, 2003).

1According to Mavroeidis (1999) the morio of Chrysanthine theory is 17 cents as the
12th part of a Pythagorean whole tone of 204 cents. However, we assume 72-tone equal
temperament resulting in a morio of 16.67 cents.
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The Chrysanthine theory defines in total eight basic echoi, a system also
referred to as octoechos (‘eight’ + ‘mode’). These eight modes occur in pairs of
authentic and corresponding plagal modes2: First Authentic, Second Authentic,
Third Authentic, Fourth Authentic, First Plagal, Second Plagal, Grave, Fourth
Plagal. The First Authentic/Plagal and Third Authentic/Grave echoi pairs each
share the same sequence of scale steps (cf. Table 1). The plagal mode has a
different reference tone (tonic) than its authentic counterpart, usually a perfect
fifth lower than the one of the authentic mode3. Furthermore, both differ in
melodic characteristics.

The seven scale degree steps of an echos are constructed in the following
way. The octave is divided into a fourth, whole tone, and another fourth. The
first fourth (first tetrachord) is further subdivided by 2 tones yielding three scale
steps. The subdivision proportions are identically repeated for the second fourth
(second tetrachord). To give an example, the tetrachord of the First echos is
defined by the scale step sequence minor - minimal - whole tone (10 − 8 − 12
moria) which is repeated after the whole tone step (12 moria) that lies in the
middle of the scale (cf. Table 1). Only the Fourth echos deviates from this
tetrachord structure.

The scale degree steps may vary according to the chant genre: Heirmoi
(singular: Heirmos) are chants in a relatively fast tempo with each note corre-
sponding to one syllable. Stichera (singular: Sticheron) are in medium tempo
with more than one note corresponding to the same syllable (melisma). Pa-
padika (singular: Papadikon) are sung in a slow tempo with a phrase of notes
corresponding to one syllable (Mavroeidis, 1999; Thoukididi, 2003).

To give an example, some of the echoi such as the Grave consist of different
scale degree steps depending on whether the chant type is Heirmos/Sticheron
or Papadikon. Similarly, the Fourth authentic, consists of different scale degree
steps for chants of Heirmos type and chants of Sticheron/Papadikon type.

Our study is limited to the basic and simplest echos scales4 (cf. Table 1). We
will not consider the fact that scale degree steps of an echos can be modulated
(altered) based on the melodic characteristics of a chant or other criteria (cf.
Mavroeidis (1999), Thoukididi (2003)).

3 Music Corpus

In the long history of Byzantine music, choirs and various musical instruments
have been used in the liturgical ceremonies (Braun, 1980). However, musical in-
struments are forbidden in Orthodox ecclesiastic music to this day (Thoukididi,
2003). The singing voice, as the main instrument is used solo or in choirs. The
corpus of music analysed in this study consists of recorded monophonic chants

2The notion of the authentic and plagal modes in Byzantine music should not be confused
with the notion of church modes in Roman theory.

3The Grave shares the same scale degree steps with the Third Authentic as well as the
same reference tone.

4For the Grave echos the scale of Heirmos/Sticheron chant type is considered, and for the
Fourth authentic the scale of Heirmos chant type, since these are the most basic and commonly
used scales for the corresponding echoi (Mavroeidis, 1999). Chants of the Heirmoi genre of
the Second, Heirmoi of Second Plagal, Papadika of Grave, Stichera and Papadika of Fourth,
and Papadika of Fourth Plagal use different scales than the eight basic echoi. Thus they are
omitted in this study.
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Echos Chant Type Step (in Moria) between Scale Degrees
I II III IV V VI VII I

First All chants 10 8 12 | 12 | 10 8 12
First Plagal All chants 10 8 12 | 12 | 10 8 12
Second Stichera/Papadika 8 14 8 | 12 | 8 14 8
Second Plagal Stichera/Papadika 6 20 4 | 12 | 6 20 4
Third All chants 12 12 6 | 12 | 12 12 6
Grave Heirmoi/Stichera 12 12 6 | 12 | 12 12 6
Fourth Heirmoi 8 12 12 | 10 | 8 12 10
Fourth Plagal Heirmoi/Stichera 12 10 8 | 12 | 12 10 8

Table 1: The scale structure of the eight modes (octoechos) measured in multi-
ples of a morio. The two tetrachords are indicated.

from the album series of Protopsaltes Georgios Kakoulidis (Kakoulidis, 1999),
Protopsaltes Ioannis Damarlakis (Damarlaki, 1999), Protopsaltes Panteleimon
Kartsonas (Kartsonas, n.d.), and Protopsaltes Dimitrios Ioannidis (Ioannidis,
2005). From the total of 94 recordings, 13 are in the First Authentic echos,
15 in First Plagal, 6 in Second Authentic, 6 in Second Plagal, 18 in Third Au-
thentic, 9 in Grave, 10 in Fourth Authentic and 17 in Fourth Plagal. Only in
a few chants, a drone appears at low voice in the accompaniment. The type of
chants collected for each echos follow the specifications in Table 1. The dura-
tion of chants in this music corpus ranges between 30 to 220 seconds with mean
duration 70 and standard deviation 35 seconds.

4 Computational Analysis Process

The objective of the study is the theory-practice comparison of features of
Byzantine scales. To study scale degree pitch, prominence, and steps empir-
ically, pitch modulo octave histograms are investigated. Built on pitch his-
tograms, pitch class profiles have been applied to detect key and tone centres
in classical Western music (Purwins, Blankertz, & Obermayer, 2000; Gómez,
2006). Chordia and Rae (2007) adapted the latter approach to Raag recog-
nition. Bozkurt (2008) proposed a method to extract the tuning of a scale,
applied to Turkish maqam. Moelants, Cornelis, and Leman (2009) introduced a
peak picking heuristics to extract the scale tuning from a modulo octave pitch
histogram of African scales. Serrà, Koduri, Miron, and Serra (2011) used pitch
class histograms to investigate scale tuning in Hindustani and Carnatic music.
In particular, they investigated whether this music follows equal temperament
rather than just intonation.

The procedure proposed in this article is summarized in Figure 1. First, the
pitch (f0) trajectory is extracted from each recording. A pitch histogram is com-
puted, compressed into one octave and smoothed. Then peaks are detected in
the histogram. With the reference to the tonic, the pitch trajectories and pitch
histograms are aligned. From pitch trajectories of recordings of the same echos,
the echos histogram is computed. Pitch distributions around the peak loca-
tions of this histogram are used to determine the empirical scale degree pitches.
From the aligned pitch histogram of each recording, peak locations are mapped
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to theoretical scale degree pitches. The interval sizes between consecutive peak
locations are employed to determine the usage of scale steps between consec-
utive scale degrees. Finally, a sequence of statistical tests is used to compare
the estimated empirical scale tuning and scale step sizes with the theoretical
ones. The ranked peak amplitudes are compared with theoretic prominence of
particular scale degrees.

4.1 Pitch Trajectory via F0 Detection

Algorithmic pitch estimation is usually done assuming a close relationship of the
perceived pitch and the fundamental frequency (f0) of the signal. In the current
study, we use the f0 estimation Yin algorithm (de Cheveigne & Kawahara,
2002). The algorithm is based on the autocorrelation method (Rabiner, 1977)
with a number of modifications that improve its performance. The error rate
of the Yin frequency estimates depends on the acoustic characteristics of the
signal. Considering the melodic characteristics of the analysed music as well as
the particularities of the singing voice, the following post processing filters are
designed:

1. Noise: An aperiodicity threshold θn is applied to eliminate erroneous fre-
quency estimates at the noisy parts of the recording. Assuming min max
normalization of the aperiodicity variable in the range [0, 1], the aperiod-
icity threshold is set to θn = 0.8.

2. Silent Gaps: A loudness threshold θs is applied to remove frequencies
corresponding to silent and/or quiet parts. Assuming min max normaliza-
tion of the instantaneous power variable in the range [0, 1], the loudness
threshold is set to θs = 0.05.

3. Octave/fifth errors: To avoid false estimates due to confusion with
other harmonics of the fundamental frequency (octave/fifth errors), an
octave/fifth correction algorithm is designed. Based on some initial as-
sumptions, the algorithm recalculates an instantaneous frequency value
whenever an interval greater than a fifth is found between consecutive
time-ordered pitches.

As a result, a trajectory of estimated pitches p = (p1, . . . , pN )(1 ≤ n ≤ N)
is generated for each recording, where n denotes indexes through time-ordered
pitches.

4.1.1 Behavioral F0 Trajectory Evaluation Experiment

The efficiency of the f0 trajectory extraction algorithm as well as the tonic de-
tection Algorithm 2 was evaluated with a behavioral experiment. We decided
to perform the evaluation with few expert singers of Byzantine Chant rather
than with a large number of non-experts, since, in general, the subtleties of de-
tecting the tonic in Byzantine Chant make the tonic-detection task too difficult
for non-experts. As subjects, we chose three accomplished singers of Byzantine
Chant. For the stimuli, 20 chant endings were selected, stemming from all 8
main echos types and all singers of the music corpus. The experiment consisted
of two parts: the first one for evaluating the estimated pitch trajectory, and
the second one for evaluating the estimated tonic (cf. Section 4.4.2). For pitch
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F0 Detection

Histogram Computation

Audio Recording 

Peak Extraction

Practice-Theory Aligned SD

Peak Matching

Tonic Detection

Pitch Trajectory

Pitch Histogram

Histogram Peaks

Practice-Theory Comparison

Histogram AlignmentPitch Trajectory Alignment

Echos Histogram Computation

For recordings of the same echos

Pitch Distribution Matching

Analysis / Statistical Testing

SD StepsSD Freq. SD Ampl. Rank

Figure 1: Flow diagram of the analysis process of a recording yielding a theory-
practice comparison of the scale tuning, the scale step sizes, and the scale tone
prominence (SD=Scale Degree).
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Figure 2: Yin f0 estimations before and after post processing.

trajectory evaluation, the subjects were asked to first listen to an excerpt of a
Byzantine chant and then listen to a synthesized version of the estimated pitch
trajectory. Choosing from a scale of 1 to 5, where 1 corresponds to “no match
at all” and 5 corresponds to “perfect match”, the subjects were asked to evalu-
ate how well the melody of the original matches the melody of the synthesized
version. The three experts evaluated the estimated pitches for 20 Byzantine
excerpts with an average value of 4.2/5. One melody was evaluated, on av-
erage, below 3.5, and this corresponds to a recording with a relatively noisy
background. In general, our f0 detection algorithm works sufficiently well.

4.2 Pitch Histogram via Kernel Smoothing

Pitch histograms are used as an analytic tool for scale estimation (Akkoç, 2002;
Bozkurt, 2008; Moelants et al., 2009; Chordia & Rae, 2007). Ideally, the his-
togram distribution peaks at the most frequently appearing notes of the melody.
By definition, a pitch histogram c = cp,b = (cp,b1 , . . . , cp,bk ) partitions the data p
into K distinct bins of width h and then counts the number of p observations
falling in each bin. This can be expressed as

cp,bk =

N∑
n=1

qr(
pn − bk

h
) (1)

where bk is the centre of the bin k for k = 1, . . . ,K, and qr(u) the rectangular
kernel function defined as

qr(u) =

{
1 if |u| ≤ 1

2
0 otherwise.
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Figure 3: Histogram with no smoothing (rectangular kernel qr, h = 6 cents,
top), with relatively small smoothing factor (Gaussian kernel, , h = 12 cents,
middle), with relatively large smoothing factor (Gaussian kernel, h = 18 cents,
bottom). The circled peaks of the middle graph differ by less than 4 moria (67
cents) and are merged in the bottom graph thus avoiding an - according to
theory - false scale-tone peak.

The choice of h is critical for the subsequent stage of peak picking, since a
too high h can eliminate relevant peaks whereas a too small h can create spu-
rious peaks in the pitch histogram. Used in Turkish music theory, the Holdrian
comma provides a K = 53 equal temperament division of the octave. Based
on that division, Bozkurt (2008) yields h = 1200

53·3 . For Byzantine Chant, the
Chrysanthine theory divides the octave into 72 equal partitions and we mul-
tiply this division by 3 arriving at h = 1200

72·3 , thereby yielding sufficient bin
resolution and robustness. We consider the equally spaced modulo octave pitch
class histogram defined by

cp,bk =

N∑
n=1

qr(u) (2)

where

u =
(bk − (pn − p0) mod 1200) + p0

h
(3)

and p0 is the pitch offset.
Although a large h increases the smoothness of the pitch histogram, discon-

tinuities in the histogram remain. These discontinuities are artefacts due to
the partitioning of the pitches in a discrete set of predefined bins. A smooth-
ing of the histogram has the effect of simplifying its shape and making it less
dependent on the variance of the data from which it is generated.

9



Figure 4: Peak detection applied to the three-histogram copies, where the mid-
dle part avoids the peak discontinuities at the edges of the original (single)
histogram.

The sharp-edged rectangular kernel function qr(u) in Equation (2) can be
replaced by a smooth Gaussian kernel function (Bishop, 2006) yielding the
histogram

cp,bk =

N∑
n=1

1√
2πh

e−
(pn−bk)2

2h2 (4)

for k = 1, . . . ,K.
In the smoothed histogram, the Gaussian kernel replaces each single pitch

point by a smooth Gaussian and then adds up all Gaussians across all pitch
points. As with the rectangular kernel, the bandwidth h determines the smooth-
ness of the histogram. Again there is a trade-off between noise sensitivity at
small h and over-smoothing at large h values. Tests with data-driven determina-
tion of h (Sheather & Jones, 1991) gave overly smoothed curves eliminating too
many peaks. The selection of the appropriate smoothing parameter h has to be
guided by the task the histogram is used for. Whereas e.g. for characterizing a
singer’s ornamentation, a small h, i.e. a detailed histogram may be appropriate,
for estimation of scale degree tuning, as one of the objectives of this study, a
relatively high smoothing factor is employed to avoid spurious peaks in a too
detailed histogram. To determine an adequate h, the following assumption
is made: Byzantine theory recognizing 4 moria (67 cents) as the smallest scale
degree step and choosing the quartertone (δmin = 50 cents) as the smallest
acceptable distance between two histogram peak positions allows for a margin
for investigating the deviations between theory and practice. Experimenting
with h and looking at the resulting histograms (cf. Figure 3), the assumption
is satisfied when h is set to 18 cents.
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Figure 5: The histogram peaks (λ, π) can be interpreted as the pitches (peak
locations λ) and the prominences (peak heights π) of the scale degrees.

4.3 Histogram Peak Extraction

Adjusting the smoothing factor of the histogram is an important step in our
approach. The smoothed histogram distribution is expected to peak at exactly
seven maxima (the seven scale notes of the melody), thus, eliminating spurious
peaks. Peaks that lie closer than the theoretical boundary predicts, are merged
(with appropriate amount of smoothing) to a single peak with centre frequency
adjusted according to the properties of the histogram distribution. Alterna-
tively, the centre frequencies of the seven scale notes could be estimated via
the k-means method applied to the non-smoothed histogram distribution. The
7-means method was tested but failed to identify correctly the seven scale notes
due to the significant deemphasis of the scale degrees VI and VII (cf. Figure 9).

To overcome the smoothing artifacts at both borders of the histogram, we
copy the histogram three times, pasting it next to each other, yielding the
three-histogram (cf. Figure 4). From the three-histogram copies, the middle one
has accurately smoothed edges due to the continuation beyond the histogram
borders, and therefore is the only one considered for further processing.

Using a peak extraction algorithm, from the smoothed pitch class histogram,
c, U peaks (λ, π) can be detected consisting of peak locations λ = (λ1, . . . , λU )
and peak heights π = (π1, . . . , πU ) (cf. Figure 5). Moelants et al. (2009) pro-
posed a couple of heuristics to be used in peak picking, such as the consideration
of size and height of peaks and intervals between peaks. Here Algorithm 1 is pro-
posed. The number U of peaks to be detected and the minimum peak distance
δmin have to be determined beforehand.

From the histogram c= (c1, . . . , cK), the peak picking algorithm (cf. Algo-
rithm 1) iteratively chooses the peak location λu = bku with maximum peak
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height πu = cku , then removing the potential location candidates in a ±δmin
neighborhood around the selected peak position, to chose the next peak until
U peaks are picked. U is determined as follows: According to Byzantine theory
each echos has at least 7 scale notes. In addition, Byzantine theory knows of
note alterations. To account for further intonation variants in practice, we set
U = 12. δmin = 50 cents is chosen as the minimum neighborhood.

Algorithm 1 Peak picking algorithm.

Variables
Minimum peak distance δmin
Number of peaks U
Pitch class histogram c1, . . . , ck
Bins b = (b1, . . . , bK)
Initialization
Γ1 = (1, 2, . . . ,K)
For u = 1 to U
ku = argmaxk∈Γuck
Γu+1 = Γu \ {ν : |ν − bku | < δmin}
λu = bk, πu = ck
End For

4.4 Practice-Theory Aligned Scale Degrees

4.4.1 Tonic Detection

It would be advantageous to compare pitch histograms in a way that is invariant
to pitch transpositions. Scale degrees could then be compared to their position
relative to the tonic rather than to their absolute pitch (Purwins, Blankertz,
Dornhege, & Obermayer, 2004). This way, two instances of the same echos
could be compared, even if their tonics are different. To make the first bin b1
correspond to the tonic, the histogram has to be circularly (modulo K) shifted
by −p0, with p0 being the bin of the tonic. Gedik, Ali C and Bozkurt (2008)
applied kernel smoothing to each of the makam scale prototypes. Then they
calculated the cross correlation between all scale prototypes and all circularly
shifted versions of a histogram. The pitch shift −p0 that gives the maximum
cross-correlation corresponds to the estimated tonic and is used to circularly
shift the latter histogram. Exploiting the scale structure of the octoechos for
tonic detection would be likely to improve the tonic estimate. However, in our
approach we will not use this information at this point, because we want to
minimize the used musical knowledge and the resulting bias in the subsequent
testing.

In order to compare empirical profiles with the theoretical tonic and scale
degrees, we aim at increasing the reliability of detecting tonic p0 by incorporat-
ing more musical knowledge into the tonic (p0) detection algorithm, following
an idea in (Bozkurt, 2008). According to theory, the tonic of a Byzantine echos
is stated at the end of the phrase in most of the cases. Although there are
exceptions to this general rule in the majority of the chants this rule applies
and we will build our analysis on this assumption. We present a novel tonic
detection algorithm that computes the pitch of the last phrase note from the
onset and frequency information. A couple of heuristics are implemented to
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increase the noise robustness of the method. The algorithm makes the following
assumptions:

1. The last note in the recording is the last note of the melodic phrase.

2. The final phrase note lasts for at least half a second.

Assumption 1 is fulfilled if the complete song is recorded. Presegmentation
however is employed to standardise the number of similar musical phrases in
the excerpts. Assumption 2 is generally met in religious singing in Byzantine
Chant.

Onsets in the estimated pitch p = (p1, . . . , pN ) are detected based on the
onset detection function

dn =
1

r

n+ 3
2 r−1∑

m=n+ r
2

pm −
n− r2∑

m=n− 3
2 r+1

pm

 , (
3

2
r ≤ n ≤ N − 3

2
r + 1), (5)

which takes the difference dn of sums of an even number of r instantaneous
pitches left and right from pitch pn.

To give a short explanatory example, apply Equation 5 to r = 10 and n = 15
and

pm =

{
10 for m < 15
20 otherwise

. (6)

Then dn = 1
10 (
∑29
m=20 pm −

∑10
m=1 pm) = 10.

Applying Algorithm 1 for extracting U = 100 peaks gives onset candidate
locations o′′ = {o′′1 , . . . , o′′U} from which the ones with an onset detection function
dq above pitch threshold θf · max(o′′) are considered: o′ = {oq ∈ o′′ : dq >
θf · max(o′′)}. Analogously, onsets o∗ are detected based on the log energy,
computed from the output of YIN algorithm, and energy threshold θe, instead
of pitches p. Onsets due to pitch as well as energy are united to o = o′ ∪ o∗.
From these, the ones at least a minimal inter onset interval ∆min apart from
their predecessor are extracted: o = {oq ∈ o : oq − oq−1 > ∆min}. In the sequel,
the following parameter settings are used: r = 32, θf = 0.1, energy threshold
θe = 0.005 and ∆min = 0.1s.

The accuracy of detecting the tonic from the musical phrase ending is limited
by the characteristics of the analysed music and particularly the frequent use
of vibrato on the last note. For example, in extreme cases vibrato ranges up
to ±2 semitones and false onsets due to pitch variation are detected on frames
with instantaneous frequency that differs more than a semitone from the actual
pitch of the last note (cf. Algorithm 2). Additionally, onsets due to energy
variation fail to detect the attack of the last note if melismatic ornamentation
is employed at the phrase end, e.g. if the singer softly introduces the final note
without changing the syllable and without a noticeable energy variation.

Empirical tests showed that for our music collection the onset detection
algorithm usually detects up to three onsets within the last note, as a result of
energy and pitch variations. The algorithm implemented takes into account this
fact, and compensates pitch inaccuracies with a final alignment of the tonic to
the closest histogram peak (cf. Figure 6).
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Figure 6: The tonic detected from the last phrase note may deviate from the
empirical scale degree pitches (locations of histogram peaks) due to vibrato.
With the post processing step of tonic refinement to the closest histogram peak
this inaccuracy is resolved.

Algorithm 2 Tonic refinement algorithm.

Preprocessing
Detect the last three onsets oo−2, oo−1, oo
Pitch trajectory p
Get the three index sets Πo−2,Πo−1,Πo of the pitches p corresponding to the
previous inter-onset-intervals.
Last Note Detection
IF max0≤i≤j≤2|po−i−po−j | < 100 cents
(Small vibrato range or no vibrato)
Calculate tonic as average of instantaneous frequencies of frames of three inter-
onset-intervals po = 1

|Π|
∑
n∈Π pn,Π = ∪0≤i≤2Πo−i

ELSEIF the last two frequencies lie within a semitone |po − po−1| < 100 cents
(Vibrato range larger than a semitone or first of the three onsets is false)
Calculate tonic as average of instantaneous frequencies of frames of last two
inter-onset-intervals po = 1

|Π|
∑
n∈Π pn,Π = ∪0≤i≤1Πo−i

ELSE
(Vibrato range larger than a semitone or first two onsets are false)
Calculate tonic po as average of instantaneous frequencies of frames of the last
half-second of the melody
END
Postprocessing
Reset tonic estimate to highest/closest peak location in histogram:
Get right (λ1, π1) and left (λ2, π2) location/height peak pair closest to po
IF |λ1 − λ2| < 100 cents THEN
p∗ : = argmax1≤i≤2(πi)
ELSE
p∗ : = argmin1≤i≤2(|po − λi|)
END
po : = λn∗

14



4.4.2 Behavioral Tonic Detection Evaluation Experiment

The efficiency of the tonic detection algorithm was evaluated with a behavioral
tonic-finding experiment jointly with the f0 trajectory evaluation experiment.
For further details cf. Section 4.1.1. Programmed in a Matlab interface, the
subject heard a chant ending and then was asked to move the slider “so that the
tonic produced represents the tonic of the original song”. The slider controlled
the pitch of a sine tone and was moved until the subject agreed that the sine tone
would represent the tonic of the excerpt. The subjects could repeat listening
to the stimulus and adjusting the tonic pitch as often as they wanted before
moving on to the next excerpt.

For 18 of the 20 stimuli, the subjects’ responses’ standard deviation was
below 42 cents. Only for 2 excerpts, one expert disagreed with the other experts,
resulting in a larger standard deviation of 189 and 262 cents among the experts.
For two out of the 20 excerpts the computed tonic differed greatly from the
mean of the subject’s response distribution. One recording of the First Plagal
echos and one recording of the Third echos are detected with a wrong tonic.
These are exactly two of the few exceptions in which the final note of the chant
does not end on the tonic. This occurs for instance when the current chant
anticipates the following chant in the course of the Byzantine liturgy. However,
since these cases are relatively rare, we will see that they do not distort the
results of the analysis to an important extent. Cf. the discussion of these results
in Section 6.

4.5 Practice-Theory Comparison

4.5.1 Scale Degree Assignment

The objective is to assess the deviation between scale degree tuning of a partic-
ular echos according to theory and scale degree tuning in musical practice. The
normalized theoretical scale degree pitches are defined as a set of scale degree
pitches (locations) νθ = (νθ1 , . . . , ν

θ
L), with normalization νθ0 = 0 (in cents) and

L = 7.5 For all recordings 1 ≤ m ≤Mi of echos i, the pitch histogram ci = cp,b

is built from the pitches p of these recordings and bins

b = (0,
1200

216
,

2 · 1200

216
, . . . ,

215 · 1200

216
). (7)

From histogram ci, peaks (λ, π) with pitches λ = (λ1, . . . , λU ) and amplitudes
π = (π1, . . . , πU ) are selected via Algorithm 1 (peak picking). From (λ, π), the
empirical scale degree pitches are estimated. Then only those peaks (λu, πu)
are selected that correspond to a theoretic scale note in νθ. For each theoretical
scale degree pitch νθl , the closest pitch λu is chosen. If this way, one pitch λu is
associated with several theoretical scale degree pitches νθl , pitch λu is assigned
only to the closest theoretical scale degree pitch νθl . Then the pitches λu are
selected that lie within a ∆A = 150 cents distance from their assigned theoretical
scale degree pitch µθl . If two or more pitches λu fulfill this condition, the peak
with highest associated amplitude πu is selected: Formally, the estimated scale
degree pitches ν̂ = (λt1 , . . . , λtL′ ) are defined by tl = arg max|λt−νθl |≤∆A

(πt).

5Exceptions with L = 8 theoretical scale degree pitches exist in some variations of echoi
not included here.
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If no pitch λu lies within the range ∆A around the theoretical pitch νθl , tl is
not defined and the estimated scale ν̂ = (ν̂1, . . . , ν̂L′) has less degrees than the
theoretical scale νθ, i.e. 1 ≤ L′ < L.

From the estimated empirical scale degrees ν̂ and for all recordings of the
same echos, consider Nl pitches

pl = (pl,1, . . . , pl,Nl) (8)

that lie within a 2-moria distance of the estimated scale degree pitch ν̂l of scale
degree l, selected from the instantaneous pitch trajectory p = (p1, . . . , pNi),
consisting of Ni pitches of all recordings of a particular echos i. The 2-moria
distance defines half the size of the smallest theoretical scale interval (cf. Ta-
ble 1). This is done to apply statistical testing to check whether pitches pl

are drawn from a distribution with mean equal to the theoretical scale degree
pitches νθl (see details below).

Now let us explain how to calculate the scale steps δ = (δ1, . . . , δL) between
consecutive scale degrees of one echos. Instead of calculating the histograms for
all the recordings of one echos all together as done in the previous paragraphs,
we now calculate the histograms individually for each recording 1 ≤ m ≤Mi of
echos i: cm,i = cp

m,i,b (Equation 3) where pm,i is the instantaneous pitch tra-
jectory of recording m of echos i and b are the 216 bins per octave (Equation 7).
From histogram cm,i, peaks (λ, π) with pitches λ and amplitudes π are selected
via Algorithm 1 (peak picking). From the peaks (λ, π) the estimated scale
degree pitches ν̂ = (ν1, . . . , νL′) are calculated. From the estimated scale steps
ν̂, the scale steps δ = (δ1, . . . , δL) can be calculated as the difference between
the lth and the l − 1th estimated scale degree pitches δl = ν̂l − ν̂(l−2)modL+1

.

The scale steps are the intervals between consecutive scale degrees. From the
peak amplitudes πm,il associated with the empirical scale degree pitches νm,il ,
we define the average scale degree amplitude by

π̄l =
1∑I

i=1Mi

I∑
i=1

Mi∑
m=1

πml (9)

where Mi are the number of recordings of echos 1 ≤ i ≤ I. This concept
of average scale degree amplitudes indicates prominences of scale degrees and
is similar to Krumhansl’s probe tone ratings, constant Q profiles or harmonic
pitch class profiles but it generalizes to other than 12-equal temperament tunings
(Purwins et al., 2000).

4.5.2 Statistical Testing

To assess the deviation between theoretic and empirical scale degree pitches and
steps, we apply a chain of tests as an analytical instrument. As a first step, the
Shapiro-Wilk test is applied, to determine whether the pitches pl are normally
distributed around the estimated scale degree pitches ν̂l across all Mi instances
of the same echos i. If the p value is above significance level α = 0.05, we
assume normal distribution and apply the t-test to pl. In case the Shapiro-
Wilk rejects the normality hypothesis, the Wilcoxon signed-rank test is applied
instead. The hypothesis to be tested by the Wilcoxon signed-rank test is the
following. For echos i, the l-th estimated scale degree pitches pl are derived
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from a distribution with median equal to the l-th theoretical scale interval νθl .
We perform n = 48 (6 scale degree pitches6 times 8 echos types) tests. In
multiple testing, there is an increased chance to falsely reject a hypothesis. In
order to counterbalance this effect, we apply the Bonferroni correction (Dunn,
1961). To reject a hypothesis with a significance level of α = 0.05, we determine
the Bonferroni corrected threshold for the p values of the individual n = 48
tests as: αB = α

n = 0.05
48 ≈ 0.001. If p < αB , we reject the null hypothesis and

conclude that the theoretical scale degree pitch νθ,il deviates significantly from
the empirical scale degree pitch ν̂il for echos i.

In order to determine if some empirical scale degree pitches deviate from
theory more than others, we calculate the differences between theoretical scale
degree pitch and the Nm instantaneous scale degree pitch pm,il,n ,

∆m,i
l,n = νθ,il − p

m,i
l,n (10)

for recordings m = 1, . . . ,Mi of echos i, and scale degree l = 1, . . . , L. For each
scale degree l of echos i, we calculate the mean scale degree difference defined
by

∆̄i
l =

1∑Mi

m=1Nm
(

Mi∑
m=1

Nm∑
n=1

∆m,i
l,n ) (11)

. To assess practice-theory deviation of scale degree pitches across all echoi, the
mean absolute scale degree difference

∆̄l =
1

I

I∑
i=1

|∆̄i
l| (12)

is computed from the mean deviations for each scale degree l,(1 ≤ l ≤ L′), and
across all echoi i, (1 ≤ i ≤ I).

Another objective of this study is to assess the deviation between theoretic
scale steps and scale steps in practice. For each of the theoretical scale steps
δθ = (δθ1 , . . . , δ

θ
Q) = (67, 100, 133, 167, 200, 233, 333) (in cents) corresponding to

the Q = 7 steps of 4, 6, 8, 10, 12, 14, and 20 moria we aim at estimating the
empirical scale steps δπ = (δπ1 , . . . , δ

π
Q). We define the set of all scale steps

N = {δ : ∃l ∈ {1, . . . , L},m ∈ {1, . . . ,M} so that δ = δml }, (13)

for scale degree l = 1, . . . , L and recordings m = 1, . . . ,M . Then we collect
the scale steps δml that are within a ±1 moria (16.67 cents) neighborhood Nq
around the q-th theoretical scale step δθq , i.e.,

Nq = {δ : ∃l ∈ {1, . . . , L},m ∈ {1, . . . ,M} so that δ = δml and |δ − δθq | ≤ 16.67}. (14)

Note that for scale degree q = Q of 333 cents, we define a neighborhood of ±4
moria around the theoretical value to account for the relatively large distance
between this and the previous theoretical interval at 233 cents.

6The scale degree pitches are normalized with respect to scale degree I, therefore only 6
scale degree pitches remain.
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The empirical scale steps δπ can be approximated by the estimated empirical
steps δ̂ = (δ̄1, . . . , δ̄Q), defined by the empirical means

δ̄q =
1

|Nq|
∑
δ∈N̂q

δ (15)

for q = 1, . . . , Q. To assess the significance of theory-practice deviations in the
sizes of the scale steps, first the Shapiro-Wilk test on normality is performed. If
the hypothesis of normality is rejected, the Wilcoxon signed-rank test is applied.
Otherwise, the t-test is employed. For the Wilcoxon signed-rank test, the null
hypotheses to be tested are that the δ in the set Nq around the theoretical
scale steps δθq is drawn from a distribution with median δθq . Since we perform 7
tests for Q = 7 scale steps, a significance level of of α = 0.05 corresponds to a
corrected Bonferroni threshold of αB = α

7 ≈ 0.007 (cf. Table 3).
We also construct the scale step histogram using the notation for the set N

all scale degree steps (Equation 13):

d = cN ,b (16)

with an octave division of 216 bins according to Equation 7. This histogram is
then smoothed with a moving average filter of 3 bins length (cf. Figure 7).

The prominence of empirical scale degree pitches is analysed via two ap-
proaches. First, to investigate whether some scale degrees are particularly em-
phasized in Byzantine Chant, which ones are these and to what degree this
happens, the average scale degree amplitude π̄ = (π̄1, . . . , π̄L) averaged across
all recordings of all echoi is considered. Also, the average scale degree ampli-
tude of Byzantine echoi are compared to a related music tradition, the Turkish
makams.

Another aim is to assess the deviation between the prominent scale degrees
in theory and practice. As defined in theory, the set of the most prominent
scale tones is one of the elementary characteristics of the echos. This set usu-
ally consists of 2 or 3 scale degrees and it may be differently defined in the
sub-categories of chants (Heirmoi etc.) of the same echos (cf. Table 4). For
comparison, the echos average scale degree amplitude

π̄il =
1

Mi

Mi∑
m=1

πml (17)

is calculated for each echos i (cf. Figure 8). The three scale degrees (lt1 , lt2 , lt3)
with the highest amplitudes π̄il are taken as the set of the most prominent scale
degrees of the empirical data (cf. Table 4).

5 Results

In this section, we present our findings referring to three particular aspects of
pitch histograms in Byzantine echoi in performance practice, namely the tuning
of scale degrees, the interval sizes between consecutive scale degrees (steps), and
the prominence of scale degrees. The smoothed histograms for all echoi can be
found in Figure 9.
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5.1 Tuning of Scale

The tuning of the Byzantine scales is investigated by comparing the pitches of
empirical and theoretical scale notes. A series of statistical tests is employed
to determine for which scale degrees practice and theory of tuning deviate. For
all recordings m of a given echos i, the histogram c across all instantaneous
pitches p is calculated. From that, the echo-specific estimated scale degree
pitches v̂ are calculated. For each estimated scale degree pitch v̂l of scale degree
l, all instantaneous pitches pl are collected that lie within a ±2 moria range
around v̂l. For each scale degree pitch and each echos the Shapiro-Wilk test on
normality is performed on pl. The results show that for all scale degrees and
all echoi the normality hypothesis is rejected, given significance level α = 5%.
The Wilcoxon Signed-Rank Test (W -test) with significance level α = 0.05%,
corresponding to a corrected Bonferroni treshold of αB = 0.001%, is therefore
applied to test the null hypothesis that the median of the empirical pitches is
the same as the theoretical pitch of a particular scale degree in a particular
echos.

Table 2 reveals that the majority of empirical scale degrees of all echoi differ
significantly from theory, except for the scale degrees V of First, VII of First
Plagal, VI of Second Plagal, and II of Third and Grave. The Second, Fourth and
Fourth Plagal echoi have all their empirical scale degrees significantly deviating
from theory. In the sequel, we will discuss in detail significant theory-practice
deviations of more than 2 moria (cf. Table 2). The VI. scale degree of the First
and First Plagal has a relatively large mean scale degree difference (Equation 11)
value with negative sign, i.e., the empirical scale degree pitch is smaller than the
theoretical one. This could be due to the fact that for these echoi the VI. scale
degree is diminished when the melody is descending, according to theory. Other
large negative mean scale degree differences appear for the VII. scale degree of
Second Authentic as well as the III. and VII. scale degrees of Second Plagal.
These scale degrees are reached by relatively large theoretical scale degree steps;
the VII scale degree of Second Authentic is reached by the VI-VII scale step of
14 moria (233 cents) whereas the III. and VII. scale degrees of Second Plagal
are both reached by a scale step of 20 moria (333 cents, cf. Table 1). The
empirical scale degrees are smaller than the theoretical ones, i.e. in practice, the
theoretically largest scale degree steps (14 and 20 moria) tend to be diminished.
In practice, in the Fourth echos, the V is significantly diminished compared
to its theoretical scale degree pitch. This could be related to the fact that
the Fourth is the only echos, in which the first tetrachord is extended by two
moria up to 32 moria in comparison to the other echoi which are based on a
first tetrachord of 30 moria. An interpretation could be that the singer tends
to diminish the abnormally high tetrachord pitch of this echos by diminishing
the adjacent scale degree, i.e., the V. In Fourth, also scale degree step VII-I
(theoretically 10 moria) tends to be diminished towards the more common step
VII-I of 8 moria.

For scale degree pitches, the question is addressed, how much practice devi-
ates from theory across all echoi. For all chants of all echoi, the mean absolute
scale degree differences (Equation 12) are calculated between empirical and the-
oretical scale degree pitches. It is investigated, whether the absolute scale degree
difference is less for some empirical scale degrees in comparison to other scale
degrees. For scale degrees II-VII the mean absolute scale degree differences
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Echos Feature Scale Degrees
II III IV V VI VII

First (13) p (W -test) 0 0 0 0.0032 0 0
Mean SD Difference −16.65 11.25 10.45 0.84 −43.89 5.79

First Plagal (15) p (W -test) 0 0 0.0001 0 0 0.8767
Mean SD Difference 28.06 −5.65 −0.91 4.98 −50.06 −0.06

Second (7) p (W -test) 0 0 0 0 0 0
Mean SD Difference 5.79 −5.56 −6.55 10.36 20.95 −49.64

Second Plagal (7) p (W -test) 0 0 0 0 0.1592 0
Mean SD Difference 11.20 −44.32 5.06 10.79 0.47 −138.47

Third (18) p (W -test) 0.0048 0 0 0 0 –
Mean SD Difference 0.45 −21.70 −11.19 −5.48 −11.16 –

Grave (8) p (W -test) 0.0233 0 0 0 0 –
Mean SD Difference −0.44 −27.81 −11.05 −17.42 −10.53 –

Fourth (11) p (W -test) 0 0 0 0 0 0
Mean SD Difference 5.27 5.58 −5.21 −39.14 11.13 38.85

Fourth Plagal (16) p (W -test) 0 0 0 0 0 0
Mean SD Difference 22.06 11.17 16.63 17.86 17.00 22.25

Table 2: Significance of the mean scale degree difference between practice and
theory for all echoi (number of instances in brakets). Since all echoi are aligned
to pitch 0 for scale degree I, only II-VII are shown. For scale degrees II-VII the
p-value of the test statistic of the Wilcoxon Signed-Rank test (W-test) and the
mean scale degree difference (in cents, Equation 11) between practice and theory
are indicated. Zero p-values correspond to values smaller than 10−5. Practice-
theory differences (cf. Table 1) greater/smaller than ±2 moria (33 cents) are
colored and discussed in the text. For the VII. scale degree of the Third and the
Grave echoi, no peaks were detected in the corresponding echos histogram (cf.
Figure 9), hence no further analysis was considered (indicated with ‘-’ symbol).
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Figure 7: Scale step size histogram computed with 216 bin resolution and
smoothed using a moving average with a filter length of 3 bins .

are ∆̄ = (11.2, 16.6, 8.4, 13.4, 20.7, 42.5). The practice-theory deviation for scale
degree IV is significantly less than for the VI. and the VII. scale degree. The
stability of the fourth can be related to the role of the fourth as the frame of the
first tetrachord building block of the scale. From Figure 9 one can infer that
the pitch content of the echoi is mostly concentrated in the first 4 scale degrees
that lie within the first tetrachord range.

5.2 Scale Steps

The theoretical scale steps are compared to the estimated empirical steps. The
questions addressed are: 1) Which intervals are most frequently used in Byzan-
tine music? 2) Which ones deviate significantly between theory and practice?

In Figure 7, the smoothed scale step histogram d = cN ,b is shown, based on
the scale degree steps between all L consecutive scale degrees in all I echoi and
the bins b = (0, . . . , 71

216 ). A moving average filter of 3 bins length is used for
smoothing. The histogram displays the frequencies of occurrence of these scale
steps in practice. The most frequently used scale steps in Byzantine music are
the whole tone (with theoretical size of 200 cents) and the minimal tone (133
cents), followed by the minor tone (167 cents) and the semitone (100 cents).
The 14-moria (233 cents) theoretical scale step occurs also with significant fre-
quency whereas the smallest and largest theoretical scale steps (67 and 333 cents
respectively) are not used so often.

To assess the significance of theory-practice deviations in the sizes of the
scale steps, we calculate the set of empirical scale steps Nq (Equation 14)
around the Q = 7 theoretical scale step δθq = (4, 6, 8, 10, 12, 14, 20). First the
Shapiro-Wilk test is performed in order to determine whether δ ∈ Nq is normally
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Theoretical scale Steps 4 6 8 10 12 14 20
δθq (in moria)

δθq (in cents) 66.7 100 133.3 166.7 200 233.3 333.3

Estimated Empirical Steps 81.4 107.5 136.8 174.6 201.0 231.7 277.1

δ̂q (in cents)
Deviation from Theory 14.7 7.5 3.5 7.9 1.0 -1.6 -56.2

δ̂q − δθq (in cents)

p (Wilcoxon test) 0.0007 0 0.0028 0 0.1024 0.1957 0

Table 3: Scale degree step size analysis. The estimated empirical steps (Equa-
tion 15) are compared to the theoretical scale steps. Scale degree step sizes
significantly different from theory are highlighted in boldface. Zero p-values
correspond to values smaller than 10−5. It appears that the first four scale de-
gree steps differ significantly from theory. The largest absolute theory-practice
differences can be found for scale degree step sizes of 4 and 20 moria.

distributed for 1 ≤ q ≤ Q. With a significance level of α = 5% the normality
hypothesis is rejected for 6 out of the 7 scale steps and the Wilcoxon signed-
rank test is applied to test the null hypothesis that Nq has a mean equal to
the theoretical scale step δθq at the α = 0.05 significance level corresponding to
a corrected Bonferroni threshold of αB = 0.007. In Table 3, results show that
theoretic steps of 67 cents, the semitone (100 cents), the minor (133.3 cents),
and minimal tone (166.7 cents), and the interval of 333 cents differ significantly
from practice. On the other hand, for the whole tone and the interval of 233
cents there is no significant difference between empirical and theoretical steps.
The smallest and largest scale steps (67 and 333 cents respectively) display the
largest difference between theory and practice. For the majority of the steps,
the estimated empirical steps δ̂q are larger than the theoretical steps δθq . The
two largest theoretical intervals (233 and 333 cents respectively), are diminished
in practice.

5.3 Prominence of Scale Degrees

The prominence of scale degrees for all Byzantine recordings is studied via the
average scale degree amplitudes π̄l and compared to the average scale degree
amplitudes of Turkish makams in Figure 8. Results reveal that the most promi-
nent scale degrees in Byzantine Chant are the I, III, II, IV in descending order
with I (the tonic) having the highest amplitude. From Table 4, we can see that
in the shown echoi / chant genres according to theory, the most prominent scale
degrees are I, III, IV, II in descending order starting from I. Only the order of
II and IV is exchanged when comparing theory to practice. Melodic concen-
tration on mainly the first four scale degrees is further supported by the short
pitch range of Byzantine melodies and the importance of the tetrachordal entity
as a pitch frame in scale and melody construction. For comparison, makams
from religious Turkish music of the artists Kani Karaca and Bekir Sıdkı Sezgin
have been chosen. The Turkish makams have been processed the same way
as the Byzantine Chants as indicated in Figure 1. In Figure 8 (bottom) the
average scale degree amplitudes π̄l for 69 Turkish makams are shown. In con-
trast to the Byzantine Chant, for the Turkish makams, a strong emphasis of the
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Figure 8: Average scale degree amplitude π̄l (in frames) in Byzantine echoi
(top) and scale degree histograms of religious Turkish makams (bottom). The
decreasing emphasis with a relatively strong III in Byzantine scale degrees is
contrasted with a strong V in Turkish makams.

I and to a lesser extent of the V and a deemphasis of the III, II, and IV can
be observed. The high prominence of I and V in Turkish makams appears as
the most important distinguishing feature between Byzantine and Turkish scale
degree prominence.

The prominence of scale degrees for each echos individually is studied via
a comparison of the set of theoretically most prominent scale degrees with the
three highest average scale degree amplitudes in practice as shown in Table 8.
In 14 of 21 echoi/chant genres, the empirical scale degree prominences are con-
sistent with the theoretical ones. Theoretical and empirical scale degree promi-
nence coincide for First Heirmoi, Third, and Fourth Heirmoi. Whereas the
II is a theoretically prominent scale degree only for the Grave, the II appears
among the three highest average scale degree amplitudes for six echoi (for First
Authentic only for the genre Stichera). The three highest average scale degree
amplitudes appear in the three adjacent scale degrees I-III except of the First
Authentic of Heirmoi type, the Second Plagal, and the Fourth Plagal echos. In
the Second Plagal echos, the three empirically most prominent scale degrees do
not contain the I. scale degree, in contrast to Chrysanthine theory. The V. scale
degree, never listed among the most prominent scale degrees in Chrysanthine
theory, appears as the second most prominent scale degree for the Second Pla-
gal and the Fourth Plagal. For the majority of echoi, the empirical set of most
prominent scale degrees consists of the scale degrees I, II, III, with I usually
being the most prominent scale degree.
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Echos Chant Genre Theory/ Theoretically Most Prominent Scale Degrees/
Practice Highest Average Scale Degree Amplitudes

First Heirmoi Theory I IV
Practice I III IV

Stichera Theory I III
Practice I II III

First Plagal Heirmoi Theory I III
Practice I II III

Stichera Theory I IV
Practice I II III

Second Stichera/Papadika Theory I III
Practice I II III

Second Plagal Stichera/Papadika Theory I IV
Practice III IV V

Third All chants Theory I III
Practice I II III

Grave Heirmoi/Stichera Theory I II IV
Practice I II III

Fourth Heirmoi Theory I III
Practice I II III

Fourth Plagal Heirmoi/Stichera Theory I III
Practice I III V

Count Prominence Theory 10 1 6 4 0
Practice 9 7 10 2 2

Table 4: Scale tone prominence in theory and practice. Chrysanthine theory
provides two or three most prominent scale degrees respectively. Highlighted
cells correspond to the three most prominent scale degrees in practice as sug-
gested by the echos average scale degree amplitudes πil (Equation 17). The
darkest colour represents the most prominent amplitude and the lightest colour
the third largest amplitude. In the two bottom rows, for theory and practice,
prominences are counted across all echoi/ chant genres. In practice, scale de-
grees II and V are more prominent than in Chrysanthine theory.
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6 Discussion

We would like to review the processing steps and discuss how the statistical
results could have been biased.

The extraction of the pitch (f0) trajectory has been introduced in Section 4.1.
Its evaluation in Section 4.1.1 indicated that for one recording of the Grave
echos the estimated pitch trajectory is relatively distorted. It appears that this
distortion is due to the presence of drone tones in the pauses of the singing
voice, when the singing voice does not dominate the relatively low voice drone
tone. As a result, the I. could be overemphasized in the echos average scale
degree amplitude (Equation 17). However, this artifact is not likely to affect
the empirical scale degree pitches ν̂ a lot. Previously filtering out the drone
pitch could reduce noise in the f0 detection of the melody.

In Section 4.4.2, Algorithm 2 for tonic detection is evaluated. As an evalu-
ation result the tonic was detected incorrectly in two out of 20 of the excerpts.
These are exactly two of the few exceptions in which the final note of the chant
does not end on the tonic. This occurs for instance when the ending of one
chant harmonically prepares the start of the following chant in the course of
the Byzantine liturgy. Given the small sample size in the tonic detection ex-
periment, we cannnot state the exact percentage of echoi with this non-tonical
ending notes with high confidence. However a percentage of 10% would be a
reasonable estimate. This introduces noise in the plots of the echoi in Figure 9
and a bias in the statistical results in Table 2 and 3. This bias is limited by
the fact that the Wilcoxon signed-rank test tests for the median. Therefore,
distorted pitches would bias the outcome much less than in the case of a test
(e.g. t-test) that considers the mean. In future work, the tonic detection algo-
rithm could be improved to handle these cases. The cross-correlation method
as applied in (Gedik, Ali C & Bozkurt, 2008) could be used for this objective,
at the cost of introducing another bias in estimating the theory-practice devia-
tions by using music theory information more excessively when processing the
data from performance practice. This bias could be reduced by only correlating
the down-transpositions of the theoretical scale degree pitches in Table 1 by a
minor third, fourth, and fifth. When employing the cross-correlation method
using the theoretical scale degree pitches (Table 1 ), one would have to decide
how to account for the different amplitudes across the scale degrees. The scale
degree amplitudes could be estimated empirically. But when using the empiri-
cal data to determine the theoretical scale degree amplitudes, this, again, would
introduce a bias to the subsequent tests.

In Section 4.2, a slight shifting of the reference pitch during the performance
could happen. As a consequence, the peaks of the pitch histogram c would
be smeared out. This effect is likely to be small in the case of professional
singers. Also the vibrato range contributes to the width of the peaks. The
relatively irregular patterns of vibrato and other micro-intonation in the singing
voice makes it hard to derive sharp pitch histogram peaks in the case of the
singing voice. The bandwidth h for kernel smoothing is selected manually.
A change of the smoothing bandwidth h affects the histogram peak locations
λ = (λ1, . . . , λU ) in Section 4.3. However, due to the large sample size of the
instantaneous pitch vector p this bias may be limited. When considering the
instantaneous pitches pl (Equation 8) around scale degree l in Section 4.5.1,
the tails of the distribution for each scale degree are cut off. Also there is
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a dependency between adjacent scale degrees and between the empirical peak
positions and the nearest theoretical scale degree pitch to which they have been
mapped. However, an informal inspection reveals that the empirical peaks are
relatively close to the theoretical peaks, which indicates that this bias is limited.
Since the empirical scale degree pitches ν̂ = (ν̂1, . . . , ν̂L) are normalized with
respect to scale degree I, the estimation error for scale degree pitches in the
middle (IV and V) in between two octaves of scale degree I are larger than for
the scale degree steps close to I, such as II and VII. This effect appears to be
limited since in Table 2 there are much larger deviations for scale degrees VI,
VII and III than for scale degrees IV and V.

However, the impact of the bias of the preprocessing on the statistical results
is limited. This paper presents a novel statistical framework for the quantitative
analysis of scale degrees that leaves some refinement of the statistical analysis
for future work.

7 Conclusion

In this paper, a new method has been introduced to empirically study partic-
ular aspects of pitch usage in performance practice, namely tuning, steps, and
prominence of scale degrees. The method has been applied to the analysis of
Byzantine Chants. In particular, a methodology has been introduced to test to
what degree performance practice of Byzantine Chant follows the widely known
Chrysanthine theory. The theoretic hypotheses have been tested on a corpus of
recordings of chants of the octoechos. An approach combining pitch estimation
with appropriate post filtering, kernel smoothing, and statistical tests has been
applied to the recordings. Among the novel methods proposed here are the
histogram computation and smoothing and the tonic detection algorithm. The
former comprises the use of Gaussian kernels in histogram computation and
suitable tuning of the smoothing factor. The latter includes a robust method of
tonic detection from the last phrase note. In addition, a statistical framework
has been introduced to study scale degrees.

In general, the analysis shows that performance practice follows Chrysan-
thine theory. However, the analysis results also indicate subtleties in perfor-
mance practice of Byzantine Chant: The singer shows the tendency to diminish
the largest step sizes (14, 20 moria: II-III, VI-VII in Second Authentic/Plagal)
among all scale steps within the octoechos. The theoretical scale degree IV in
the Fourth Authentic is exceptionally higher than in all other echoi. In this
echos, the singer diminishes the theoretical V in practice. In Fourth, also scale
degree step VII-I (theoretically 10 moria) tends to be diminished towards the
more common step VII-I of 8 moria. This gives support to the conjecture that
the singer levels the extreme step and scale degrees particularities within the oc-
toechos. The IV., the frame of the first tetrachord is the scale degree with least
theory-practice deviation. The scale degree tuning within the first tetrachord
deviates less from theory than the scale degrees outside the first tetrachord.

The analysis of the scale steps reveals that the most frequently used scale
steps are the whole tone and the minimal tone, followed by the minor tone
and the semitone. The smallest and largest theoretical steps do not occur as
often. Whereas the smallest scale step (67 cents), the semitone, the minor and
the minimal tone are significantly larger in practice compared to theory, the
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opposite is true for the largest scale step of 333 cents.
Regarding the prominence of the scale degrees, the scale degrees within the

first tetrachord occur more often than the other scale degrees with a decreasing
prominence of scale degrees I (maximum), III, II, and IV.

The present study, as a first step towards a computational analysis of pitch
patterns of Byzantine Chant, can be extended in many ways. In particular,
the analysis of micro-intonation in the range of a few cents, embellishments
and cadential clauses, the consideration of rhythmical/metrical context and of
melodic contour could aid the understanding of pitch usage. Furthermore, be-
yond the eight echoi, the echoi genres (Heirmoi, Stichera and Papadika) should
be studied. In this study we intended to minimize the employed musical prior
kowledge. However for an effective echos recognition application, the tonic de-
tection algorithm could be improved in future work by integrating feedback from
tonic detection via the cross-correlation method as applied in (Gedik, Ali C &
Bozkurt, 2008).

It has been shown in this article that the presented system serves for empir-
ically testing a theoretic model of Byzantine Chant. The empirical findings can
then help to refine the theoretical model and to let it reflect the musical perfor-
mance practice. Furthermore, the methodology introduced here has applications
to a wide range of oral music traditions, in particular to the ones that share
similarities with the modal system of Byzantine music, e.g. Greek, Cypriot and
Turkish folk music that have been historically influenced by Byzantine music.
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9 Appendix: Pitch Histograms and Theoretical
Scale Degree Pitches for all Echoi
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Figure 9: For all recordings of all echoi, the pitch histograms are displayed. The
vertical lines indicate pitches of scale degrees according to Chrysanthine theory
(cf. Table 1). The y axis represents the normalized histogram count. The bold
red lines represent the echos histogram computed from pitch trajectories across
all recordings of the same echos.
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